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 This article extends novelty of modeling capacitive accelerometer with PID controller to 

provide PI controller for better tuning and statistical test to determine the linear validation 

characteristics of closed capacitive accelerometer. Capacitive accelerometer is a sensor 

which uses the dynamic law of physics model Position-Velocity-Accelerator (PVA) by the 

movement of an electrode coupled to mass proof sandwich between parallel plates to detect 

vehicle/object displacement. The modelling of closed loop system helps to mitigate steady 

state error accumulation of measurements in open loop model.  The accelerometer gives 

linear time dependence on output displacement after an input step-like function of 

acceleration. The closed model can predict the desired output signal. The linearity of the 

model is tested statistically using simple regression of 120 dataset. This shows a p-value of 

2e-16 indicating that at any time, the acceleration predicts the displacement/position of 

vehicle/object.  
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1. Introduction  

Accelerometer is a microelectromechanical sensor (MEMS) 

which is generally used in the measurement of moving body’s 

acceleration[1].  MEMS is widely used across the current settings 

of interconnected world in our daily lives [2]. The obtained 

acceleration is measured in gravity (g) [3]. The measurements of g 

can be transformed into velocity and position/displacement.  

In the application of accelerometer, it provides a wide range of 

services in a lot of technologies aiding the prediction of most 

human and no-human activities. In [4], accelerometer is used on a 

bridge in Nottingham Wilford in the UK with the main purpose of 

determining the dynamic characteristics. This provided real-time 

information on suspended deck movement. It is applied using 

triaxial accelerometer and Real-time Kinematic Global position 

system (RTK-GPS). The inclusion of the RTK-GPS is applied to 

measure the low-frequency vibrations of medium span suspension 

bridge. The reason for this inclusion is to aid the accelerometer 

which measures based on high-frequency rate. Similar bridge 

technique is used but in this domain it is applied in bridge 

management system and land safety [5]. The only component 

which changed is the replacement of RTK-GPS with three Leica-

GPS.  

In the determination of human kinematics, accelerometer 

places an exceptional role as well. According to [6], the authors 

presented triaxial accelerometer with a specific value of 

CDXL04M3 is applied in the recognition of classification of 

problem during people activities. Also in [7], the article provides a 

description in the development real-time classification persons 

activities such as: walking, standing and running using wearable 

device. The only differentiation this application is the system 

composition where a two-accelerometer (ADXL202JE) layer 

model that integrates multiple component Gaussian mixture model 

with Markov models is applied. This is to accurately classify the 

zone of user state.  

Accelerometer application in human context [8, 9] applied 

triaxial accelerometer (ActiGraph GT3X+) to validate the process 

of determining everyday human physical activities. The device is 

placed at the thigh and hip to identify: cycling, walking, climbing 

of stairs, running, sitting, and no movements. In [10], authors 

worked on the determination and understanding of physical 

activities and key behavioral changes among children. This led to 

the implemented four different accelerometers namely:  

ActiGraph, Actical, Actiwatch, and RT3 Triaxial devices. This 

produces a regression model. According to [11] and [12], triaxial 

accelerometer and Wireless Wearable Multisensory Integrated 

Measurement System (WIMS) were implemented together to 

measure activities such as human heartbeats, hip motion, and other 

sensors. Additionally, in[13], the author developed a wearable 
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wireless base displacement system which utilizes inertial 

measurement unit (IMU) having triaxial accelerometer onboard. 

This system monitors the daily indoor activities of humans in 

buildings such as health statuses and locations. 

In other applications such as vehicular domain, the triaxial has 

received enormous integrated application. Especially, the use of   

tracking of vehicle velocity and position coupled with other 

MEMS sensors [14].   

There is another form of accelerometer called uniaxial or single 

axial which used in predicting the behavior of person in motion 

[15]-[20]. In [19], the authors presented ideas of applying 2 to 3 

uniaxial sensors mounted on human body for behavioral 

investigations.  All uniaxial accelerometers were in 2-dimensions. 

According to [20], the author comparison between uniaxial and 

triaxial accelerometer application in human activities, showed no 

difference in the results obtained. 

However, in this paper the research design looks at the 

implementation of the triaxial accelerometer since it is in a 3D 

form associated in measuring X, Y and Z of the acceleration of 

vehicle dynamics.  

Velocity and position are computed mathematically from 

acceleration. The position represents the displacement from the 

mechanical model. This displacement measurement very small. To 

achieve a better measurement, and electronic readout unit is 

attached. There are various types of mechanical models. These 

include: capacitive [21]-[31], piezo-resistive [32], and thermal 

[33], [34].  

The choice of capacitive accelerometer in vehicle tracking is 

mainly based on its advantages such as:   

• Zero static biasing with high sensitivity ability, and better 

thermal stability. According to [35], these characteristics 

make capacitive accelerometer model preferred to others. 

• It has the edge over other due to size, less expensive, and more 

flexible in interfacing with other circuitry [36]. 

• Low temperature and better linearity [37] 

However, the capacitive accelerometer has the challenge of 

high capacitance variation sometimes due the type of mass proof, 

low damping factor, high sensitivity providing higher resolution 

that give higher frequencies [38].  

A triaxial capacitive accelerometer IC   module is integrated 

with GPS module used in determining vehicle position. The 

integrations provides a uniform sensitivity which is distributed in 

the 3D  of the  vehicle position in the x-y-z domain. [39], [40]. The 

accelerometer used is made up of glass-silicon which serves as a 

mass proof. This glass is suspended to the chassis of the vehicle 

with four locks [41]. This detects parallel motion in z-acceleration 

and measurements are made in X or Y axis acceleration during 

tilting of the proof mass. Displacement is detected when electrodes 

connected to the mass proof which is then sandwich between 

parallel plates. By this mechanism, the acceleration is measured in 

the X, Y, and Z axis (ax, ay, az) [9], [3].  

It is based on this that the velocity and position cand be 

obtained using  Position-Velocity-Acceleration (PVA) model 

which Obeys Newton’s law of physical object in motion and that 

of Hooke’s law [31]. the principle underlining PVA is the first and 

second integral of acceleration model to produce velocity and 

position respectively [42]. Therefore, for any measurements of 

acceleration should provide a proportional outputs of velocity and 

position of a body in motion with an accelerometer [40], [43], [44]. 

This article looks at modelling the linear characteristics of 

capacitive accelerometer using PI-controller to determine the 

linear dependence relationship between acceleration and position. 

It also verifies the model for statistical significance using simple 

regression model. The model is based on mathematical modelling 

simulations using MATLAB/Simulink.  

2. Method of analysis 

The method of design is by mathematical modelling of system 

dynamics of a moving mass proof using law of physics. Figure 1 

shows an eight stage methodological view of analyzing and 

simulating of the capacitive accelerometer. 

1. Capacitive Accelerometer Dynamic equation

3. Parameterization using 

transfer function

using key values 

Capacitive accelerometer

 simulation and testing

Development of capacitive 

accelerometer model

1.1. Mathematical Modelling of 

mechanical dynamics Capacitive 

Accelerometer in time domain 

PVA model

2. Transformation to frequency 

domain
Laplace Transform

4. Modelling of the capacitive 

sensing dynamics 6. Low pass filter design in 

transfer function

7. PID controller design and 

assumption of feedback gain

8. Results validation

Statistical Test

Design Initiation 

End

5. Develop 

transfer 

function of 

signal amplifier 

and inverting 

model

Linearity test:

P-value <0.05

• Newton’s 

law of 

dynamics

• Hooke’ 

law

 

Figure 1: Methodological view of modelling a capacitive accelerometer 

• Sensing dynamics: is the model for the change in capacitance 

during the movement of object (vehicle) [30].  

• Model for capacitive sensing dynamics: is the model for the 

change in capacitance during the movement of object 

(vehicle) [30].  

• Develop transfer function of signal amplifier-inverting model: 

the output from 4 is amplified using OpAmp and inverted to 

obtain the original signal. These are all handled in frequency 

domain for easy computation. 

• Low pass filter transfer function: this filters high frequency 

measurements associated with acceleration measurements. 

LPF will allow only the low frequency for better 

measurements of position variables. 

• PI controller design and assumption of feedback gain: this 

stage is done by developing a controller gain matrix  and a 

feedback gain. 
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Figure 2: open loop accelerometer system with readout components[50]. 

• Results validation: to validate the results from the model, data 

collected is tested using simple regression model for input to 

output linear dependency using the P-value as a criteria of 

validity.  

3. Open loop accelerometer system 

The linear time variant (LTV) model of the mechanical model 

consisting of mass, damper and spring is represented in (1) [45]-

[48]: 

m 
d2x

dt2
 = kx +  b 

dx

dt
 +  m 

dx2

dt2

b =
1

2
μA2  

1

 d0−dx 
3 +

1

 d0+dx 
3 

 

d2 y

dt2 
=

d2y

dt2
−  

k

m
x +

1

2
μA2  

1

 d0−x 3
+

1

 d0+x 3
 .

dx

dt
 +

ε0AV1
2

4m
. x

a =
d2y

dt2
 

a  =
d2x

dt2
+  

μA2

d0
3 .

dx

dt
 + x.  

k

m
−

ε0AV1
2

4m
  }

 
 
 
 

 
 
 
 

 1  

where: 

b : damping coefficient.  

μ:  Air gap displacement  

 A :  Mobile plaque area 

 d0, dx : Distance of electrode displacement between parallel 

plates. 

 The Laplace transfer of (1) is provided in (2): 

s2. X s +  
μA2

d0
3 . s . X s + X s .  k −

ε0AV1
2

d0
2  = a s .m

GME s =
X s 

a s 
=

1

 s2+ 
μA2

m.d0
3.s + 

k

m
−

ε0AV1
2

m.d0
2   }

 

 

 2   

GME s : Gain of Mechanical module  

 In figure 2, block diagrams of various units of the 

accelerometer and their models for open loop system is 

represented.  the diagram has the mechanical unit,  electronic 

readout circuit which consist of gain detection the demodulation 

unit with low pass filter (LPF) [19], [45]-[47], [49]. 

 The following represent key nomenclature in Figure 2: 
 GAD  : Gain Detection  

GopAmp1 s  : signal Detection unit 

GADeL s : Demodulation and LPF Gain 

GopAmp2 S : Electronic Read-out Operational Amplifier Gain 

Ginv. S : Electronic Read-out inverter Gain 

GLPF S : Electronic Read-out Low Pass Filter Gain 

VF s : output displacement of x 

 Accelerometer detection block is the block which 

electronically detects the displacement of the mass proof with a rod 

to dangle between the parallel plate. This unit produces a gain,  

GAD 𝑠 . This gain consists of the electrostatic force of parallel 

plate and the operational amplifier. The operational amplifier helps 

boast the electrical signal detected from the mechanical 

displacement for processing [34].  

 V o/dca  in Figure 2 is passed through a Accelerometer 

Demodulation unit to produce 𝑉𝑓 𝑠 . 

 

Feed forward Gain of open Loop Capacitive 

Accelerometer (𝐺𝐴𝑂𝐿 𝑠 ) 𝑉𝑓 𝑠  𝑎 𝑠  

 

Figure 3: The open loop gain (GAOL s ) block diagram   

Figure 3 represents overall open loo transfer 

function, (GAOL s )  which consists of the cascade of 

(GME s ), (GAD s ) and (GADeL s ). 

GAOL s = (GME s ) ∗ (GAD s ) ∗ (GADeL s )                     3  

 The open loop function is represented in (4) using the models 

from Figure 2: 

⇛ GAOL s = (Vf s )/ a s ;   Vf s = GAOL s a s            4  

 By inputting all functions into (4), (5) is obtained: 

 𝑉𝐹 𝑠 ≡ 𝑉 𝑜/𝑑𝑐𝑎  𝑠 𝐺𝐴𝐷𝑒𝐿 𝑠 = (𝑉 𝑜/𝑑𝑐𝑎  𝑠 ) ∗

(𝐺𝑖𝑛𝑣. 𝑠 𝐺𝑜𝑝𝐴𝑚𝑝2 𝑠 )  𝑅9 + 𝑅10 
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𝑇

2
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=
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𝑇
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2
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𝜀0𝜀𝑟𝐴

𝐶4𝑑0
2 𝑥 

∴ 𝑉𝑓 𝑠 =
4𝑉1

𝑇𝜔
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𝐶4𝑑0
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(𝐺𝑖𝑛𝑣. 𝑠 𝐺𝑜𝑝𝐴𝑚𝑝2 𝑠 )
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𝐹𝑖𝑛𝑎𝑙𝑙𝑦; 𝑉𝐹 𝑠 =
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    The open loop of the capacitive accelerometer in (5) is now 

simplified into two main function blocks, thus the mechanical unit 

and the electronic readout unit in Figure 4. 

4𝑉1

𝜋
 
𝜀0𝜀𝑟𝐴

𝐶4𝑑0
2  ∗  (𝐺𝑖𝑛𝑣 . 𝑠 ∗ 𝐺𝑜𝑝𝐴𝑚𝑝 2 𝑠 ) ∗  𝑅9 + 𝑅10   𝑎 𝑠  X(S) 𝑉𝑓 𝑠  

Feed forward Gain of Mechanical 

and Electrostatic Model (𝐺𝑀𝐸 𝑠 ) 

Feed forward Gain of open Loop Capacitive Accelerometer (𝐺𝐴𝑂𝐿 𝑠 ) 

 

Figure 4: Mechanical and electronic readout of accelerometer 

The modeling of the two blocks is represented in (6): 

GAOL s =
Gocf

1

 s2 +  
μA2

m. d0
3 . s +  

k
m

−
ε0AV1

2

m. d0
2   

  

GAOL s =
  7.436e10

s2 +  316.1 s +  1.016e0 4 }
 
 

 
 

         6  

The modeling of (6) into a closed loop form is discussed in the 

next section using Proportional-Integral (PI) controller. 

4.   Closed loop accelerometer modeling 

The design of a closed loop accelerometer is considered in this 

section by designing the feedback and control gain matrices of PI 

controller models. 

4.1. Designing of feedback model 

Feedback model is designed to help compare the acceleration 

(reference signal) to the position (output signal). Base on the 

feedback a suitable controller can be tuned to achieve a desirable 

output.  

4.2. Choosing Feedback signal 

According to [51], feedback model is based the type of sensor 
which provides a proportional signal to the dynamic model 
(mechanical unit). Therefore, in choosing the feedback signal, a 
balancing force is needed to check the inertial forces mechanical 
unit of the accelerometer. This balancing force is called the 
electrostatic force. It is chosen because it establishes the reading of 
small displacement from the proof mass between the two fixed 
electrodes in parallel plates[23]. The electrostatic force is used to 
provide restoration of sensing force to balance acceleration force. 
Figure 5 shows the representation of the accelerometer closed loop 
structure. 

 

Feed forward Gain of open Loop Capacitive 

Accelerometer (𝐺𝐴𝑂𝐿 𝑠 ) 𝑉𝑓 𝑠  𝑎 𝑠  
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑔𝑎𝑖𝑛, 𝐺𝐶 𝑠  

𝑉𝐹 𝑠  

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑔𝑎𝑖𝑛, 𝐻𝐹 𝑠  

∑ 

-

Figure 5: closed loop structure of accelerometer 

A bias signal Vb is introduced with excitation signal v1 to 

obtain a feedback signal VF  to the two electrodes. This generates 

 
1 𝐺𝑜𝑐𝑓: open loop cascade factor =  

4𝑉1

𝜋
(
𝜀0𝜀𝑟𝐴

𝐶4𝑑0
2 ) ∗  (𝐺𝑖𝑛𝑣. 𝑠 ∗ 𝐺𝑜𝑝𝐴𝑚𝑝2 𝑠 ) ∗

 𝑅9 + 𝑅10   

the Vne and Vpe as negative electrode and positive electrode 

supplies respectively. This is represented in (7) as: 

 
Vne = v1 − Vb + VF 

Vpe = v2 + Vb + VF 
} &

v1 = V1sinωt
v2 = −V1sinωt

}       7  

The resultant signal gives (8): 
Vnpe = Vne − Vpe                                                         8   

 
The application of the electrostatic force feedback gives (9): 
 

𝐹𝑒𝑙𝐹 = 𝐹𝑒𝑙𝑛𝑒 
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𝑉𝑛𝑒
2

 𝑑0 − 𝑑𝑥 
2
−

𝑉𝑝𝑒
2

 𝑑0 + 𝑑𝑥 
2
 

𝐹𝑒𝑙𝐹
=

𝜀0𝜀𝑟𝐴

4
.

[
 
 
 
 

 𝑉1𝑠𝑖𝑛𝜔𝑡 − 𝑉𝑏 + 𝑉𝐹  
2

 𝑑0 − 𝑑𝑥 
2

−
 −𝑉1𝑠𝑖𝑛𝜔𝑡 + 𝑉𝑏 + 𝑉𝐹  

2

 𝑑0 + 𝑑𝑥 
2 ]

 
 
 
 

}
 
 
 
 

 
 
 
 

     9  

The accelerometer having high system frequency and 
considering the initial position of the proof mass, the electrostatic 
force feedback mean signal is represented mathematically in (10): 

 

FelF = 

1

T
∫FelFdt =

2ε0εrA

d0
3 . ∫ x V1sinωt − Vb + VF  

2

−  −V1sinωt + Vb + VF  
2 dt               10  

 
Expanding and integrating all terms with respect to t gives (11): 
 

FelF =
2ε0εrA

d0
3  x  

V1
2

2
+ Vb

2 + VF
2 − VbVFd0 ;

with inertial displacement of x = 0
∴ the feedback electrostatic force,

FelF = −
2ε0εrAVbVF

d0
2 }

  
 

  
 

            11  

Rewriting the equations again for all the acting forces on the 
proof mass the feedback sensor gives (12): 

 

F⃗ i  = F⃗ e + F⃗ a + a⃗ x − FelF

ma = kx +
1

2
μA2  

1

d0
3 +

1

d0
3 

dx

dt
+ m

d2x

dt2
+

2ε0εrAVbVF

d0
2

ma = kx +  
μA2

d0
3 

dx

dt
+ m

d2x

dt2
+

2ε0εrAVbVF

d0
2

a =
k

m
x +

1

m
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d0
3 

dx

dt
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d2x

dt2
+

1

m
.
2ε0εrAVbVF

d0
2 }
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The model for feedforward including the controller in figure 5 
represented in (13): 

 
VF s = Vf s ∗ GC s   
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⇒ VF s = (GAOL s ) ∗ (GC s )                        13  

 

∴the close Accelerometer Loop Transfer function (𝐺𝐴𝐶𝐿 𝑠 ) is  

in (14): 

GACL s =
VF s 

a s 

=
(GAOL s ) ∗ (GC s )

1 + (GAOL s ) ∗ (GC s ) ∗ (HF s )

GACL s =
 

   7.436e10
s2 +  316.1 s +  1.016e0 4

 2 ∗ (GC s )

1 +  
   7.436e10

s2 +  316.1 s +  1.016e0 4
 ∗ (HF s )

GACL s =

  7.436e10 ∗ (GC s )

𝑑𝑒𝑛𝑢𝑚3 }
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5. Closed loop accelerometer simulation and results 

5.1. Open loop accelerometer model and characteristics  

The open loop model of accelerometer is represented by the 

mechanical-charge detection model and the electronic 

demodulator model in Figure 6 and 7, respectively.  

 
Figure 6: Acceleration Charge Detection unit 

 
Figure 7: Demodulator Electronic processor 

The mechanical, charge detection, and electronic demodulator 
transfer function is given in (15): 

G𝑜𝑝𝑙 s = 
7.436𝑒10

7.29𝑒8 𝑠4 + 5.13 𝑠3 + 11620𝑠2 + 3.213𝑒6 𝑠 + 1.16𝑒8  
  15  

   The open loop characteristics are shown in Figure 8 is based 
on Figure 6 and 7. For an input acceleration of 1g  the model 

 
2 Feed forward Gain of open Loop Capacitive Accelerometer (𝐺𝐴𝑂𝐿 𝑠 )with 

electronic readout circuit.  

provides Mechanical displacement response of  1.969 × 10−04  
and the respective charge detection unit and low pass filter output 
is displayed as well. 

 

Figure 8: open loop characteristics of accelerometer model. 

The overall transfer function of the open loop model in (15) 

produces an overshoot of about 641 with an input-output response 

rise time of 0.0528𝑠 as shown in Figure 9. 

 

Figure 9: overall open loop transfer function characteristics of accelerometer 

model. 

In Figure 10, the open loop bode plot shows system gain of 

56.1 dB which was constant until it reached a frequency response 

is 791 rad/s  𝜔 = 791 . 

 

Figure 10: the magnitude and phase of the open loop accelerometer transfer 

function 𝐺𝑜𝑝𝑙   𝑠  against angular frequency.  

The open loop gain gives the open loop minimum stability 

margins at 𝐺𝑎𝑖𝑛 = −20.3 𝑑𝐵 and  frequency= 791𝑟𝑎𝑑/𝑠.  

3𝑑𝑒𝑛𝑢𝑚 =  s2 +  316.1 s +  1.016e0 4 +   7.436e10 ∗

(GC s ) ∗ (HF s ) 
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For the phase, at low frequency, the phase is 0𝑜 and at high 

frequency is −268𝑜 . The minimum stability margins are 

−40.40against frequency of 2.21𝑘𝑟𝑎𝑑/𝑠.  

5.2. Accelerometer closed loop model and characteristics 

This section looks at the modelling of the close system of the 

accelerometer. The system uses proportional integral (PI) 

controller to establish the stability of the open loop gain. The gain 

of the controller is represented in (16): 

𝐺𝐶 𝑠 =
𝐾𝑝𝑠 + 𝐾𝑖

𝑠
                             16  

The control gain matrices are represented by: 

 
𝐾𝑝

𝐾𝑖
 =  

0.002369
0.1613

                                                             17  

 Considering (15) and (116) with a feedback of 1 gives the 
closed loop gain in (18): 

𝐺𝐶𝐿𝑝 𝑠  

=
𝐾1𝑠 +  𝐾𝑐𝐿𝑝

𝐾2 𝑠
5 + 𝐾3 𝑠

4 + 𝐾4 𝑠
3 + 𝐾5 𝑠

2 + 𝐾6𝑠 + 𝐾𝑐𝐿𝑝 
     18  

where: 

𝐾1 = 1.027 × 108 , 𝐾𝑐𝐿𝑝 = 2.87 × 109 , 𝐾2 = 7.29𝑒 × 108 , 

𝐾3 = 5.13, 𝐾4 = 1.162 × 104 , 𝐾5 = 3.213 × 106 , and  𝐾6 =
2.043 × 108  

The overall closed loop transfer function gain in (18) is 

represented in Figure 11. 

Figure 11: closed loop accelerometer model in MATLAB/SIMULINK. 

In Figure 12, the response time is 0.0132𝑠 at amplitude of 0.9 

with an overshoot of 10.4% at 0.04𝑠 and an amplitude of 1.1 the 

model shows a settling in at 0.0696𝑠.  

 

Figure 12: Closed loop accelerometer characteristics with PI controller. 

Figure 13 represents the Bode plot for closed loop gain which 

gives a minimum stability margin at 𝐺𝑎𝑖𝑛 =
 −29.5𝑑𝐵 and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 689𝑟𝑎𝑑/𝑠.  

 

Figure 13: Bode plot for closed loop accelerometer. 

The minimum stability margins are −1200against frequency 

of 73.5𝑟𝑎𝑑/𝑠 having a delay margin of 0.0285𝑠.  

6. Statistical Test on Accelerometer Linearity  

In this section, a linearity test is applied on the acceleration 

model. The test uses simple regression and p-value to establish 

linearity of the model. 

A simple regression model is developed for the accelerometer 

model using the algorithm in (19): 

𝑥 = 𝑏 + 𝑤 ∗ 𝑎                                                                               19  

where:  

Dependent variable: Displacement (x)  

Independent variable: Accelerometer (a) 

𝑏: 𝐵𝑖𝑎𝑠 𝑡𝑒𝑟𝑚 

𝑤: 𝑊𝑒𝑖𝑔ℎ𝑡 

 By building a simple regression model using sample test run of 

120 datasets, the model for the accelerometer is obtained 

statistically, (20) and the figure 14 shows the linear relationship.  

 

𝑥 = 9.224e − 08 + 1.00 ∗ 𝑎                        20  

where: 𝑏 =  9.224𝑒 − 08, and 𝑤 =  1.00 

 

 

Figure 14: Linearity test of closed loop accelerometer. 
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In Figure 14, it is shown that the acceleration and the 

displacement are linearly dependent. The statistical test of p-value 

is below 0.05. The model’s p-value is 641 , which means the 

acceleration can predict the displacement. 

7. Conclusion 

This paper looks at the modelling and simulation of closed loop 

capacitive accelerometer. The model applied is the Position-

Velocity-Acceleration (PVA) which consist of mechanical unit, 

charge detection unit, and signal demodulator with filter unit.  

The results from the open loop after applying acceleration of 

1𝑔 shows an overshoot to an amplitude of 641. However, the by 

controlling the accelerometer in in a closed loop form with a 

Proportional-Integral (PI) control gain, the desirable output is 

obtained.  

 The linearity of the model is with simple regression which 

shows it is predictable with a statistical significance of 2𝑒 − 16 as 

its p-value. However, for better optimization, the accelerometer 

model must be modelled in a state space domain using Gaussian 

stochastic model where noise is factored as independent of system 

memory. This would also provide a better technique for better 

prediction of position. In another vein, future model can consider 

temperature as a component of damping coefficient  𝑏 . 
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