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 The use of Unmanned Aerial Vehicle (UAV) can contribute to find solutions and add value 
to several agricultural problems, favoring thus productivity, better quality control processes 
and flexible farm management. In addition, the strategies that allow the acquisition and 
analysis of data from agricultural environments can help optimize current practices such as 
crop counting. The present research proposes a methodology based on the exploitation of 
deep learning approach, especially Convolutional Neural Networks  (CNN) on UAV data for 
fruit tree detection and counting. We build models for the automatic extraction of fruit trees. 
This approach is divided into main phases: dataset pre-treatment, implementing a fruit trees 
detection model by exploiting several CNN architectures, validating and comparing the 
performances of different models. The exploitation of RGB UAV images as input information 
will allow the learning models to find a statistical structure, which will result in rules capable 
of automating the detection task. They can be applied to new images for automatically 
identify and count fruit trees. The application of the methodology on collected data has made 
it possible to reach estimates of detection and counting until 96 %. 

Keywords:  
Unmanned Aerial Vehicle  
RGB images 
Convolutional Neural Networks 
Fruit tree counting 

 

 

1. Introduction 

Currently, agriculture continues to modernize and follow the 
evolution of new technologies to improve production practices and 
crop management. That has become a need in many countries due 
to the increasing demand for food. The use of new technologies, 
such as Unmanned Aerial Vehicle (UAV), can help find solutions 
and add value to several agricultural problems, thus promoting 
productivity, better quality control processes and flexible tree 
management [1]. Additionally, strategies that allow data analysis 
from agricultural environments, including artificial vision systems, 
can help optimize current practices, such as crop counting, yield 
estimation, diseases detection and classification of crop maturity 
[2]. Information on the number of plants in a crop field is essential 
for farmers as it helps them estimate productivity, assess the 
density of their plantations and errors occurring during the planting 
process [3]. From a perspective of detection, delimitation and 
counting of trees and in particular fruit trees, in [4] the author 
developed and tested the performance of an approach, based on 
RGB UAV imagery, to extract information about individual trees 

in an orchard with a complicated background which includes apple 
and pear trees. In [5], the author proposed an efficient method for 
an individual trees segmentation and the measurement of the width 
and area of identified trees crowns, based on images acquired by 
RGB UAV camera. The collected images from a peach orchard in 
Okayama, Japan, were integrated into Pix4Dmapper software for 
processing and generation of derived products (Digital Surface 
Model DSM). Using the intersection of the polygons 
corresponding to the peach branch line with the summer season 
DSM as markers indicating the sources of flooding, authors were 
able to delineate the peach trees crown via watershed 
segmentation. In [6], the author developed a specialized approach 
for citrus detection based on the DSM extraction. In [7], the author 
applied the Canny filter for edge detection applied to the images 
followed by the "Circular Hough Transform CHM" algorithm thus 
achieving the extraction and delineation of citrus trees.  

The use of UAV in various arboriculture applications has many 
advantages and benefits. However, this depends on the types of 
sensors, mission objectives and their platforms [8], [9]. 
Nevertheless, there are some problems that need to be considered 
when using UAV such as the reliability of the platform, sensor 
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capacity and adequate treatment of the images [10]-[12]. To solve 
the problem of image processing which presents a main source of 
the success of predictions or good estimation, researchers have in 
recent years turned to artificial intelligence algorithms, particularly 
deep learning and especially the convolutional neural network. In 
[13], the author evaluated the use of convolutional neural network 
(CNN) -based methods for the detection of legally protected tree 
species. Three detection methods were evaluated: Faster R-CNN, 
YOLOv3 and RetinaNet. In [14], the author proposed a deep 
learning method to accurately detect and count bananas. In [15], 
the author exploited convolutional neural networks for the 
detection and enumeration of citrus fruits in an orchard in Brazil 
characterized by the high density of its trees. In [16], the author 
developed an automatic strawberry flower detection and yield 
estimation system. 

Following the state of art review, we have selected some of 
efficient CNN architectures that we have implemented and tested 
on our context and data. The second phase is the preparation of the 
data especially the collection, cleaning, analysis, visualization and 
necessary treatments. The third phase consist to conceive, 
implement and analysis of the models performance. One of our 
objectives is to understand the advantage of one architecture over 
another. We have started by testing different architectures and their 
hyperparameters. The knowledge acquired as a result of these 
experiments allowed us to understand the influence of several 
parameters on the expected performance and to subsequently build 
a model intended to detect fruit trees. 

The rest of this paper is organized as follow. Section 2 gives 
the material and the used methods.  The experimental results and 
setup are shown in section 3. Section 4 presents the result 
discussion and section 5 the conclusion followed by the most 
relevant references. 

2. Material and Methods 

2.1. Material 

2.1.1. Data collection 

Among the many challenges of deep learning algorithms is the 
data collection which is considered to be one of the most critical 
points in the processes of artificial intelligence in general and deep 
learning in particular. The required time to run a deep learning 
algorithm depends on data preparation including collection, 
cleaning, analysis, and visualization. To answer this problem, we 
consulted several sources, resulting in a fairly large repertoire of 
images serving as the basis for feeding our algorithm. In this work, 
we will not treat the acquisition step and orthophoto establishment. 
We are limited in their uses and treatment for a successful training 
operation.  

We present in Table 1 the number and size of each of the data 
acquired as well as the source. 

Table 1: The number, size and source of data tested in this study 

Data 

Ima-
ge 

num
-ber 

Size 

Camera 
resolu-

tion 
MPx 

Alti- 
tude 

Type of 
flight Source 

D1 103 
960 
x 
540 

- - - https://github.com/
skygate/skyessays 

D2 170 
400 
x 
400 

- - - (http://data.neonsc
ience.org/ 

D3 1 
9649 
x 
4532 

20 120 Ebee 
sensefly www.etafat.ma 

D4 17 
5472 
x 
3846 

18.6 80 Ebee Globetude 
company 

D5 13 
4896 
x 
3672 

16 40 DJI www.terramodus.
ma 

 
2.1.2. Computer tools and deep learning libraries used 

Keras 

Keras is a high-level neural network Application Programming 
Interface (API) written in Python and interfaceable with 
TensorFlow, CNTK and Theano. It was developed with the aim of 
allowing rapid experiments [17]. Keras can allow rapid and easy 
prototyping (due to its user-friendliness, modularity and 
extensibility). It supports both convolutional networks and 
recurrent networks as well as a combination of the two. Also, it 
Works seamlessly on CPU and GPU. 

Darknet 
Darknet is an open source neural network framework written 

in C and CUDA. It is fast, easy to install, and supports CPU and 
GPU computing [18]. It was developed by Joseph Redmon. Unlike 
Keras which is well known as much as a deep learning library, 
Darknet on the other hand is the library where versions of the 
YOLO object detector are implemented. 

 
Figure 1. Methodology flowchart. 

Google colaboratory 
For any neural network, the training phase of the deep learning 

model is the most resource-intensive task. During training, a neural 
network receives input data, which is then processed in hidden 
layers using weights which are adjusted during training and the 
model then gives a prediction. The weights are adjusted to find 
patterns to make better predictions. Memory in neural networks is 
needed to store input data, weight parameters, and activations as 
an input propagates through the network [19]. Due to the memory 
and limited power of our computer, we used the Google 
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colaboratory to perform all of our deep learning operations. 
Google Colab or Colaboratory is a cloud service, offered by 
Google (free), based on Jupyter Notebook and intended for 
training and research in machine learning. This platform allows 
you to train machine learning models directly in the cloud (Google 
Colab: The Ultimate Guide). Colab provides a free Tesla K80 type 
GPU graphics processor and 13 GB of random-access memory 
(RAM) that work entirely in the cloud. 

2.2. Methods 

Our methodology is based on a following processes as 
presented in figure 1. 

In the following sections we develop the methodology process. 

2.2.1. Cutting operation 

In order to increase the images number for the algorithm 
training, a cropping operation was performed on large images as 
well as the orthophoto. This operation consisted of splitting the 
original image to smaller images with a dimension of 816 x 816 
pixels, the number of images resulting from the trimming 
operation depends on the initial dimensions of the image. This was 
done using the OpenCV image processing graphics library on 
Python. Figure 2 shows how an image of dimension 4 x 4 is divided 
into images of dimension 2 x 2. 

 
Figure 2: Cutting the orthophotographie using OpenCV algorithm 

2.2.2. Labeling of images 

Labeling images is a human task that involves annotating an 
image with labels. These labels are predetermined by the person 
and are chosen to give the computer vision model information 
about what is shown in the image. The tool used for this task is 
LabelImg. This is a graphical image annotation tool, it is written in 
Python and uses for its GUI. Annotations are saved as XML files 
in Pascal VOC format, the format used by ImageNet. Besides, it 
also supports YOLO format. 

2.2.3. Image augmentation 

One of the main difficulties in training a CNN model is that of 
overfitting. That is, the model produced fits too well on the training 
data. But, therefore the generalization error of the model is much 
too high, in other words the model modifies its predictions based 
on the size, angle and position of the image. To deal with the over-
adjustment problem, several techniques are used and among them: 
Dropout, Transfer learning, Batch normalization and data 
augmentation. Unlike the techniques mentioned above, increasing 

the data resolves the problem from its origin, namely the training 
data set. This is done on the assumption that more information can 
be extracted from the original dataset through augmentation. Data 
augmentation is the technique of increasing the size of the data 
used to train a model. To obtain reliable detection, deep learning 
models often require a lot of training data, which is not always 
available. Therefore, the existing data is augmented in order to 
obtain a better generalized model. Some of the most common data 
augmentation techniques used and applied to our images are listed 
below: Scaling, Rotation, Translation, Shear, Brightness, Contrast, 
Saturation, Hue, Noise, and Blur the image. Figure 3 presents some 
criteria used in the augmentation phase.  

 

 
Figure 3: Augmentation algorithm by change of image pixel value : (a) initial image. 
(b) brightness γ = 1.5. (c) brightness γ = 2.5. (d) brightness γ = 5. (e) brightness γ = 
0.3. (f) brightness γ = 0.4. (g) brightness γ = 0.7. (h) Gaussian Blur = 2. (i) Gaussian 
Blur = 1. (j) Average Blur. (k) Median Blur. (l) rotation θ = 90 °. (m) rotation θ = 
180 °. (n) saturation = 50. (o) saturation = 100. (p) Sharpen. (q) Shear. (r) 
translation. (s) noise. 

2.2.4. Resizing training images 

We opted to resize the training images because there is a 
correlation between the dimensions of the images used for training 
the model and the RAM size needed for the model training. The 
dimensions chosen for the images training are 416 x 416 and 608 
x 608. By resizing the images, all the annotation files must be 
adapted to the new dimensions of the images so that each enclosing 
rectangle drawn during the annotation phase remains placed 
around the object. For this task, the algorithm used is written in 
python using the OpenCV library. 

http://www.astesj.com/
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2.2.5. CNN models used for fruit trees detection 

Considering the huge set of applications for the object 
detection, a very large number of models suitable has been 
introduced. In what follows, we present the three models chosen 
for the realization of our work. To make our choice, we are based 
on the model’s performance as well as on the models used for our 
similar application. The three models chosen are: 

• YOLOv4 

• YOLOv3 

• RetinaNet-101  

YOLO, You Only Look Once, is a real-time object detection 
system that recognizes various objects in a single enclosure. In 
addition, it identifies objects faster and more accurately than other 
recognition systems [20]. A modern detector is generally made up 
of two parts, a “backbone” part of the detector which is pre-trained 
on ImageNet and a Head which is used to predict the classes and 
limit boxes of objects. For detectors running on a GPU platform, 
their base network can be VGG, ResNet, ResNeXt, or DenseNet. 
For detectors running on a CPU platform, backbone can be 
SqueezeNet, MobileNet or ShuffleNet. As for the main part of the 
detector head, it is generally classified into two categories, namely 
the single stage object detector and the two-stage object detector. 
The most representative two-stage object detector is the R-CNN 
series, which includes Faster R-CNN, R-FCN and R-CNN Libra. 
For the one-step object detector, the representative models are 
YOLO, SSD and RetinaNet. 

YOLOv4 network implements CSPDarknet53 as the backbone 
network. YOLOv4 is considering a few options for the neck, 
including: FPN, PANet, NAS-FPN, BiFPN, ASFF, SFAM. Neck 
components generally flow from top to bottom between layers and 
connect only a few layers at the end of the convolutional network. 
As part of this work, we chose PANet for the aggregation of 
network characteristics whose efficiency has been approved by the 
authors [21]. In addition, we have added an SPP block after 
CSPDarknet53 to increase the receive field and separate the most 
important features of the backbone. 

YOLOv3 addresses object detection as a problem of direct 
regression from pixels to the coordinates of bounding rectangles 
and class probabilities. The input image is divided into S × S tiles. 
For each bounding rectangle, an objectivity or confidence score is 
predicted by logistic regression, which indicates the probability 
that the bounding rectangle in question has an object of interest. In 
addition, the probabilities of a class C are estimated for each 
bounding rectangle, which indicates the classes it may contain. In 
our case, each bounding rectangle can contain a fruit tree or the 
background (interesting object). Thus, each detection in YOLOv3 
is composed of four parameters for the bounding rectangle 
(coordinates), an objectivity or confidence score and class C 
probabilities. To improve the precision of detection, YOLOv3 
predicts these bounding rectangles at three different scales using 
the idea of setting up a network of pyramids. As a backbone 
network YOLOv3 uses Darknet-53. 

RetinaNet is a single stage object detector similar to YOLOv4 
and EfficientDet. However, unlike these two detectors presented 
previously and which both recent (2020), RetinaNet on the other 
hand was introduced in 2018. It is based on the ResNet network 
which makes it possible to add a connection connecting the input 
of a layer with its release. In order to reduce the number of 

parameters, ResNet does not have fully connected layers. 
GoogleNet and ResNet are much deeper but contain fewer 
parameters. This can make them more expensive in memory 
during training. 

2.2.6. Hyperparameters selection 

Several hyperparameters have been tested and iterated by 
empirical tests. We present in what section the hyperparameters 
whose variation has remarkably influenced the detection results 
rate. 

The epochs number, stages per epoch and the size of the batch 

Epoch’s number is a hyperparameter that defines the number 
of times the training algorithm will work through the training data 
set. The size of the batch is a hyperparameter which defines the 
number of samples to be processed before updating the internal 
parameters of the model. The number of samples reviewed in a 
single epoch is set simultaneously based on the number of steps 
per epoch and the batch size. For example, taking a batch size of 
32 and a number of steps of 1000 per epoch, then the number of 
the network samples worked on is 32000. 

Learning rate 

Considered to be the most important of all hyperparameters. If 
it is too low the convergence is slow, if it is too large the gradient 
descent algorithm may unintentionally increase the training error 
rather than decrease it. 

Subdivisions Number 

This is a specific hyperparameter to YOLO models and which 
allows the batch to be subdivided into mini batches which will be 
supplied to the machine during training. For example, a batch size 
of 64 and a number of subdivisions 16 means that 4 images will be 
loaded at the same time. It will take 16 of these mini batches to 
perform a full iteration. For all the hyperparameters, several values 
were tested for each of the models and on the basis of the 
performance obtained on the validation data that we validate the 
best hyperparameters for each of the models. Table 2 presents the 
hyperparameters values tested during training phase. 

Table 2: The hyperparameters values tested during training phase 

Hyperparameters Tested value 

Epochs number Variable according to training time 

Learning rate 0.01, 0.001, 0.0001, 0.00001 

Subdivisions Number 16, 8 

3. Results and experimentation 

3.1. Data Preparation Results 

The augmentation operation allowed us to have, from a limited 
number of images, a very large set. We distributed the images 
obtained respectively into training image, validation image and test 
image as presented in table 3. 

Table 3: Distribution of images on the training, validation and test sets 

Set Training Validation Test 

Rate 80% 10% 10% 

http://www.astesj.com/
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Total number of 
images 

2355 263 266 

Tree number 140293 17605 24637 

The size of the adopted images depends on the network size 
and the GPU capacity (graphics card) used for training. You must 
insert a reasonable size batch into the GPU memory. We did some 
tests with different images sizes. Then we compared the details 
obtained for the different sizes and the training time to finally 
choose the most suitable one. The dimensions of images used for 
training the models are 416 x 416 and 608 x 608. These dimensions 
are multiples of 32 since YOLO is designed in such a way that the 
input images for its training have this characteristic. 

3.2. Model training and hyperparameters choice 

The goal during the training phase is to minimize the loss 
function. The optimization algorithm used during this work is that 
of the gradient descent applied to batches (Mini-batch gradient 
descent). This method updates the weights for each batch 
consisting of N training samples. At each iteration, we therefore 
take a batch. It is said that an epoch has passed after the entire 
dataset is covered. The number N of samples in a batch represents 
another hyperparameter to be adjusted. During training, there are 
several choices available with respect to the sizes of the 
hyperparameters. These are the parameters whose value are set 
before the start of the learning process. They cannot be learned 
directly from data and must be predefined. Unfortunately, there is 
no generic way to determine the best hyperparameters. The 
optimization or modification of hyperparameters is the major 
problem for training our model. The same model with different 
choices of hyperparameters can generalize different data models. 
Additionally, the same type of machine learning model may 
require different constraints, weights, or learning rates to 
generalize different data models. So we experimented with 
different values of these parameters including the learning rate, the 
batch size and the network architecture. We train our model and at 
the end we choose the parameters that provide the best precision. 
Table 4 shows the values taken from the hyperparameters to reduce 
the loss function. 

Table 4: the list of the different pre-trained models and their hyperparameters 

Model Basic network Image 
size 

learning rate 

RetinaNet 
101 

ResNet 101 608 0.00001 

YOLOv4 CSPDARKNET53 416 0.001 
YOLOv3 DARKNET53 416 0.001 

The loss function of training data is plotted over time. We start 
with the RetinaNet architecture by referring to the 
hyperparameters presented in Table 4. Figure 4 presents the 
evolution of loss functions by epoch 

 
Figure 4: The evolution of loss functions by epoch. 

We notice a decrease in the loss function. The experienced 
learning rate is 0.00001. We also observe that the loss function for 
the classification has a lower value compared to the other two. This 
is explained by the fact that we only have one class which is fruit 
trees. 

Unlike RetinaNet which is executed using the Keras library and 
which allows to visualize the progress of the loss function during 
the training using the tenserboard module, with Darknet (base 
network of YOLOv3 and YOLOv4) the progress of the training is 
not recorded. Nevertheless, we were able to visualize his progress 
during the training.  

For the YOLOv3 model, we could not complete training for a 
frame size of 608 due to the size of the RAM. We were satisfied 
with images of dimensions 416 x 416 for the training. Furthermore, 
it was possible to use a larger batch size for YOLOv3 such as 64. 
This is made possible thanks to a hyperparameter called 
subdivision. The smaller the number of subdivisions, the faster the 
training and the more memory it requires. For example, a number 
of subdivisions of 8 means that 8 images will be loaded at a time, 
so more memory will be consumed. For us, the number of 
subdivisions that can support our work environment is 16 that is 
mean to load 4 images at once for a batch size of 64. Table 5 shows 
the values of the loss function of the YOLOv3 model. 

Table 5: Values of the loss function at the start and the end of learning- 
YOLOv3. 

Model Batch 
size 

Subdivision 
Number 

Loss at 
the start 

of 
learning 

Loss at the 
end of 

learning for 
5000 

iterations 
YOLOv3 64 16 2500 3.67 

The results of the YOLOv4 model will be presented in a similar 
way to those of YOLOv3. Unlike YOLOv3, the training for 
YOLOv4 has been done up to 10000 iterations mainly because the 
training speed is much faster compared to YOLOv3. Similar to 
YOLOv3, YOLOv4 is run using DarkNet and not Keras. Thus, we 
cannot obtain at the end of the training the progress of the latter. 
However, we can get an idea of the behavior of the loss function. 
This function has been tested with a learning rate of 0.001 and 
0.0001. This decrease is much faster with a learning rate of 0.001.  
Table 6 presents the values of the loss function of YOLOv4. 
Table 6: The values of loss function at the start and the end of learning- YOLOv4 

Model Batch 
size 

Subdivision 
Number 

Loss at 
the start 
of 
learning 

Loss at the 
end of 
learning for 
5000 
iterations 

YOLOv4 64 16 2800 12.5624 

3.3. Detection rate for the 3 architectures 

As test data, we will use the 10% of the images reserved for 
this step. Figure 5 shows the detection results:  

From the detection result, we can see that the two models 
YOLOv3 and YOLOv4 give better predictions. In addition, the 
RetinaNet model fails to give good detections of trees if the 
number of trees in the images is very small. Table 7 presents the 
predictions of tree number detection in UAV images: 

http://www.astesj.com/
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Figure 5: Example of detection results: (a) YOLOv4, (b) YOLOv3, (c) 

RetinaNet101. 
Table 7: The detections obtained for the three tested models 

Model Detection rate % 
RetinaNet-101 73% 
YOLOv3 80% 
YOLOv4 96% 

The results obtained demonstrate that the YOLOv4 model is 
the model which gave the best validation and test results. 

The reasons for this choice are as follows: 

 Yolov4 allowed a faster improvement of the loss function 
compared to other architectures. For the same number of 

epochs, this reaches its lowest value. In addition, it does not 
require a lot of time for training. 

 Yolov4 is the model which sacrifices the least precision to 
improve its Recall. 

 Yolov4 provides very satisfactory results on the test set where 
it gives better detections with minimum time and better 
detection speed. 

4. Discussion 

Fruit trees have a very complex and heterogeneous form with 
vegetation classes that appear visually similar in orchards. Their 
categorizations require the detection model to be able to represent 
the spatial context of the image appropriately by learning a set of 
attributes adequate to distinguish between the different categories 
of the agricultural scene and the efficient extraction of fruit trees. 
Such an analysis is often carried out on images with very high 
spatial resolution and which have sufficient detail. Hence the 
considerable contribution of using RGB UAV images for the 
detection and enumeration of fruit trees. 

The proposed approach based on the Yolov4 model that we 
implemented, succeeded in identifying and counting these trees. 
The results obtained on the validation and test sets are very 
satisfactory, it gave an accuracy of 96%. In addition, the results on 
various evaluation metrics undoubtedly confirm the contribution 
of convolutional neural networks algorithms. Despite their good 
performance, the use of convolutional neural networks presents 
challenges, the most important of which is the recurrent risk of 
overfitting. CNNs are big consumers of data. The general rule of 
learning algorithms is that a model trained on a large amount of 
data produces, in the majority of cases, much better results on new 
data than a model trained on small amounts. The amount of data 
required is not fixed and depends closely on the complexity and 
the mission objective. 

Finally, despite the relevance of the obtained results, our work 
nonetheless presents some limitations which are most often due to 
the available computing resources which have proved insufficient 
for the conduct of some experiments. In recent years, the graphics 
processor (GPU) has established itself as an important and even 
indispensable player in heavy calculations that have long been 
done only by central processors (CPUs). Fortunately, the Google 
colaboratory cloud space offers excellent technical specifications 
and allowed us to run several experiments related to this work. 
Furthermore, we cannot present an experiment that takes place 
over a succession of stages without addressing the notion of time. 
Time is one of the deciding factors in choosing the best 
architecture. Of course, while weighting with the detection rate 
obtained. Table 5 presents a comparison of the overall training 
time for the three tested models. 

Table 5: The overall training time for the three tested models 

Model Overall training time 
RetinaNet-resnet101 11h 
Yolov3 5h 
Yolov4 8h08min 

According to table 5, it can be seen that the Yolov3 and yolov4 
model require less time than the Retinanet-101 model. Also the 
Yolov3 model consumes less time in the training phase. However, 
as we have mentioned before. Time cannot be the only parameter 
in the choice of the model. It will be necessary to weight according 

(a) 

(b) 

(c) 
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to the precision of detection. In this sense, Yolov4 allowed us to 
obtain the best precision in a fairly satisfactory time. 

5. Conclusion 

We have tried to simplify the various experiments carried out 
either on the hyperparameters or on the architectures obtained. Our 
main goal is to obtain good details on the fruit tree detection and 
counting. This was accomplished with a detection success to 96%. 
These results are generally satisfactory given the difficulties 
encountered either in the availability of data or in the 
implementation of architectures. During this work, a considerable 
amount of time is spent for data preparation, collection, cleaning, 
analysis, visualization and the necessary treatments namely 
resizing, augmentation and annotation. Our primary concern is to 
find a sufficient number of images of fruit trees taken by UAV and 
which can be used subsequently to train, validate and test by the 
deep learning algorithm. In addition, the field of deep learning is 
constantly evolving and requires having solid basic knowledge and 
keeping up with all the news. Something that slowed down our 
work and took a long time for us to resolve implementation errors. 
Finally, the complexity of the calculations generated by the 
different models always makes their training requires more time 
and powerful machines. In conclusion, despite all these 
difficulties, it emerges that convolutional neural networks are very 
promising for the detection and enumeration of fruit trees and open 
a very interesting field of application for other uses such as yield 
estimation.  
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