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This paper deals with the problem of Fault Tolerant Control (FTC)
using PID-type Fuzzy Logic Controller (FLC) for an Electronic
Throttle Valve (ETV) described by a switched discrete-time systems
with input disturbances and actuator faults. In order to detect the
faults, Unknown Input Observers (UIOs) are designed and formu-
lated in terms of Lyapunov theory and Linear Matrix Inequalities
(LMIs). This approach is designed in order to minimize the error
between the desired flat trajectory generated using the flatness prop-
erty and the estimated state provided from differents UIOs and to
maintain asymptotic stability under an arbitrary switching signal,
even in the presence of actuator faults. The simulation results have
shown the effectiveness of the proposed approach.
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1 Introduction

Actuator faults may cause undesired system behaviour
and sometimes lead to instability, hence it is neces-
sary to develop Fault Tolerant Control (FTC) methods
against actuator faults of uncertain nonlinear systems.
In the past decades some FTC design methods have
been proposed for several classes of nonlinear systems
with actuator faults [1-3]. It consists in computing con-
trol laws by taking into account the faults affecting the
system in order to maintain acceptable performances
and to preserve stability of the system in the faulty sit-
uations [4]. From the point of view of FTC strategies,
the literature considers two main groups of techniques:
passive and active ones. In passive FTC, the faults
are treated as uncertainties. Therefore, the control is
designed to be robust only to the specified faults [4].
Active FTC techniques consist in adapting the control
law using the information given by the Fault Detection
and Isolation (FDI) block [5]. The informations issued
from the FDI block are used by the FTC module to
reconfigure the control law in order to compensate the
fault and to ensure an acceptable system performances.

The study of this problem was extended to switched

systems in [6-8]. In [7], a switched discrete-time sys-
tem with state delay has been considered. The design
method is based on the construction of a filter and a
fault estimation approach. In [8], an adaptive fuzzy
tracking control method for a class of switched nonlin-
ear systems with arbitrary switchings and with actu-
ator faults has been proposed. The proposed control
scheme guarantee the stability of the whole switched
control system based on the common Lyapunov func-
tion stability theory and attenuate the effect of the
actuator faults on the control performance by design-
ing a new fuzzy controller to accommodate uncertain
actuator faults. In [9], an observer has been built to de-
tect the fault when it occurs. The problem of FTC for
switchied linear systems is addressed by using a nom-
inal control law designed in the absence of any fault,
associated with fault detection, localization and recon-
figuration techniques to maintain the stability of the
system under an arbitrary switching signal in the pres-
ence of sensor faults. A state trajectory tracking has
been proposed in [4] for actuator faults and observer
bank based on controllers with switching mechanism
for sensor faults has been also presented in [10]. A
nonlinear observer based controller, adopting the so-

*Corresponding Author: Wafa Gritli, Email: wafa.gritli@enit.rnu.tn

www.astesj.com 186
https://dx.doi.org/10.25046/aj020623

www.astesj.com


W. Gritli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 186-193
(2017)

called parallel distributed compensation structure, has
been designed to choose an adequate state estimate
to compensate the effects of the faults on the system
in [11]. Switched systems are dynamical systems con-
sisting of a collection of continuous-time subsystems.
Switched systems have attracted more attention due
to their significance in the modelling of many engineer-
ing applications, such as chemical processes, robot ma-
nipulators and power systems. Stability analysis and
synthesis of switched systems have been made using
Lyapunov function to ensure stability of the switched
systems such in [12].

In this paper, in order to acheive the FTC for
a switched discrete-time systems, a set of PID-type
Fuzzy Logic Controller (FLC) is implemented to min-
imize the error between the desired flat trajectory and
the estimated state and to maintain the stability of
the system in the presence of actuator faults. The es-
timated state is provided from an Unknown Input Ob-
server (UIO). Based on residual analysis, a switching
strategy using stateflow is then designed. The global
stability for the switched systems is studied by Lya-
punov theory and expressed as a Linear Matrix In-
equalities (LMIs).
The paper is organized as follows. In Section 2, the
FTC problem statement is formulated. In Section 3,
the fault detection method using UIO is introduced.
In Section 4, the PID-type FLC is described. Section
5 deals with the flatness property. The proposed ap-
proach is applied to an ETV in Section 6. Finally, the
conclusion is drawn in Section 7.

2 FTC problem statement
Consider the discrete time switched system, which can
be formulated such that

x(k+ 1) =Ajx(k) +Bju(k) +Ejd(k) +Bjfa(k) (1)

y(k) = Cjx(k)

x(k) ∈ R
n is the state vector, u(k) ∈ R

p the con-
trol input, y(k) ∈ R

o the measured output, d(k) ∈ R
p

the unknown disturbance input and fa(k) ∈R
p the ac-

tuator faults. Aj ∈ R
n×n, Bj ∈ R

n×p, Cj ∈ R
o×n

and Ej ∈R
n×p are the known constant matrices for

j ∈ ψ = {1,2, ...,m} and m the number of models,
m> 1.
In this paper, a FTC structure based on PID-type
FLC, given by Figure 1, is proposed to maintain the
trajectory tracking and to preserve stability of ETV in
the presence of both input disturbance d(k) and actu-
ator faults fa(k).
According to this structure, the FTC approach needs
to detect actuator faults firstly and then to design the
jth control law, denoted uj(k) given by (2), in order to
minimize the error between the desired flat trajectory,
generated using the flatness property and the estimated
state, provided from the jth UIO.

uj(k) =−Kc,j x̂j(k) + ydj (k) (2)

Kc,j is the jth gain control law.
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Figure 1: Proposed structure of FTC approach

In this case, LMI-based UIOs for the switched system
(1) are designed using Lyapunov function for arbitary
switching signal. Then, residuals rj(k) are determined
by the UIOs and employed to achieve actuator faults
detection.

3 Unknown input observers design
and stability analysis

In this section, let us consider fa(k) = 0, then the
model (1) becomes

x(k+ 1) =Ajx(k) +Bju(k) +Ejd(k) (3)

y(k) = Cjx(k)
j ∈ ψ denotes the jth model. The structure of full rank
UIOs can be formulated by

z(k+ 1) = Fj(k) +TjBju(k) +Kjy(k) (4)

x̂(k) = z(k) +Hjy(k)
where x̂(k) is the estimated state vector x(k), z(k) is
the state vector of full rank UIOs. Fj , Tj , Kj and Hj

are unknown matrices which need to be designed.
Lemma: [13] Equation (4) is UIO of the switched sys-
tem (3), if and only if the following conditions are sat-
isfied

• rank(CjEj) = rank(Ej)

• (CjAj1) is observable

with

Aj1 =Aj −Ej
[
(CjEj)TCjEj

]−1
(CjEj)TCjAj (5)

According to the above, the formulation of UIOs is
constructed for each subsystem. In the next part, the
multiple Lyapunov function will be used to realize the
design of parameters for UIOs of switched system.
Theorem: [14] In the condition of arbitrary switching
signal, for the system (3), if

(HjCj − I)Ej = 0 (6)

Tj = (I −HjCj)
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Fj = (Aj −HjCjAj −Kj1Cj)
Kj2 = FjHj

hold, and there exist symmetric matrices Pj > 0, ∀j ∈
ψ such that [

−Pj PjFj
FTj Pj −Pj

]
6 0, ∀j ∈ ψ (7)

then the parameters of UIOs can be designed.
Proof: Define the state estimation error as e(k) =
x(k)− x̂(k), the dynamic equation can be derived as

e(k+ 1) = (Aj −HjCjAj −Kj1Cj)e(k)
−
[
Fj − (Aj −HjCjAj −Kj1Cj)

]
z(k)

−
[
Kj2− (Aj −HjCjAj −Kj1Cj)Hj

]
y(k)

−
[
Tj − (I −HjCj)

]
Bju(k)− (HjCj − I)Ejd(k)

(8)
with

Kj =Kj1 +Kj2 (9)
In order to make the error decoupled from known con-
trol input u(k), measured output y(k) and unknown
input d(k), we should let

(HjCj − I)Ej = 0 (10)

Tj − (I −HjCj) = 0
Fj − (Aj −HjCjAj −Kj1Cj) = 0

Kj2− (Aj −HjCjAj −Kj1Cj)Hj = 0
It can be concluded that

Hj = Ej

[
(CjEj)TCjEj

]−1
(CjEj)T (11)

Aj1 =Aj −Ej
[
(CjEj)TCjEj

]−1
(CjEj)TCjAj (12)

Fj =Aj −HjCjAj −Kj1Cj =Aj1−Kj1Cj (13)
and the error dynamics is given by

e(k+ 1) = Fje(k) (14)

Equation (4) is UIOs of the switched system (3) if the
estimation error tends asymptotically to zero despite
the presence of an unknown input d(k) , 0.
Consider the following Lyapunov function

Vj(e(k)) = e(k)TPje(k) (15)

For Pj = PTj > 0, then, Vj(e(k)) > 0 holds, the ∆V
given by (16) is negative

Vi(e(k+ 1))−Vj(e(k))
= e(k)TFTj PiFje(k)− e(k)TPje(k)

= e(k)T (FTj PiFj −Pj)e(k);(i ∈ ψ,j ∈ ψ,i , j)
(16)

if the following inequalities are satisfied

FTj PiFj −Pj 6 0 (17)

Thus, the error system (14) is stable asymptotically.
According to Schur complement lemma, the inequali-
ties (17) can be rewritten as[

−Pi PiFj
FTj Pi −Pj

]
6 0 (18)

By substituting Fj = Aj1 −Kj1Cj , the above matrix
inequalities become[

−Pi Pi(Aj1−Kj1Cj)
(Aj1−Kj1Cj)TPi −Pj

]
< 0 (19)

and[
−Pi (PiAj1−WijCj)

(PiAj1−WijCj)T −Pj

]
< 0 (20)

for Wij = PiKj1.
Since Kj1 = P−1

j Wij , we can obtain the value of Kj1
then Fj , Kj2 and Kj = Kj1 +Kj2 from Pj and Wij

solutions of LMIs.
The aim of fault detection is to generate a residual sig-
nal rj(k), given by (21), which is sensitive to fa(k) in
the presence of actuator faults which is the purpose of
[15].

rj(k) = y(k)−Cj x̂j(k) (21)

4 PID-type fuzzy logic controller de-
sign

In this study, the FTC approach is based on PID-type
FLC. To adjust the input and the output scaling factors
of this controller, Genetic Algorithm (GA) optimiza-
tion technique has been proposed in order to improve
the performance of the controller.

4.1 PID-type fuzzy logic controller descrip-
tion

We consider a PID-type FLC structure as shown in
Figure 2, [16], where Ke ∈ R

+ and Kd ∈ R
+ are the

input scaling factors, α ∈ R
+ and β ∈ R

+ the output
scaling factors.
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Figure 2: The PID-type FLC

The FLC inputs variables, the error εj(k) between the
desired flat trajectory ydj (k) and the estimated state
x̂(k), and error variation ∆εj(k) are given by the equa-
tions (22) and (23) where Te is the sampling period.

εj(k) =−Kc,j x̂(k) + ydj (k) (22)

∆εj(k) = εj(k)− εj(k− 1)
Te

(23)

The output variable ∆uj(k) of a such controller is the
variation of the control law signal uj(k) which can be
defined as (24).

∆uj(k) = uj(k)−uj(k− 1)
Te

(24)

www.astesj.com 188

http://www.astesj.com


W. Gritli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 186-193
(2017)

The output of the PID-type FLC is given by (25), [17]

uj(k) = α∆uj(k) +β

∫
∆uj(k) dt

= α(A+QKeuj(k) +DKd∆uj(k))

+β

∫
(A+QKeuj(k) +DKd∆uj(k)) dk

= αA+βAk+ (αKeQ+βKdD)uj(k)

+βKeQ

∫
uj(k) dk+αKdD∆uj(k)

(25)

where the terms Q and D are given by (26) and (27),
[10].

Q=
∆u(i+1)j −∆uij

εi+1− εi
(26)

D =
∆ui(j+1)−∆uij

∆εj+1−∆εj
(27)

The fuzzy controllers with product−sum inference
method, centroid defuzzification method and triangu-
lar uniformly distributed membership functions for the
inputs and a crisp output proposed in [18], are used, in
our study.
The linguistic levels, assigned to the variables εj(k),
∆εj(k) and ∆uj(k), are given in Table 1 as follows:
NL: Negative Large; N : Negative; ZR: Zero; P : Pos-
itive; PL: Positive Large.

εj(k) / ∆εj(k) N ZR P
N NL N ZR
ZR N ZR P
P ZR P PL

Table 1: Fuzzy rules-base

4.2 Optimization of scaling factors using ge-
netic algorithm

To adjust the input and the output scaling factors (Ke,
Kd) and (α, β), GA is used in order to obtain their op-
timal values.
At first, an initial chromosome population is randomly
generated. The chromosomes are candidate solutions
to the problem. Then, the fitness values of all chromo-
somes are evaluated by calculating an objective func-
tion. So, based on the fitness of each individual, a
group of the best chromosomes is selected through
the selection process. The genetic operators, crossover
and mutation, are applied to this ’surviving’ popula-
tion in order to improve the next generation solutions.
Crossover is a recombination operator that combines
subparts of two parent chromosomes to produce off-
spring. This operator extracts common features from
different chromosomes in order to achieve even bet-
ter solutions. Mutation is an operator that introduces
variations into the chromosome. The modifications can
consist of changing one or more values of a chromo-
some. Through the mutation operator the search space
is explored by looking for better points. The process

continues until the population converges to the stop
criterion.
The most crucial step in applying GA is to choose the
objective function that is used to evaluate the fitness of
each chromosome. In this paper, the method of tuning
PID-type FLC parameters using GA is based on mini-
mizing the Integral of the Squared Error (ISE) used in
[18].

5 Flatness and trajectory planning
The flatness approach is used in a discrete-time frame-
work for system (1). Let the studied dynamic linear
discrete system described by (28)

Dj(q)yj(k) =Nj(q)vj(k) (28)

q is the forward operator, vj(k) and yj(k) are, respec-
tively, the input and the output signals and Dj(q) and
Nj(q) the polynomials defined by

Dj(q) = qn + aj,n−1q
n−1 + . . .+ aj,1q+ aj,0 (29)

Nj(q) = bj,n−1q
n−1 + . . .+ bj,1q+ bj,0 (30)

where the parameters aj,l and bj,l are constants, l =
{0,1, ...,n− 1}.
The system is considered as linear and controllable,
consequently it is flat, [16].
The flat output zj(k), on which depend the output
yj(k) and the control vj(k), can be seen as being the
partial state of a linear system, [19]

vj(k) =Dj(q)zj(k) (31)

yj(k) =Nj(q)zj(k) (32)
The open loop control law can be determined by the
following relations, [18]

vdj (k) = f(zdj (k), ...,zd(r+1)
j (k)) (33)

ydj (k) = g(zdj (k), ...,zd(r)
j (k)) (34)

f and g are vectorial functions and zdj (k) is the desired
trajectory that must be differentiable at the (r + 1)
order.
In order to plan the desired flat trajectory zdj (k), the
polynomial interpolation technique is used.
Let consider the state vector: Zdj (k) =
(zdj (k) zjd

(1)(k) . . . zd(r+1)
j (k))T containing the desired

flat output and its successive derivatives, [18].
The expression of Zdj (k) can be given as following
where k0 and kf are two moments known in advance.

Zdj (k) =Mj,1(k− k0)cj,1(k0) +Mj,2(k− k0)cj,2(k0,kf )
(35)

such that

Mj,1 =


1 k · · · kn−1

(n−1)!
0 1 · · · k(n−2)

(n−2)!
...

. . .
. . .

...
0 · · · 0 1

 (36)
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Mj,2 =


kn

n!
kn+1

(n+1)! · · · k2n−1

(2n−1)!
kn−1

(n−1)!
kn

n! · · · k(n−2)

(n−2)!
...

. . .
. . .

...

k · · · kn−1

(n−1)!
kn

n!

 (37)

cj,1 = Zdj (k0) (38)

cj,2 =M−1
j,2 (kf − k0)(Zjd(kf )−Mj,1(kf − k0)Zdj (k0))

(39)
After planning a desired flat trajectory in discrete-time
framework, the real output yj(k), to be controlled, fol-
lows the desired trajectory ydj (k) such that (40), [18].

ydj (k) =Nj(q)zdj (k) (40)

6 Application of an electronic throt-
tle valve

6.1 Electronic throttle valve modeling
The proposed approach is applied here for the case of
the electronic throttle valve, Figure 3, [15].

Figure 3: Electronic throttle system

The electrical part of this system is modeled by (41),
[20,21].

u(t) =Ri(t) +L
d

dt
i(t) + kvωm(t) (41)

L is the inductance, R the resistance, u(t) and i(t)
the voltage and the armature current respectively, kv
a constant electromotive force and ωm(t) the motor ro-
tational speed.
The mechanical part of the throttle is modeled by a
gear reducer, characterized by its reduction ratio γ such
as (42)

γ = Cg
CL

(42)

CL is the load torque and Cg the gear torque.
The mechanical part is modeled according to (43) and
(44), such that, [20,21]

J
d

dt
ωm(t) = Ce−Cf −Cr −Ca (43)

d

dt
θ(t) = (180/π/γ)ωm(t) (44)

θ(t) is the throttle plate angle, Ce the electrical torque,
Cf the torque caused by mechanical friction, Cr the

spring torque, Ca the torque generated by the airflow
and J the overall moment of inertia.
The electrical torque is defined by

Ce = kei(t) (45)

where ke is a constant.
The electronic throttle valve involves two complex non-
linearities due to Cr and Cf , given by their static char-
acteristics, [15]

• a dead zone in which the control voltage signal
has no effect on the nominal position of the valve
plate,

• two hysteresis combined with a saturation, due to
the valve plate movement, limited by the maxi-
mum and the minimum angles.

The static characteristic of the nonlinear spring torque
Cr is defined by

Cr = kr
γ

(θ− θ0) +D sgn(θ− θ0) (46)

for θmin 6 θ 6 θmax, kr is the spring constant, D a con-
stant, θ0 the default position and sgn(.) the following
signum function

sgn(θ− θ0) =
{

1, if θ > θ0
−1, else (47)

The friction torque function Cf of the angular velocity
of the throttle plate can be expressed as

Cf = fvω+ fc sgn(ω) (48)

where fv and fc are two constants.
By substituting in equation (43), the expressions Ce,
Cf and Cr and by neglecting the torque generated by
the airflow Ca, the two nonlinearities sgn(θ− θ0) and
sgn(ω) and the two constants kr

γ θ0 and fv, the stud-
ied system is linear then it can be modelized by the
following transfer function H(s) (49), [21]

H(s) = (180/π/γ)ke
JLs3 + JRs2 + (kekv +Lks)s+Rks

(49)

with ks = (180/π/γ2)kr and s the Laplace operator;
the identified parameters of this system are given in
Table 2 at 25◦C, [20].

Parameters Values Units
R 2.8 Ω

L 0.0011 H
ke 0.0183 N.m/A
kv 0.0183 v/rad/s

J 4× 10−6 kg.m2

γ 16.95 -

Table 2: Model’s parameters

Recent work has shown that the ETV can be mod-
eled by two linear models identified from the default
position of the throttle plate for two values of the pa-
rameter ks and for the sampling period Te = 0.002s,
[21]
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• a model representing the position of the plate
above the position by default for: ks = 1.877×
10−4kg.m2, then the corresponding discrete-time
transfer function H1(q−1) given by (50),

H1(q−1) = 0.007480q−1 + 0.01334q−2 + 0.0007376q−3

1 − 1.948q−1 + 0.954q−2 − 0.006152q−3
(50)

• a model representing the position of the plate
below the position by default for: ks = 1.384×
10−3kg.m2, then the corresponding discrete-time
transfer function H2(q−1) given by (51),

H2(q−1) = 0.007479q−1 + 0.01333q−2 + 0.0007376q−3

1 − 1.946q−1 + 0.954q−2 − 0.006152q−3
(51)

6.2 Simulation results
In order to test the proposed fault tolerant control ap-
proach, tow models of an ETV in actuator fault and
an unknown disturbance case are given as state space
formulation as

x(k+ 1) =Ajx(k) +Bju(k) +Ejd(k) +Bjfa(k) (52)

y(k) = Cjx(k)
where the parameter matrices and vectors of each
model are given as

A1 =

1.948 - 0.954 0.006152
1 0 0
0 1 0

 (53)

A2 =

1.946 - 0.954 0.006152
1 0 0
0 1 0

 (54)

B1 =B2 =
(
1 0 0

)T (55)

C1 =
(
0.007480 0.01334 0.0007376

)
(56)

C2 =
(
0.007479 0.01333 0.0007376

)
(57)

E1 = E2 =
(
1 1 1

)T (58)
The studied system fulfills the conditions of Lemma 1.{

rank(C1E1) = rank(E1) = 1
rank(C2E2) = rank(E2) = 1 (59)

then (C1A11) and (C2A21) are both observable.
By applying Theorem, the system is stable asymptoti-
cally for any switching signal for symmetric matrice P
definite positive given by (60).

P = e - 010

 0.1429 - 0.0857 0.1903
- 0.0857 0.5085 0.0494
0.1903 0.0494 0.4251

 (60)

Then, the rest parameters of UIOs are calculated as
below

F1 =

 - 0.0266 0.8566 - 1.5415
- 0.0078 0.1954 - 0.3515
0.0165 - 0.4329 0.7788

 (61)

F2 =

 - 0.0233 0.8717 - 1.5349
- 0.0071 0.1998 - 0.3515
0.0148 - 0.4384 0.7715

 (62)

T1 =

 0.9657 - 0.6187 - 0.3470
- 0.0343 0.3813 - 0.3470
- 0.0343 - 0.6187 0.6530

 (63)

T2 =

 0.9672 - 0.6196 - 0.3476
- 0.0328 0.3804 - 0.3476
- 0.0328 - 0.6196 0.6524

 (64)

K1 =

 0.0002
0.0031
- 0.0056

 ,K2 =

 0.0182
0.0208
- 0.0389

 (65)

H1 =

46.3945
46.3945
46.3945

 ,H2 =

46.4707
46.4707
46.4707

 (66)

In this study, the method of tuning PID-type FLC pa-
rameters using GA is based on minimizing the ISE. If
ydj (k) is the desired flat trajectory and x̂j(k) the esti-
mated state, then we have

εj(k) =−Kc,j x̂j(k) + ydj (k) (67)

For the ISE defined by

ISE =
t∫

0

ε2
j (k)dt (68)

In this paper, the considered fitness function is taken
as inverse of this error, i.e. the following performance
index

fitness value= 1
ISE

(69)

Then, the obtained optimum values of the in-
put/output scaling factors (Ke,Kd,α,β), using genetic
algorithm are given as follows: Ke = 0.2006, Kd =
0.8071, α= 0.1146 and β = 0.2063.
The desired discrete time flat trajectory zdj (k), with
j = {1,2} can be computed according to the following
polynomial form

zdj (k) =



cst1
Bj(1) , if 0 6 k 6 k0

Poly1,j(k), if k0 < k 6 k1
cst2
Bj(1) , if k1 < k 6 k2

Poly2,j(k), if k2 < k 6 k3
cst1
Bj(1) , if k > k3

(70)

where cst1 and cst2 are constant parameters, k0 = 3s,
k1 = 6s, k2 = 10s and k3 = 15s are the instants of tran-
sitions, Bj(1) is the static gain between the flat output
zj(k) and the output signal yj(k) for each model and
Poly1,j(k) and Poly2,j(k) are polynomials calculated
using the technique of polynomial interpolation.
The desired trajectories yd1(k) and yd2(k) are then given
in Figure 4.
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Figure 4: Desired trajectories yd
1(k) and yd

2(k)

Let us consider the fault vector

fa(k) =
[
fTa1(k)
fTa2(k)

]
(71)

such as fa2 = 0 and fa1 defined as follows

fa1(k) =

 0,
−0.1sin(0.314k),

0,

k ∈ [0,10]
k ∈ ]10,13]
k ∈ ]13,20]

(72)

The simulation results illustrated in Figure 5 and Fig-
ure 6, show some oscillations for the outputs signals
and for the tracking error due to the unknown input.
We remark that the system’s responses with and with-
out FTC track desired trajectories with disturbances
rejection.

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

O
ut

pu
ts

 s
ig

na
ls

 (
de

g)

 

 

with PID−type FLC
without PID−type FLC

Figure 5: System outputs in actuator fault case with and with-
out PID-type FLC
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Figure 6: Tracking error in actuator fault case with and with-
out PID-type FLC

At the time of actutor faults occurrence k = 10s, the
system’s behavior was changed. The system without

FTC becomes unstable, whereas for the same reference
input and by using the FTC, the system remains stable
and the tracking error have a small deviation from zero
which shows the effectiveness of the proposed FTC ap-
proach.

Figure 7, Figure 8 and Figure 9 show the residual val-
ues generated using UIOs and the switched signal. The
switching between the two models is acheived based on
residual values comparision.
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Figure 7: Residual value r1(k) in actuator fault case with PID-
type FLC
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Figure 8: Residual value r2(k) in actuator fault case with PID-
type FLC
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7 Conclusion
In this paper, a new fault tolerant control law based
on PID-type FLC is designed for the nonlinear com-
plex system ETV, modelized by a multimodel struc-
ture. The approach is based on the use of a reference
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model generated using the flatness property. The pro-
posed control law is, then, designed to minimize the
error between the desired flat trajectory and the esti-
mated state, generated using UIOs, even in the pres-
ence of actuator faults based on minimizing the ISE.
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