

www.astesj.com 887

Detection and Counting of Fruit Trees from RGB UAV Images by Convolutional Neural Networks
Approach

Kenza Aitelkadi*,1, Hicham Outmghoust1, Salahddine laarab1, Kaltoum Moumayiz2, Imane Sebari1

1Cartography-photogrammetry Department, Agronomic and veterinary Hassan II Institute, Rabat, 6202, Morocco

2GolobalEtudes Company, Rabat, 6202, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 September, 2020
Accepted: 08 March, 2021
Online: 10 April, 2021

 The use of Unmanned Aerial Vehicle (UAV) can contribute to find solutions and add value
to several agricultural problems, favoring thus productivity, better quality control processes
and flexible farm management. In addition, the strategies that allow the acquisition and
analysis of data from agricultural environments can help optimize current practices such as
crop counting. The present research proposes a methodology based on the exploitation of
deep learning approach, especially Convolutional Neural Networks (CNN) on UAV data for
fruit tree detection and counting. We build models for the automatic extraction of fruit trees.
This approach is divided into main phases: dataset pre-treatment, implementing a fruit trees
detection model by exploiting several CNN architectures, validating and comparing the
performances of different models. The exploitation of RGB UAV images as input information
will allow the learning models to find a statistical structure, which will result in rules capable
of automating the detection task. They can be applied to new images for automatically
identify and count fruit trees. The application of the methodology on collected data has made
it possible to reach estimates of detection and counting until 96 %.

Keywords:
Unmanned Aerial Vehicle
RGB images
Convolutional Neural Networks
Fruit tree counting

1. Introduction

Currently, agriculture continues to modernize and follow the
evolution of new technologies to improve production practices and
crop management. That has become a need in many countries due
to the increasing demand for food. The use of new technologies,
such as Unmanned Aerial Vehicle (UAV), can help find solutions
and add value to several agricultural problems, thus promoting
productivity, better quality control processes and flexible tree
management [1]. Additionally, strategies that allow data analysis
from agricultural environments, including artificial vision systems,
can help optimize current practices, such as crop counting, yield
estimation, diseases detection and classification of crop maturity
[2]. Information on the number of plants in a crop field is essential
for farmers as it helps them estimate productivity, assess the
density of their plantations and errors occurring during the planting
process [3]. From a perspective of detection, delimitation and
counting of trees and in particular fruit trees, in [4] the author
developed and tested the performance of an approach, based on
RGB UAV imagery, to extract information about individual trees

in an orchard with a complicated background which includes apple
and pear trees. In [5], the author proposed an efficient method for
an individual trees segmentation and the measurement of the width
and area of identified trees crowns, based on images acquired by
RGB UAV camera. The collected images from a peach orchard in
Okayama, Japan, were integrated into Pix4Dmapper software for
processing and generation of derived products (Digital Surface
Model DSM). Using the intersection of the polygons
corresponding to the peach branch line with the summer season
DSM as markers indicating the sources of flooding, authors were
able to delineate the peach trees crown via watershed
segmentation. In [6], the author developed a specialized approach
for citrus detection based on the DSM extraction. In [7], the author
applied the Canny filter for edge detection applied to the images
followed by the "Circular Hough Transform CHM" algorithm thus
achieving the extraction and delineation of citrus trees.

The use of UAV in various arboriculture applications has many
advantages and benefits. However, this depends on the types of
sensors, mission objectives and their platforms [8], [9].
Nevertheless, there are some problems that need to be considered
when using UAV such as the reliability of the platform, sensor

ASTESJ

ISSN: 2415-6698

*Corresponding Author: K. Aitelkadi, Agronomic and veterinary Hassan II
Institute, k.aitelkadi@iav.ac.ma

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj0602101

http://www.astesj.com/
mailto:k.aitelkadi@iav.ac.ma
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0602101

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 888

capacity and adequate treatment of the images [10]-[12]. To solve
the problem of image processing which presents a main source of
the success of predictions or good estimation, researchers have in
recent years turned to artificial intelligence algorithms, particularly
deep learning and especially the convolutional neural network. In
[13], the author evaluated the use of convolutional neural network
(CNN) -based methods for the detection of legally protected tree
species. Three detection methods were evaluated: Faster R-CNN,
YOLOv3 and RetinaNet. In [14], the author proposed a deep
learning method to accurately detect and count bananas. In [15],
the author exploited convolutional neural networks for the
detection and enumeration of citrus fruits in an orchard in Brazil
characterized by the high density of its trees. In [16], the author
developed an automatic strawberry flower detection and yield
estimation system.

Following the state of art review, we have selected some of
efficient CNN architectures that we have implemented and tested
on our context and data. The second phase is the preparation of the
data especially the collection, cleaning, analysis, visualization and
necessary treatments. The third phase consist to conceive,
implement and analysis of the models performance. One of our
objectives is to understand the advantage of one architecture over
another. We have started by testing different architectures and their
hyperparameters. The knowledge acquired as a result of these
experiments allowed us to understand the influence of several
parameters on the expected performance and to subsequently build
a model intended to detect fruit trees.

The rest of this paper is organized as follow. Section 2 gives
the material and the used methods. The experimental results and
setup are shown in section 3. Section 4 presents the result
discussion and section 5 the conclusion followed by the most
relevant references.

2. Material and Methods

2.1. Material

2.1.1. Data collection

Among the many challenges of deep learning algorithms is the
data collection which is considered to be one of the most critical
points in the processes of artificial intelligence in general and deep
learning in particular. The required time to run a deep learning
algorithm depends on data preparation including collection,
cleaning, analysis, and visualization. To answer this problem, we
consulted several sources, resulting in a fairly large repertoire of
images serving as the basis for feeding our algorithm. In this work,
we will not treat the acquisition step and orthophoto establishment.
We are limited in their uses and treatment for a successful training
operation.

We present in Table 1 the number and size of each of the data
acquired as well as the source.

Table 1: The number, size and source of data tested in this study

Data

Ima-
ge

num
-ber

Size

Camera
resolu-

tion
MPx

Alti-
tude

Type of
flight Source

D1 103
960
x
540

- - - https://github.com/
skygate/skyessays

D2 170
400
x
400

- - - (http://data.neonsc
ience.org/

D3 1
9649
x
4532

20 120 Ebee
sensefly www.etafat.ma

D4 17
5472
x
3846

18.6 80 Ebee Globetude
company

D5 13
4896
x
3672

16 40 DJI www.terramodus.
ma

2.1.2. Computer tools and deep learning libraries used

Keras

Keras is a high-level neural network Application Programming
Interface (API) written in Python and interfaceable with
TensorFlow, CNTK and Theano. It was developed with the aim of
allowing rapid experiments [17]. Keras can allow rapid and easy
prototyping (due to its user-friendliness, modularity and
extensibility). It supports both convolutional networks and
recurrent networks as well as a combination of the two. Also, it
Works seamlessly on CPU and GPU.

Darknet
Darknet is an open source neural network framework written

in C and CUDA. It is fast, easy to install, and supports CPU and
GPU computing [18]. It was developed by Joseph Redmon. Unlike
Keras which is well known as much as a deep learning library,
Darknet on the other hand is the library where versions of the
YOLO object detector are implemented.

Figure 1. Methodology flowchart.

Google colaboratory
For any neural network, the training phase of the deep learning

model is the most resource-intensive task. During training, a neural
network receives input data, which is then processed in hidden
layers using weights which are adjusted during training and the
model then gives a prediction. The weights are adjusted to find
patterns to make better predictions. Memory in neural networks is
needed to store input data, weight parameters, and activations as
an input propagates through the network [19]. Due to the memory
and limited power of our computer, we used the Google

• orthophoto of
Moroccan site

• Web images
• Github repertory

Cutting
Labeling

Augmentation
Resizing

Hyperparameter adjustment

Data test

Data collection
RGB UAV images

Data preteatment
and augmentation

Transfer learning

Model validation

http://www.astesj.com/
https://github.com/skygate/skyessays
https://github.com/skygate/skyessays
http://data.neonscience.org/
http://data.neonscience.org/
http://www.etafat.ma/
http://www.terramodus.ma/
http://www.terramodus.ma/

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 889

colaboratory to perform all of our deep learning operations.
Google Colab or Colaboratory is a cloud service, offered by
Google (free), based on Jupyter Notebook and intended for
training and research in machine learning. This platform allows
you to train machine learning models directly in the cloud (Google
Colab: The Ultimate Guide). Colab provides a free Tesla K80 type
GPU graphics processor and 13 GB of random-access memory
(RAM) that work entirely in the cloud.

2.2. Methods

Our methodology is based on a following processes as
presented in figure 1.

In the following sections we develop the methodology process.

2.2.1. Cutting operation

In order to increase the images number for the algorithm
training, a cropping operation was performed on large images as
well as the orthophoto. This operation consisted of splitting the
original image to smaller images with a dimension of 816 x 816
pixels, the number of images resulting from the trimming
operation depends on the initial dimensions of the image. This was
done using the OpenCV image processing graphics library on
Python. Figure 2 shows how an image of dimension 4 x 4 is divided
into images of dimension 2 x 2.

Figure 2: Cutting the orthophotographie using OpenCV algorithm

2.2.2. Labeling of images

Labeling images is a human task that involves annotating an
image with labels. These labels are predetermined by the person
and are chosen to give the computer vision model information
about what is shown in the image. The tool used for this task is
LabelImg. This is a graphical image annotation tool, it is written in
Python and uses for its GUI. Annotations are saved as XML files
in Pascal VOC format, the format used by ImageNet. Besides, it
also supports YOLO format.

2.2.3. Image augmentation

One of the main difficulties in training a CNN model is that of
overfitting. That is, the model produced fits too well on the training
data. But, therefore the generalization error of the model is much
too high, in other words the model modifies its predictions based
on the size, angle and position of the image. To deal with the over-
adjustment problem, several techniques are used and among them:
Dropout, Transfer learning, Batch normalization and data
augmentation. Unlike the techniques mentioned above, increasing

the data resolves the problem from its origin, namely the training
data set. This is done on the assumption that more information can
be extracted from the original dataset through augmentation. Data
augmentation is the technique of increasing the size of the data
used to train a model. To obtain reliable detection, deep learning
models often require a lot of training data, which is not always
available. Therefore, the existing data is augmented in order to
obtain a better generalized model. Some of the most common data
augmentation techniques used and applied to our images are listed
below: Scaling, Rotation, Translation, Shear, Brightness, Contrast,
Saturation, Hue, Noise, and Blur the image. Figure 3 presents some
criteria used in the augmentation phase.

Figure 3: Augmentation algorithm by change of image pixel value : (a) initial image.
(b) brightness γ = 1.5. (c) brightness γ = 2.5. (d) brightness γ = 5. (e) brightness γ =
0.3. (f) brightness γ = 0.4. (g) brightness γ = 0.7. (h) Gaussian Blur = 2. (i) Gaussian
Blur = 1. (j) Average Blur. (k) Median Blur. (l) rotation θ = 90 °. (m) rotation θ =
180 °. (n) saturation = 50. (o) saturation = 100. (p) Sharpen. (q) Shear. (r)
translation. (s) noise.

2.2.4. Resizing training images

We opted to resize the training images because there is a
correlation between the dimensions of the images used for training
the model and the RAM size needed for the model training. The
dimensions chosen for the images training are 416 x 416 and 608
x 608. By resizing the images, all the annotation files must be
adapted to the new dimensions of the images so that each enclosing
rectangle drawn during the annotation phase remains placed
around the object. For this task, the algorithm used is written in
python using the OpenCV library.

http://www.astesj.com/

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 890

2.2.5. CNN models used for fruit trees detection

Considering the huge set of applications for the object
detection, a very large number of models suitable has been
introduced. In what follows, we present the three models chosen
for the realization of our work. To make our choice, we are based
on the model’s performance as well as on the models used for our
similar application. The three models chosen are:

• YOLOv4

• YOLOv3

• RetinaNet-101

YOLO, You Only Look Once, is a real-time object detection
system that recognizes various objects in a single enclosure. In
addition, it identifies objects faster and more accurately than other
recognition systems [20]. A modern detector is generally made up
of two parts, a “backbone” part of the detector which is pre-trained
on ImageNet and a Head which is used to predict the classes and
limit boxes of objects. For detectors running on a GPU platform,
their base network can be VGG, ResNet, ResNeXt, or DenseNet.
For detectors running on a CPU platform, backbone can be
SqueezeNet, MobileNet or ShuffleNet. As for the main part of the
detector head, it is generally classified into two categories, namely
the single stage object detector and the two-stage object detector.
The most representative two-stage object detector is the R-CNN
series, which includes Faster R-CNN, R-FCN and R-CNN Libra.
For the one-step object detector, the representative models are
YOLO, SSD and RetinaNet.

YOLOv4 network implements CSPDarknet53 as the backbone
network. YOLOv4 is considering a few options for the neck,
including: FPN, PANet, NAS-FPN, BiFPN, ASFF, SFAM. Neck
components generally flow from top to bottom between layers and
connect only a few layers at the end of the convolutional network.
As part of this work, we chose PANet for the aggregation of
network characteristics whose efficiency has been approved by the
authors [21]. In addition, we have added an SPP block after
CSPDarknet53 to increase the receive field and separate the most
important features of the backbone.

YOLOv3 addresses object detection as a problem of direct
regression from pixels to the coordinates of bounding rectangles
and class probabilities. The input image is divided into S × S tiles.
For each bounding rectangle, an objectivity or confidence score is
predicted by logistic regression, which indicates the probability
that the bounding rectangle in question has an object of interest. In
addition, the probabilities of a class C are estimated for each
bounding rectangle, which indicates the classes it may contain. In
our case, each bounding rectangle can contain a fruit tree or the
background (interesting object). Thus, each detection in YOLOv3
is composed of four parameters for the bounding rectangle
(coordinates), an objectivity or confidence score and class C
probabilities. To improve the precision of detection, YOLOv3
predicts these bounding rectangles at three different scales using
the idea of setting up a network of pyramids. As a backbone
network YOLOv3 uses Darknet-53.

RetinaNet is a single stage object detector similar to YOLOv4
and EfficientDet. However, unlike these two detectors presented
previously and which both recent (2020), RetinaNet on the other
hand was introduced in 2018. It is based on the ResNet network
which makes it possible to add a connection connecting the input
of a layer with its release. In order to reduce the number of

parameters, ResNet does not have fully connected layers.
GoogleNet and ResNet are much deeper but contain fewer
parameters. This can make them more expensive in memory
during training.

2.2.6. Hyperparameters selection

Several hyperparameters have been tested and iterated by
empirical tests. We present in what section the hyperparameters
whose variation has remarkably influenced the detection results
rate.

The epochs number, stages per epoch and the size of the batch

Epoch’s number is a hyperparameter that defines the number
of times the training algorithm will work through the training data
set. The size of the batch is a hyperparameter which defines the
number of samples to be processed before updating the internal
parameters of the model. The number of samples reviewed in a
single epoch is set simultaneously based on the number of steps
per epoch and the batch size. For example, taking a batch size of
32 and a number of steps of 1000 per epoch, then the number of
the network samples worked on is 32000.

Learning rate

Considered to be the most important of all hyperparameters. If
it is too low the convergence is slow, if it is too large the gradient
descent algorithm may unintentionally increase the training error
rather than decrease it.

Subdivisions Number

This is a specific hyperparameter to YOLO models and which
allows the batch to be subdivided into mini batches which will be
supplied to the machine during training. For example, a batch size
of 64 and a number of subdivisions 16 means that 4 images will be
loaded at the same time. It will take 16 of these mini batches to
perform a full iteration. For all the hyperparameters, several values
were tested for each of the models and on the basis of the
performance obtained on the validation data that we validate the
best hyperparameters for each of the models. Table 2 presents the
hyperparameters values tested during training phase.

Table 2: The hyperparameters values tested during training phase

Hyperparameters Tested value

Epochs number Variable according to training time

Learning rate 0.01, 0.001, 0.0001, 0.00001

Subdivisions Number 16, 8

3. Results and experimentation

3.1. Data Preparation Results

The augmentation operation allowed us to have, from a limited
number of images, a very large set. We distributed the images
obtained respectively into training image, validation image and test
image as presented in table 3.

Table 3: Distribution of images on the training, validation and test sets

Set Training Validation Test

Rate 80% 10% 10%

http://www.astesj.com/

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 891

Total number of
images

2355 263 266

Tree number 140293 17605 24637

The size of the adopted images depends on the network size
and the GPU capacity (graphics card) used for training. You must
insert a reasonable size batch into the GPU memory. We did some
tests with different images sizes. Then we compared the details
obtained for the different sizes and the training time to finally
choose the most suitable one. The dimensions of images used for
training the models are 416 x 416 and 608 x 608. These dimensions
are multiples of 32 since YOLO is designed in such a way that the
input images for its training have this characteristic.

3.2. Model training and hyperparameters choice

The goal during the training phase is to minimize the loss
function. The optimization algorithm used during this work is that
of the gradient descent applied to batches (Mini-batch gradient
descent). This method updates the weights for each batch
consisting of N training samples. At each iteration, we therefore
take a batch. It is said that an epoch has passed after the entire
dataset is covered. The number N of samples in a batch represents
another hyperparameter to be adjusted. During training, there are
several choices available with respect to the sizes of the
hyperparameters. These are the parameters whose value are set
before the start of the learning process. They cannot be learned
directly from data and must be predefined. Unfortunately, there is
no generic way to determine the best hyperparameters. The
optimization or modification of hyperparameters is the major
problem for training our model. The same model with different
choices of hyperparameters can generalize different data models.
Additionally, the same type of machine learning model may
require different constraints, weights, or learning rates to
generalize different data models. So we experimented with
different values of these parameters including the learning rate, the
batch size and the network architecture. We train our model and at
the end we choose the parameters that provide the best precision.
Table 4 shows the values taken from the hyperparameters to reduce
the loss function.

Table 4: the list of the different pre-trained models and their hyperparameters

Model Basic network Image
size

learning rate

RetinaNet
101

ResNet 101 608 0.00001

YOLOv4 CSPDARKNET53 416 0.001
YOLOv3 DARKNET53 416 0.001

The loss function of training data is plotted over time. We start
with the RetinaNet architecture by referring to the
hyperparameters presented in Table 4. Figure 4 presents the
evolution of loss functions by epoch

Figure 4: The evolution of loss functions by epoch.

We notice a decrease in the loss function. The experienced
learning rate is 0.00001. We also observe that the loss function for
the classification has a lower value compared to the other two. This
is explained by the fact that we only have one class which is fruit
trees.

Unlike RetinaNet which is executed using the Keras library and
which allows to visualize the progress of the loss function during
the training using the tenserboard module, with Darknet (base
network of YOLOv3 and YOLOv4) the progress of the training is
not recorded. Nevertheless, we were able to visualize his progress
during the training.

For the YOLOv3 model, we could not complete training for a
frame size of 608 due to the size of the RAM. We were satisfied
with images of dimensions 416 x 416 for the training. Furthermore,
it was possible to use a larger batch size for YOLOv3 such as 64.
This is made possible thanks to a hyperparameter called
subdivision. The smaller the number of subdivisions, the faster the
training and the more memory it requires. For example, a number
of subdivisions of 8 means that 8 images will be loaded at a time,
so more memory will be consumed. For us, the number of
subdivisions that can support our work environment is 16 that is
mean to load 4 images at once for a batch size of 64. Table 5 shows
the values of the loss function of the YOLOv3 model.

Table 5: Values of the loss function at the start and the end of learning-
YOLOv3.

Model Batch
size

Subdivision
Number

Loss at
the start

of
learning

Loss at the
end of

learning for
5000

iterations
YOLOv3 64 16 2500 3.67

The results of the YOLOv4 model will be presented in a similar
way to those of YOLOv3. Unlike YOLOv3, the training for
YOLOv4 has been done up to 10000 iterations mainly because the
training speed is much faster compared to YOLOv3. Similar to
YOLOv3, YOLOv4 is run using DarkNet and not Keras. Thus, we
cannot obtain at the end of the training the progress of the latter.
However, we can get an idea of the behavior of the loss function.
This function has been tested with a learning rate of 0.001 and
0.0001. This decrease is much faster with a learning rate of 0.001.
Table 6 presents the values of the loss function of YOLOv4.
Table 6: The values of loss function at the start and the end of learning- YOLOv4

Model Batch
size

Subdivision
Number

Loss at
the start
of
learning

Loss at the
end of
learning for
5000
iterations

YOLOv4 64 16 2800 12.5624

3.3. Detection rate for the 3 architectures

As test data, we will use the 10% of the images reserved for
this step. Figure 5 shows the detection results:

From the detection result, we can see that the two models
YOLOv3 and YOLOv4 give better predictions. In addition, the
RetinaNet model fails to give good detections of trees if the
number of trees in the images is very small. Table 7 presents the
predictions of tree number detection in UAV images:

http://www.astesj.com/

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 892

Figure 5: Example of detection results: (a) YOLOv4, (b) YOLOv3, (c)

RetinaNet101.
Table 7: The detections obtained for the three tested models

Model Detection rate %
RetinaNet-101 73%
YOLOv3 80%
YOLOv4 96%

The results obtained demonstrate that the YOLOv4 model is
the model which gave the best validation and test results.

The reasons for this choice are as follows:

 Yolov4 allowed a faster improvement of the loss function
compared to other architectures. For the same number of

epochs, this reaches its lowest value. In addition, it does not
require a lot of time for training.

 Yolov4 is the model which sacrifices the least precision to
improve its Recall.

 Yolov4 provides very satisfactory results on the test set where
it gives better detections with minimum time and better
detection speed.

4. Discussion

Fruit trees have a very complex and heterogeneous form with
vegetation classes that appear visually similar in orchards. Their
categorizations require the detection model to be able to represent
the spatial context of the image appropriately by learning a set of
attributes adequate to distinguish between the different categories
of the agricultural scene and the efficient extraction of fruit trees.
Such an analysis is often carried out on images with very high
spatial resolution and which have sufficient detail. Hence the
considerable contribution of using RGB UAV images for the
detection and enumeration of fruit trees.

The proposed approach based on the Yolov4 model that we
implemented, succeeded in identifying and counting these trees.
The results obtained on the validation and test sets are very
satisfactory, it gave an accuracy of 96%. In addition, the results on
various evaluation metrics undoubtedly confirm the contribution
of convolutional neural networks algorithms. Despite their good
performance, the use of convolutional neural networks presents
challenges, the most important of which is the recurrent risk of
overfitting. CNNs are big consumers of data. The general rule of
learning algorithms is that a model trained on a large amount of
data produces, in the majority of cases, much better results on new
data than a model trained on small amounts. The amount of data
required is not fixed and depends closely on the complexity and
the mission objective.

Finally, despite the relevance of the obtained results, our work
nonetheless presents some limitations which are most often due to
the available computing resources which have proved insufficient
for the conduct of some experiments. In recent years, the graphics
processor (GPU) has established itself as an important and even
indispensable player in heavy calculations that have long been
done only by central processors (CPUs). Fortunately, the Google
colaboratory cloud space offers excellent technical specifications
and allowed us to run several experiments related to this work.
Furthermore, we cannot present an experiment that takes place
over a succession of stages without addressing the notion of time.
Time is one of the deciding factors in choosing the best
architecture. Of course, while weighting with the detection rate
obtained. Table 5 presents a comparison of the overall training
time for the three tested models.

Table 5: The overall training time for the three tested models

Model Overall training time
RetinaNet-resnet101 11h
Yolov3 5h
Yolov4 8h08min

According to table 5, it can be seen that the Yolov3 and yolov4
model require less time than the Retinanet-101 model. Also the
Yolov3 model consumes less time in the training phase. However,
as we have mentioned before. Time cannot be the only parameter
in the choice of the model. It will be necessary to weight according

(a)

(b)

(c)

http://www.astesj.com/

K. Aitelkadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 887-893 (2021)

www.astesj.com 893

to the precision of detection. In this sense, Yolov4 allowed us to
obtain the best precision in a fairly satisfactory time.

5. Conclusion

We have tried to simplify the various experiments carried out
either on the hyperparameters or on the architectures obtained. Our
main goal is to obtain good details on the fruit tree detection and
counting. This was accomplished with a detection success to 96%.
These results are generally satisfactory given the difficulties
encountered either in the availability of data or in the
implementation of architectures. During this work, a considerable
amount of time is spent for data preparation, collection, cleaning,
analysis, visualization and the necessary treatments namely
resizing, augmentation and annotation. Our primary concern is to
find a sufficient number of images of fruit trees taken by UAV and
which can be used subsequently to train, validate and test by the
deep learning algorithm. In addition, the field of deep learning is
constantly evolving and requires having solid basic knowledge and
keeping up with all the news. Something that slowed down our
work and took a long time for us to resolve implementation errors.
Finally, the complexity of the calculations generated by the
different models always makes their training requires more time
and powerful machines. In conclusion, despite all these
difficulties, it emerges that convolutional neural networks are very
promising for the detection and enumeration of fruit trees and open
a very interesting field of application for other uses such as yield
estimation.

References

[1] K. R. Krishna, “Agricultural drones: A Peaceful Pursuit,”1e edition Editions
Apple Academic Press, Inc. USA & Canada, 2018.

[2] J. P. Vasconez, J. Delpiano, S. Vougioukas, F. Auat Cheein, “Comparison
of convolutional neural networks in fruit detection and counting : A
comprehensive evaluation,” Computers and Electronics in Agriculture, 173,
105348, 2020, doi:10.1016/j.compag.2020.105348.

[3] Y. Ampatzidis, V. Partel, “UAV-Based High Throughput Phenotyping in
Citrus Utilizing Multispectral Imaging and Artificial Intelligence, ” Remote
Sens., 11(4), 410, 2019, doi:10.3390/rs11040410.

[4] X. Dong, Z. Zhang, R. Yu, Q. Tian, X. Zhu, “Extraction of information about
individual trees from high-spatial-resolution UAV-acquired images of an
orchard,” Remote Sensing, 12(1), 133, 2020, doi:10.3390/rs12010133.

[5] Y. Mu, Y. Fujii, D. Takata, B. Zheng, K. Noshita, K. Honda, S. Ninomiya,
W. Guo, “Characterization of peach tree crown by using high-resolution
images from an unmanned aerial vehicle,” Horticulture Research, 5(1), 1–
10, 2018, doi:10.1038/s41438-018-0097-z.

[6] A.O. Ok, A. Ozdarici-Ok, “2-D delineation of individual citrus trees from
UAV-based dense photogrammetric surface models,” International Journal
of Digital Earth, 11(6), 583–608, 2018,
doi:10.1080/17538947.2017.1337820.

[7] D. Koc-San, S. Selim, N. Aslan, B.T. San, “Automatic citrus tree extraction
from UAV images and digital surface models using circular Hough
transform,” Computers and Electronics in Agriculture, 150, 289–301, 2018,
doi:10.1016/j.compag.2018.05.001.

[8] A.C. Watts, V.G. Ambrosia, E.A. Hinkley, “Unmanned aircraft systems in
remote sensing and scientific research: Classification and considerations of
use,” Remote Sensing, 4(6), 1671–1692, 2012, doi:10.3390/rs4061671.

[9] S. Nebiker, A. Annen, M. Scherrer, D. Oesch, “A light-weight multispectral
sensor for micro UAV—Opportunities for very high resolution airborne
remote sensing,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci,
37(B1), 1193–1200, 2008.

[10] C. Zhang, J.M. Kovacs, “The application of small unmanned aerial systems
for precision agriculture: a review,” Precision Agriculture, 13(6), 693–712,
2012.

[11] A.S. Laliberte, A. Rango, J.E. Herrick, “Unmanned aerial vehicles for
rangeland mapping and monitoring: a comparison of two systems,” in
ASPRS Annual Conference Proceedings, 2007.

[12] P.J. Hardin, T.J. Hardin, “Small‐ scale remotely piloted vehicles in
environmental research,” Geography Compass, 4(9), 1297–1311, 2010,
doi:10.1111/j.1749-8198.2010.00381.x.

[13] A.A. dos Santos, J. Marcato Junior, M.S. Araújo, D.R. Di Martini, E.C.
Tetila, H.L. Siqueira, C. Aoki, A. Eltner, E.T. Matsubara, H. Pistori,
“Assessment of CNN-based methods for individual tree detection on images
captured by RGB cameras attached to UAVs,” Sensors, 19(16), 3595, 2019,
doi:10.3390/s19163595.

[14] B. Neupane, T. Horanont, N.D. Hung, “Deep learning based banana plant
detection and counting using high-resolution red-green-blue (RGB) images
collected from unmanned aerial vehicle (UAV),” PloS One, 14(10),
e0223906, 2019, doi:10.1371/journal.pone.0223906.

[15] M. Zortea, M.M.G. Macedo, A.B. Mattos, B.C. Ruga, B.H. Gemignani,
“Automatic citrus tree detection from uav images based on convolutional
neural networks,” in 2018 31th SIBGRAPI Conference on Graphics, Patterns
and Images (SIBGRAPI), 2018, doi:10.3390/s19245558.

[16] Y. Chen, C. Hou, Y. Tang, J. Zhuang, J. Lin, Y. He, Q. Guo, Z. Zhong, H.
Lei, S. Luo, “Citrus tree segmentation from UAV images based on
monocular machine vision in a natural orchard environment,” Sensors,
19(24), 5558, 2019, doi:10.3390/s19245558.

[17] A. Gulli, S. Pal, Deep learning with Keras, Packt Publishing Ltd, 2017.
[18] S.R. Masurkar, P.P. Rege, “Human Protein Subcellular Localization using

Convolutional Neural Network as Feature Extractor,” in 2019 10th
International Conference on Computing, Communication and Networking
Technologies (ICCCNT), IEEE: 1–7, 2019,
doi:10.1109/ICCCNT45670.2019.8944812.

[19] T. Carneiro, R.V.M. Da Nóbrega, T. Nepomuceno, G.-B. Bian, V.H.C. De
Albuquerque, P.P. Reboucas Filho, “Performance analysis of google
colaboratory as a tool for accelerating deep learning applications,” IEEE
Access, 6, 61677–61685, 2018, doi:10.1109/ACCESS.2018.2874767.

[20] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” ArXiv Preprint ArXiv:2004.10934, 2020.

[21] D. Wu, S. Lv, M. Jiang, H. Song, “Using channel pruning-based YOLO v4
deep learning algorithm for the real-time and accurate detection of apple
flowers in natural environments,” Computers and Electronics in Agriculture,
178, 105742, 2020, doi:10.1016/j.compag.2020.105742.

http://www.astesj.com/
https://dx.doi.org/10.1016/j.compag.2020.105348
https://doi.org/10.3390/rs11040410
https://doi.org/10.3390/rs12010133
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1038%2Fs41438-018-0097-z
https://doi.org/10.1080/17538947.2017.1337820
https://doi.org/10.1080/17538947.2017.1337820
https://doi.org/10.3390/rs4061671
https://doi.org/10.3390/s19163595
https://doi.org/10.1371/journal.pone.0223906
https://doi.org/10.3390/s19245558

	2.1. Material
	2.1.2. Computer tools and deep learning libraries used
	Keras
	Darknet
	Google colaboratory

	2.2. Methods
	2.2.1. Cutting operation
	2.2.2. Labeling of images
	2.2.3. Image augmentation
	2.2.4. Resizing training images
	2.2.5. CNN models used for fruit trees detection
	2.2.6. Hyperparameters selection
	The epochs number, stages per epoch and the size of the batch
	Learning rate
	Subdivisions Number

	3.1. Data Preparation Results
	3.2. Model training and hyperparameters choice
	3.3. Detection rate for the 3 architectures
	References

