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 Environmental sounds detection plays an increasing role in computer science and robotics 
as it simulates the human faculty of hearing. It is applied in environment research, 
monitoring and protection, by allowing investigation of natural reserves, and showing 
potential risks of damage that can be deduced from the environmental acoustic. The research 
presented in this paper is related to the development of an intelligent forest environment 
monitoring solution, which applies signal analysis algorithm to detect endangering sounds. 
Environmental sounds are processed using some modelling algorithms based on which the 
acoustic forest events can be classified into one of the categories: chainsaw, vehicle, genuine 
forest background noise. The article will explore and compare several methodologies for 
environmental sound classification, among which the dominant Deep Neural Networks, the 
Long Short-Term Memory, and the classical Gaussian Mixtures Modelling and Dynamic 
Time Warping. 
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1. Introduction  

Environmental sound recognition (AESR) is a relatively new 
discipline of computer science destined to extend the field of 
speech-based applications, or the study of music sounds, by 
exploring the vast range of environmental non-speech sounds.  

This paper is an extension of work originally presented in the 
43rd International Conference on Telecommunications and Signal 
Processing, held in Milan in July 2020 [1]. It investigates several 
sound modelling and classification paradigms, in the context of a 
forest monitoring system.  

The new research area of AESR is intended to simulate the 
important function of human hearing, and possibly, to overpower 
human perception. This is motivated by the fact that hearing is the 
human second most important sense after vision and should not be 
disregarded when trying to build a computer that simulates human 
behaviour and senses. Consequently, AESR recently became an 
essential field of computer science [2]-[4]. 

By environmental sounds we mean everyday sounds, natural 
or artificial, other than speech. Natural sounds may be leaves 
rustling, animal noise, birds chirping, water ripple, wind blowing 
through trees, waves crashing onto the shore, thunder. Artificial 

sounds include sounds produced by diverse engines like cars, 
cranes, ATVs, snowmobile, lawnmower, pneumatic hammer, 
chainsaw, etc., but also creaky doors or creaky floors, gunshots, 
crowd in a club, breaking glass, vehicle tyres or brake noise. The 
environments where this discipline is applied are also very diverse, 
falling into two broad categories: 

• Natural environment like forest environment, ecological units, 
seashore environment; however, the degree of naturalness is 
variable, and purely natural environments are very rare as one 
may intercept voices, vehicle sounds, chainsaw in forests or 
even jungle.  

• Built environment, also called human made environment, like 
the urban environment, the household, maybe agricultural 
environment, harbours; obviously in any of these 
environments, natural acoustic events, like thunder, rain 
falling, wind blowing may also happen. 

In reality there are no purely natural or artificial sounds, neither 
purely speech nor non-speech acoustic events. Most of the 
application investigate mixed environments where natural and 
artificial, speech or non-speech acoustic events are equally 
possible.  

The applicability of AESR is related to the advent of Internet 
of Things (IoT). IoT devices have sensors, possibly acoustic, 
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and software that enable the collection and exchange of data 
through the Internet. Automatic recognition of the surrounding 
environment allows devices to switch between tasks with 
minimum user interference [5]. For a robot, audio recordings may 
provide important information about location and direction of a 
moving vehicle, or environmental information, such as speed of 
wind. 

AESR has an important role in security, environment 
protection or environment research. Among possible applications 
are the identification of deforestation threats and illegal logging 
activities, through automatic detection of specific sounds like 
several engines, chainsaws, or vehicles. Detecting other illegal 
activities like hunting in forest or ecological reserves, by spotting 
gun shots, or human voices would be a useful application [6]-[9]. 
In recent times, solutions based on environmental sound 
recognition are applied in early wildfire detection [10]. 

Another type of applications concerns scientific monitoring of 
the environment. Such applications are intended for instance, to 
detect species, by discrimination between different animals or 
birds’ sounds [11], [12].  

Computational Auditory Scene Analysis (CASA), is a very 
complex field of AESR, aimed to the recognition mixtures of 
sound sources by simulating human listening perception using 
computational means. It mainly addresses two important tasks, 
Environmental Audio Scene Recognition (EASR) and Sound 
Event Recognition (SER) and has a huge importance in 
environment audio observation and surveillance. EASR refers to 
recognition of indoor or outdoor acoustic scenes (e.g., 
cafes/restaurants, home, vehicle or metro stations, supermarkets, 
versus crowded or silent streets, forest landscape, countryside, 
beaches, gym halls, swimming pools). SER is intended to the 
investigation of specific acoustic events in the audio environments, 
like dog barking, gunshots, sudden brake sounds, or human non-
speech events, like coughing, whistling, screaming, child crying, 
snoring, sneezing [13].  

An emerging field is the investigation and detection of acoustic 
emissions, used in monitoring landslide phenomena [14]. Acoustic 
emissions (AE) are elastic waves generated by movement at 
particle-to-particle contacts and between soil particles and 
structural elements. They are not perceived by the human ear, are 
super audible, and therefore their frequencies are very high, 
expected to range between 15kHz and 40 kHz. The devices used 
to acquire these waves should ensure a sampling frequency of over 
80 kHz. AE monitoring is an active area, not very well developed 
due to low energy levels of these waves, which make it challenging 
to detect and quantify [15], [16]. 

Likewise, recent studies have shown that moving avalanches 
emit a detectable sub-audible sound signature in the low frequency 
infrasonic spectrum [17]. 

The study of underwater acoustic infrasonic emissions, 
provided by hydrophones, is another field of AESR research [18].  

Our paper explores forest acoustics aiming to find the suitable 
sound modelling and classification approaches. The focus of our 
research is the detection of logging risk by identification of specific 
classes of sounds: chainsaw, vehicles, or possibly speech. We 
extend an earlier research on acoustic signal processing, by 

exploring the dominant paradigm in data modelling and, the deep 
neural networks (DNN). We investigate two types of DNNs, the 
Deep Feed Forward Neural Networks (FFNN) and a popular 
version of Recurrent Neural Networks (RNNs), the Long Short-
Term Memory (LSTM).  The two neural networks will be run on 
two types of feature spaces: the Mel-cepstral and the Fourier log-
power spectrum feature spaces. We will compare their results with 
the former performance obtained using the Gaussian Mixtures 
Modelling (GMM) and the Dynamic Time Warping (DTW) in the 
context of a closed-set identification system. One main goal is to 
stress the importance of feeding as input to DNN less processed 
features, like log-power spectrum, as compared to the more 
elaborate sets of features, e.g., Mel-frequency cepstral features.  
Another purpose of the paper is to clarify some issues concerning 
signal pre-processing framework, like length of the analysis 
window and the underlying frequency domain to be used in 
spectral analysis. 

The paper is structured as follows: the next section describes 
the state-of-the-art in environmental sound recognition; the third 
section details our approach, the signal feature extraction and 
modelling methods we applied in sound recognition; the fourth 
section presents the setup of the experiments and evaluates the 
proposed methods; the last part presents the conclusions of the 
paper. 

2. State-of-the-art 

Early attempts [2], [19] to assess speech typical methods in the 
context of non-speech acoustics, analyse classical methods like 
Artificial Neural Networks (ANN), or Learning Vector 
Quantization (LVQ), on Fourier, or Linear Predictive Coding 
(LPC) feature spaces. 

In [20], the authors make an overall investigation of 
recognition methodologies for different categories of sounds. The 
environmental sounds are classified as stationary and non-
stationary. The framework used for stationary acoustic signals 
coincides to a great extent with the one used in voice-based 
applications (speech or speaker recognition) in what concerns the 
specific features and feature space modelling methods. For feature 
extraction, the spectral features, like those derived from Mel 
analysis – Mel Frequency Cepstral Coefficients (MFCCs), LPC, 
Code Excited Linear Prediction (CELP), or techniques based on 
signal autocorrelation, prevail. The modelling approaches are also 
shared with voice-based applications: GMM, k-Nearest 
Neighbours (k-NN), Learning Vector Quantisation (LVQ), DTW, 
Hidden Markov Models (HMM), Support Vector Machine (SVM), 
Neural Networks, and deep learning. Concerning non-stationary 
signals, some successful techniques are based on sparse 
representations like the Matching Pursuit (MP) and MP-Gabor 
features. Alternative approaches use fusion of MFCC and other 
parameters to boost the performance.  

In [5], the authors review the current methodologies used in 
AESR and evaluate their performance, efficiency, and 
computational cost. The leading approaches of the moment are 
GMM, SVM and DNN or Recurrent Neural Networks (RNN) The 
paper describes open-set identification experiments on two types 
of acoustic events, baby cries and smoke alarm, and a very large 
range of complementary environment acoustic events. as impostor 
data. In this respect GMM, using the Universal Background Model 
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(GMM-UBM) and two neural network architectures were 
compared. The Deep Feed Forward Neural Network yielded the 
best identification rate, while the best computational cost is made 
by GMM. SVM has an intermediate identification rate, yet at a 
high computational cost, assessed accounting for four basic 
operations: addition, comparison, multiplication, and lookup table 
retrieval (LUT). The computational cost is a critical feature in the 
context of IoT, where sound analysis applications are required to 
run on embedded platforms with hard constraints on the available 
computing power. 

In [13], the authors make a thorough and extensive 
investigation of the most recent achievements and tendencies in 
AESR, more precisely in EASR and SER fields of CASA. from 
the perspective of acoustic feature extraction, the modelling 
methodology, performance, available acoustic databases. Besides 
the conventional approaches, new classes of features were applied 
lately by several implementations. Such characteristics are the 
auditory image-based features, basically regarding the time-
frequency spectrograms as bidimensional images. where the 
frequency is not necessarily in the linear domain, but possibly 
adapted to a perceptual scale. Besides the log-power spectrum, Mel 
or Bark-frequency log-scale spectrograms, Spectrogram Image 
Features (SIF) [21], such characteristics as Mel scale with 
Constant-Q-Transform [22], wavelet coefficients [23] are referred. 

Another class of features are generated by learning approaches 
with the goal to provide lower and enhanced representations. Such 
features are obtained applying techniques like quantization, i-
vector, non-negative matrix factorization (NMF) [24], sparse 
coding, Convolutional Neural Network–Label Tree Embeddings 
(CNN-LTE) [25], etc.  

Concerning the experimented methodologies, the deep 
learning methods are predominant, with Feed-Forward Neural 
Networks and Convolutional Neural Networks (CNN) in the 
leading position.  Many strategies are currently operating CNNs in 
conjunction with a variety of features, among which log-scaled 
mel-spectrograms [26]-[28], CNN-LTE [25] or in hybrid 
approaches [29]. These implementations outperformed the other 
attempts to approach EASR and SER tasks.  

Avalanche or landslide monitoring applications use 
methodologies based on thresholds for acoustic emissions energy, 
depending on the hazard risk level.  

Concerning the general framework applied in AESR, we draw 
on the ideas presented in [20]. The usual pre-processing of the 
acoustic signal, applied in AESR includes a framing step, possibly 
followed by sub-framing or sequential processing. In the 
“framing” stage the signal is processed continuously, frame by 
frame. A classification decision is made for each frame and 
successive frames may belong to different classes. This is 
illustrated in figure 1, where a chainsaw is detected in a forest 
environment. Framing can enhance the acoustic signal 
classification by structuring the stream into more homogeneous 
blocks to better catch the acoustic event. Yet, there is no way of 
setting an optimal frame length, as for stationary events a length of 
3s is a reasonable choice, while for acoustic events like thunder or 
gunshots, a 3s window length might be too large, and contain other 
acoustic events, so they could be associated to inappropriate 
classes. Due to the latest advances in instrumentation, different 

frame lengths are used to streamline energy consumption during a 
monitoring process, based on detecting energy levels of 
environmental sounds.  

 
Figure 1: Framing process of a real-life sound and classification of each frame 

 

Figure 3: 22ms of chainsaw sound 

 

Figure 4: 44ms of chainsaw sound 

Next, a sub-framing process is applied, by dividing the frame 
into usually overlapping, analysis subframes. The length of a 
subframe is explicitly set in [20] to 20-30ms. This length is suited 
for speech analysis, as it ensures a good resolution in time and 
frequency. Figure 2 presents 22ms of male speech which includes 
three fundamental periods of the respective voice. Whereas figure 
4 represents 44ms of chainsaw sound which contains two periods 
of the chainsaw sound. However, we cannot infer anything about 
the signal periodicity from the segment of 22ms of chainsaw 
sound, represented in figure 3. Therefore, considering sub-frames 
of 44ms is a reasonable choice for chainsaw detection. However, a 
realistic setup must consider a value convenient to all sounds in the 
acoustic environment. 

The further processing applied on the analysis frames is the 
same with that applied in speech signal analysis and its final goal 
is to extract characteristic features. The largely applied features are 
somehow derived from the Fourier features, and called spectral 
features. Non-spectral features are, for instance, energy, Zero-
Crossing Rate (ZCR), Spectral Flatness (SF), all calculated in time 
domain. Concerning spectral analysis, the relevant frequency 
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interval for a signal sampling frequency of 44.1 kHz is not the 
whole frequency domain furnished by the Fourier transform, [0, 
22.05] kHz, but a shorter range, as shown in figures 5,6. By setting 
the appropriate analysis frequency interval, we may improve the 
performance as accuracy and speed of execution, as another 
benefit of shortening the frequency interval is the decrease of the 
number of spectrum samples to be processed. 

 
Figure 5: Power spectrum of a chainsaw sound 

 
Figure 6: Power spectrum of a snowmobile sound 

When choosing the spectral analysis, the usual pre-processing 
on the analysis frame involves (Hamming) windowing and pre-
emphasis. 

3. The Method 

We have applied the framework mentioned above. At framing 
we divided the audio signal recordings into intervals of 3 seconds. 
We have used analysis frames of lengths of 22, 44 and 88ms with 
the usual pre-processing scheme as in speech-based applications. 
The modelling methods we have evaluated are GMM, DTW and 
FFNN. As baseline for the feature space, we used the Fourier 
spectrum coefficients and MFCCs. The set of MFCC parameters 
was possibly increased with Zero Crossing Rate (ZCR) or/and 
Spectral Flatness (SF). We have applied GMM on the MFCC 
feature space, and called this approach MFCC-GMM, DTW on the 
spectral features space, and FFNN on both the MFCC and spectral 
features spaces.  

3.1. MFCC-GMM 

GMM provides probabilistic weighted clustering that generates 
a coverage of the data space rather than a partition [30], [31]. Each 
cluster is modelled by a Gaussian distribution, usually called 
component, defined by the mean µ and the standard deviation 𝜮𝜮 of 
cluster data, along with a weight w of the component inside the 
mixture. A data set belonging to the same class C, can be modelled 
by one or more Gaussian components, and the parameters of each 
component are calculated using the Estimation-Maximization 

algorithm, resulting in a model λC = ((wk, µk, 𝜮𝜮k,), k = 1…, K), 
where K is the number of components. A key step of the algorithm 
is the initialization where initial values of the parameters (means, 
variances and weights) are defined. Poor initialization entails bad 
quality of classification or even impossibility to define the 
Gaussian parameters. We used at initialization a hierarchical 
algorithm, Pairwise Nearest Neighbour (PNN) [32] to ensure 
balanced data clustering, although other hierarchical algorithms 
such as Complete Linkage Clustering, or Average Linkage 
Clustering also provide good performance. We have evaluated 
different distance measures between hierarchy branches: 
Minkowski (Euclidean distance when square powers are 
considered), Chebyshev, Euclidian standardised distance. GMM 
modelling was applied on a feature space consisting of MFCCs 
and/or Spectral Flatness and ZCR, to generate models for C (C=3) 
classes of sounds. To classify a sequence of d dimensional features 
X = {x1, x2,…,xT} into one of the classes its likelihood to belong to 
each class c is evaluated as 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, λ𝑐𝑐) = ∑ 𝑝𝑝(𝑥𝑥𝑡𝑡/λ𝑐𝑐)𝑇𝑇
𝑡𝑡=1  (1) 

where 

 𝑝𝑝(𝑥𝑥𝑡𝑡/𝜆𝜆) =  ∑ 𝑤𝑤𝑘𝑘𝐾𝐾
𝑘𝑘=1

1

(2𝜋𝜋)
𝑑𝑑
2|𝛴𝛴𝑘𝑘|

1
2
𝑒𝑒−

1
2(𝑥𝑥𝑡𝑡−𝜇𝜇𝑘𝑘)𝛵𝛵𝛴𝛴𝑘𝑘

−1(𝑥𝑥𝑡𝑡−𝜇𝜇𝑘𝑘) (2) 

and the class with the maximum likelihood is selected: 

 𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = argmax
λ∈{λ1, λ2,..,λ𝐶𝐶}

( log(𝑋𝑋, 𝜆𝜆)) (3) 

Mel frequency analysis [33] [34] is a perceptual approach to 
signal analysis based on human sensing of the frequency domain. 
We applied the MATLAB implementations of the Mel-scale 
frequency: 

 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓) = 1127 ln( 1 + 𝑓𝑓 700⁄ )  (4) 

and bank of triangular filters for linear frequencies f∈ [flow, fhigh]: 

 

The power spectrum calculated on an analysis frame, is passed 
through the bank filter in (5), and the Mel Frequency Cepstral 
Coefficients (MFFCs) are derived by applying the Discrete Cosine 
Transform to the logarithm of the filtered spectrum [33]. 

Spectral Flatness (tonal coefficient) is meant to highlight noise 
from tonal sound and is calculated as ratio of geometrical and 
arithmetical means of spectral coefficients on analysis frames. 

A zero crossing arises when two neighbouring samples have 
opposite signs, and its value on an analysis frame is:  

𝑍𝑍𝑛𝑛 = ∑ �𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥(𝑚𝑚)� − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥(𝑚𝑚 − 1))� ∗ 𝑤𝑤(𝑛𝑛 − 𝑚𝑚)∞
𝑚𝑚=−∞  (6) 
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3.2. Spectra Alignment using Dynamic Time Warping 

Dynamic Time Warping (DTW) measures the similarity of 
two, usually time-varying, sequences, by optimally aligning them 
using a recurrent algorithm [35], complying with specific 
constraints, concerning boundary conditions, monotony, and 
continuity of the similarity function, and building an optimal path.  
One of the issues raised by the DTW algorithm is the long 
execution time, the main reason for which is the full calculus of 
DTW matrices, usually defined by distances between the elements 
of the sequencies. This can be contained by restraining the calculus 
to a low number of elements, the most likely to participate in the 
definition of the optimal path by applying an adjusting window as 
in figure 4, where the popular Sakoe-Chiba band [36] is applied. 
Figure 7 presents the graphical rendering of a DTW matrix for two 
sequencies s(t) and r(t), the Sakoe-Chiba band, in grey, 
highlighting the optimal path, which does not lie entirely inside the 
band. When applying the Sakoe-Chiba band, the optimal path 
should lie inside the band and is figured in red in the image, 
accompanying only inside the band the real optimal path figured 
in black, thick where it lies within the band. 

 
Figure 7: Alignment of sequences r, s, using the Sakoe- Chiba band, and the two 

optimal paths, the real one (black) and the one lying inside the band, which 
generally coincide.  

The DTW algorithm was applied on power spectra of the 
signal. The power spectrum on an analysis window is calculated as 
sum of squared Fourier coefficients. One argument for using DTW 
to align spectral series is the fact that the acoustic signals received 
from devices of the same type share the same characteristics, such 
as sampling frequency, so, the generated spectra have the same 
lengths. Another premise is the fact that the interesting domain for 
this type of application is under 15 kHz, or even 10 kHz, which is 
demonstrated by figures 5, 6. This fact is used to align equal length 
spectra by the DTW algorithm. In the experiments the sampling 
frequency of the available audio files is equal to 44.1 kHz, the 
Fourier spectrum covers the domain [0, 22.05] kHz, but if the 
useful frequency domain is restricted to [0, 7.4] kHz and the 
analysis frame is of 22ms, the number of features is 171 instead of 
512. 

Classification of a sequence of feature vectors using the DTW 
algorithm consists in calculating the distortion between these 
vectors and the template (training) sequences, and to select the 
class whose templates show the smallest distortion with respect to 

the given feature sequence. The calculation involved in this 
process is based on the distances between individual vectors in the 
two sets to be compared. The distance may be evaluated in 
different ways. We have applied two distance measures in the 
calculus of the distortion measure, the Euclidian norm, and the 1-
norm (sum of absolute values). 

3.3. Deep feedforward networks (FFNN) 

 The artificial neural networks (ANNs) were intended to 
simulate human associative memory. They learn by processing 
known input examples, and corresponding expected results, 
creating weighted associations between them, stored within the 
network data structure. Deep feedforward networks or multilayer 
perceptrons (MLPs), are the quintessential deep learning models 
[37]. The basic unit of a FFNN is the artificial neuron, which 
expresses the biological concept of neuron [38]. They receive 
input data, combine the input through internal processing elements 
like weights and bias terms, and apply an optional threshold using 
an activation (transfer) function, as shown in figure 8. Transfer 
functions are applied to provide a smooth, differentiable transition 
as input values change. They are used to model the output to lie 
between ‘yes’ and ‘no’, mapping the output values between 0 to 1 
or -1 to 1, etc. Transfer function are basically divided into linear 
and non-linear activation functions. Non-linear transfer functions 
are “S” – shaped functions like arctg, hyperbolic tangent, logistic 
functions as in (7): 

 𝑓𝑓(𝑥𝑥) =  𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 (7) 

 
Figure 8: Structure of a neuron 

The goal of a feedforward network for modelling and 
classification is to define a mapping  y = f(x,θ) and learn the value 
of parameters θ to ensure the best approximation of the expected 
value y by the output of f, given the input x and parameters θ. 
FFNNs have one or more hidden layers of sigmoid neurons 
followed by an output layer of linear neurons. A layer of neurons 
brings together the weight vectors and biases corresponding to its 
neurons, so it can be expressed by a matrix of weights and bias 
vectors, as in figure 9, 10. The transfer function is supposed to be 
the same for each neuron in the layer. The general diagram of a 
network is shown in figure 11, where the parameters to be tuned 
are the weight matrices and bias terms applied at the level of each 
layer, so that the output of the overall system would be close to 
expected values. These networks are called feedforward because 
the information flows in one direction through intermediate 
computations and there is no feedback connection. The number of 
neurons does not necessarily decrease with the layer level as 
presented in figure 10, but usually the goal is to reduce the 
dimensionality of the input layer, a process similar to feature 
extraction. The computation corresponding to figure 12 can be 
expressed by : 
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Figure 9:  Structure of a layer of neurons  

 
Figure 10:  A Feed Forward Neural Network with three highlighted layers 

 
Figure 11:   Flow of data in a feedforward network  

In equations (8) the known information is  

• The input parameters p, which might be measurements from 
sensors (wind speed, temperature, humidity), parameters 
coming from images (matrices of colours, or grey hues), or 
parameters coming from acoustic signals (Fourier spectrum 
on an analysis window, or more complicated parameters like 
cepstral, linear prediction coefficients), 

• The expected output: for instance, to solve a three classes 
problem the output corresponding to each class input might be 
defined as either unidimensional (a scalar value for each 
class):  (-1, 0, 1) or  (0, 1. 2) or multidimensional  (a vector for 
each class):( (1, 0, 0),  (0, 1, 0),  (0, 0, 1)), 

• The neural network architecture: number of hidden layers, 
number of neurons on each layer, etc. 

Unknown parameters are:  

• weights at layer k: Wk,  

• bias terms at layer k: bk. 

Learning the unknown parameters is performed during the 
training process. Training of a FFNN can be made in batch mode 
or in incremental mode [38]. In batch mode, weights and biases are 
updated after all the inputs and targets are presented. Incremental 
networks receive the inputs one by one and adapt the weights 
according to each input. Usually, batch training is used. Equations 
(8) have as unknowns, the weight matrices and the bias terms, and 

a much more numerous training known data (all the input data and 
the corresponding expected values). This implicates the realistic 
conclusion that there will not be any solution of the equation 
system, so the training process looks for the values of the 
parameters, weights and biases, that make the error between the 
output value and expected output, minimal: 

 𝑒𝑒(𝑊𝑊,  𝑏𝑏) =  ∑ (𝑦𝑦𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑘𝑘(𝑝𝑝,  𝑊𝑊,  𝑏𝑏))2𝑁𝑁
𝑖𝑖=1  (9) 

where N is the number of (input, output) pair samples. 

To minimize the least mean square (LMS) expression in (8) 
several schemes based on LMS algorithm using variants of the 
steepest descent procedure, are used. MATLAB has implemented 
and supports a range of network training algorithms among which: 
Levenberg-Marquardt Algorithm (LMA), Bayesian 
Regularization (BR), BFGS Quasi-Newton, Resilient 
Backpropagation, Scaled Conjugate Gradient, One Step Secant, 
etc. To start minimization of (9) using any of these algorithms, the 
user should provide an initial guess for the parameter vector θ=(W, 
b). The performance of the system depends on this initial guess. 
Most of the above algorithms try to optimize this process.  

At the end of the training process, we get a FFNN model:  

 net = (Wk, bk),        k= 1,2...K.  (10) 

where K is the number of layers in the network. To classify a vector 
of data x = {x1, x2, …, xd},  we “feed” it at the input of the network, 
perform all the operations applying the weights and biases to the 
input data, as in figure 11, and evaluate the output: 

 score = net (x) (11) 

If we code the output classes y = {y1, y2, …, yC}, C the number 
of classes, we compare the obtained output score to these values 
and if score is closest to yc the input vector x will belong to class c. 

We have applied the feedforward algorithm by feeding at input 
two types of features: power spectrum features and MFCCs.  

3.4. Long Short-Time Memory  (LSTM) 

LSTM [39] is an artificial Recurrent Neural Network, and as 
any RNN is designed to handle sequences of events that occur in 
succession, with the understanding of each event based on 
information from previous events. They are able to handle tasks 
such as stock prediction or enhanced speech detection. One 
significant challenge for RNNs performance is that of the 
vanishing gradient which impacts RNNs long-term memory 
capabilities, restricted to only remembering a few sequences at a 
time. LSTMs proposes an architecture to overcome this drawback 
and allow to retain information for longer periods compared to 
traditional RNNs. Unlike standard feedforward neural networks, 
LSTM has feedback connections. It is capable of learning long-
term dependencies, useful for certain types of prediction requiring 
the network to retain information over longer time periods, can 
process entire sequences of data (such as speech or video). It has 
been introduced in 1997 by the German researchers, Hochreiter 
and Schmidhuber. 
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The architecture of a LSTM Neural Network includes 
the cell (the memory part of the LSTM unit) and three 
"regulators”, called gates, of the flow of information inside the 
LSTM unit:  

• input gate to control the extent to which new values flow into 
the cell 

• output gate to control the extent to which a value remains in 
the cell 

• forget gate  to control to what extent the value in the cell is 
used to compute the output activation of the LSTM unit 

The LSTM is able to remove or add information to the cell 
state, through these gates. Some variations of the LSTM, like the 
Peephole LSTM or the Convolutional LSTM, ignore one or more 
of these gates. 

The cell is responsible for keeping track of the dependencies 
between the elements in the input sequence. The activation 
function of LSTM gates is often the logistic sigmoid function. The 
connections to and from the LSTM gates, some recurrent, are 
weighted. The weights are learned during training, they determine 
how the gates operate. The diagram of a cell is presented in Figure 
1(https://en.wikipedia.org/wiki/Long_short-term_memory# 
/media/File:The_LSTM_cell.png) and the LSTM flow is shown in 
figure 13 (Understanding LSTM Networks -- colah's blog) . 

 
Figure 12:  Structure of a LSTM cell 

 
Figure 13:  LSTM chain 

The calculations that solve the LSTM paradigm are [39]: 

𝑓𝑓𝑡𝑡 =  𝜎𝜎𝑔𝑔�𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� 
𝑖𝑖𝑡𝑡 =  𝜎𝜎𝑔𝑔(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) 

 𝑜𝑜𝑡𝑡 =  𝜎𝜎𝑔𝑔(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)  (12) 
 𝑐𝑐𝑡𝑡� =  𝜎𝜎𝑐𝑐(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) 
 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∙ 𝑐𝑐𝑡𝑡�  
 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ 𝜎𝜎ℎ(𝑐𝑐𝑡𝑡) 
where the known data are: 

• xt ϵ Rd- input vector to the LSTM unit, 

• d and h - number of input features and number of hidden units, 
respectively, 

Unknowns : 

• ft ϵ Rh - forget gate's activation vector 

• it ϵ Rh - input/update gate's activation vector 

• ot ϵ Rh -  output gate's activation vector 

•  ht ϵ Rh -  hidden state vector (output vector of the LSTM unit) 

•  ct� ϵ Rh -  cell input activation vector 

•  ct ϵ Rh -  cell state vector     

• W ϵ Rhxd ,  U ϵ Rhxd , b ϵ Rh -  weight matrices and bias vector 
parameters which need to be learned during training 

Activation functions are: 

• σg - sigmoid function 

• σc - hyperbolic tangent function 

• σh - hyperbolic tangent function or, linear function   

The LSTM training is made in a supervised mode by a set of 
algorithms like gradient descent, combined with backpropagation 
through time to compute the gradients needed during the 
optimization process, in order to change each weight of the LSTM 
network in proportion to the derivative of the error (at the output 
layer of the LSTM network) with respect to corresponding weight.  
With LSTM units, when error values are backpropagated from the 
output layer, the error remains in the LSTM unit's cell. This allows 
to avoid the problem with standard RNNs where error gradients 
vanish exponentially with the size of the time lag between 
important events. The system is trained using the equations (6). 

4. Experimental results  

The goal of the experiments was to evaluate the four 
methodologies and find the optimal configuration for each one. 
The experiments considered only three classes of sounds which 
could exhaust the specific sounds in the forest environment 
susceptible to illegal deforestation. They are chainsaw, vehicle, 
and genuine forest sounds. The identification process was closed 
set. Segments of 3s were considered and each segment was 
evaluated individually. We have assessed several lengths of 
subframes (analysis frames), based on an above remark (see 
figures 2-4). So, the analysis frames lengths considered are mainly 
22ms, 44ms, 88ms. Concerning the frequency interval length, [flow, 
fhigh], we have investigated lengths of 3.7, 7.4, 10 and 12 kHz. We 
have conducted these experiments using the MATLAB 
framework.  

The acoustic material contains 99 recordings of the three 
classes of sounds, in average about 15s each, 39 were used for 
training and 60 for testing. The testing set resulted in 685 segments 
of three seconds. The performance of each of the approaches we 
tested is presented subsequently. The performance was evaluated 
in terms of Identification rate, the ratio of numbers of correctly 
identified segments and the evaluated segments.  

4.1. MFCC-GMM 

We have applied GMM on the feature space consisting of Mel-
cepstral features, accompanied or not by ZCR and Spectral 

http://www.astesj.com/
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Flatness. We have tested several hierarchical clustering 
initialization methods, using different distance measures between 
branches, varied the number of Gaussian components, the number 
of the cepstral coefficients, the values of the frequency interval  
[flow, fhigh], and the length of the analysis frame. On the given 
acoustic material, the performance obtained with the PNN 
initialization, using the Euclidian Standardized distance, were 
slightly better than when using the other hierarchical methods. The 
MATLAB settings for analysis frame, 25ms,  flow =300 Hz, 
fhigh=3.7 kHz are the most beneficial. Moreover, adding ZCR and 
SF improved the results. 12-13 GMM components and 13-14 
MFCCs seemed to be the best configuration. Some results are 
presented in Table 1. We have chosen to assign an identical  
number of Gaussian components, as our acoustic material is 
currently quite scarce, and  the investigated problem is less 
complex than, for instance, the task of an audio scene recognition. 
A more rigorous approach should consider the structure of the 
underlying acoustic feature space, as shown in [40], to assign the 
number of components to each category of sound.  

Table 1: Performance of AESR using the MFCC-GMM approach, with 
additional ZCR and SF features, different values of flow and fhigh expressed in kHz, 

number of Gaussian components, number of Mel-cepstral coefficients 
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0.3 3.7 14 13 66.47 77.16 61.07 68.07 
0.3 4 13 13 61.85 76.72 59.92 66.27 
0 3.7 14 13 67.63 79.31 56.87 67.47 
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0.3 3.7 14 13 62.43 80.17 62.21 68.52 
0.3 3.7 15 13 60.69 80.17 62.21 68.07 
0.3 3.7 15 12 67.63 76.29 61.83 68.37 

 

4.2. Spectra Alignment using Dynamic Time Warping 

On applying DTW we have aligned Fourier Power Spectra. 
More precisely, we have aligned segments of these spectra defined 
on frequency intervals [flow, fhigh]. The frequency domain was 
restricted to some intervals included in [0, 7400] Hz. The length of 
the analysis window was set to 22ms. For analysis frames of 22ms 
the number of samples per frame, given the sampling frequency of 
44.1 kHz, is 970, and the length of the Fourier Transform is the 
closest power of 2 greater than the number of signal samples, that 
means 1024. For shorter frequency intervals the corresponding 
Fourier subset involves less samples, less data to be processed, and 
a shorter execution time: 

• [0, 7400] Hz  - 171 samples; 

• [0, 3700] Hz - 86 samples; 

• [300, 3700] Hz - 80 samples; 

• [300, 7400] Hz - 165 samples. 

For this reason, the length of the analysis frame was set to 
22ms. A 25ms frame would have meant a 2048 long Discrete 
Fourier Transform, and hence, power spectrum.  

We have compared the performance of the DTW alignment for 
several lengths of the frequency interval  [flow, fhigh], different 
lengths of the Sakoe- Chiba band, and the two distance measures 
in the calculus of the distortion measure, the Euclidian norm, and 
the 1-norm (sum of absolute values). The best results for analysis 
frames of 22ms,  flow=0,  fhigh=7.4 kHz, for the largest applied 
Sakoe- Chiba band, and the 1-norm. Some of the results can be 
viewed in the table 2. 

Table 2: AESR Performance Using Dynamic Alignment of Power Spectra 
intervals of various lengths and applying Saloe-Chiba windows endowed with 

different widths 
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15 0 7.4 69.57 74.14 67.94 70.44 
0 3.7 57.39 81.9 67.94 69.06 

20 
0 11 50.43 76.72 67.94 65.19 
0 7.4 68.7 75.86 67.94 70.72 
0 3.7 57.39 83.62 67.94 69.61 

25 0 3.7 57.39 84.48 67.94 69.89 
0 7.4 68.7 76.72 67.94 70.99 

30 0 7.4 69.57 76.72 67.94 71.27 
0 3.7 57.39 86.21 67.94 70.44 

St
an
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ed

 20 0 3.7 58.26 86.21 66.41 70.17 
0 7.4 68.7 76.72 67.18 70.72 

25 
0 3.7 58.26 87.07 66.41 70.44 
0.3 7.4 66.09 77.59 67.18 70.17 
0 7.4 68.7 77.59 67.18 70.99 

30 0 7.4 68.7 77.59 67.18 70.99 
 

4.3.  Experiments using the FFNN 

We have applied FFNN methodology in two hypostases: the 
first by feeding at input Mel-cepstral features (coming with or 
without Spectral Flatness, and/or ZCR) and the second, by feeding 
Fourier power spectrum features. In the first case we have 
extracted 12 to 20 Mel-cepstral coefficients, on an analysis 
window, using different frequency intervals [flow, fhigh], and 
different analysis window lengths. In the second case the number 
of coefficients depended on the length of the frequency interval.  

At training we fed the information at the of sample level, each 
sample being associated with the expected outputs 1, 0 or -1, 
depending on the nature of the sound sample (chainsaw, genuine 
forest, vehicle engines). A sample in this case means a feature 
vector (of Mel-cepstral coefficients or Fourier spectrum 
coefficients, etc., calculated on an analysis window). 

We applied the batch training and evaluated the BR, and LMA 
training algorithms. At classification, when training by feeding 
vectors of features, we evaluated each 3s segment by assessing 
each sample in the segment and finally the whole segment.  A 
sample belongs to a certain class if its output score in (11) is closest 
to the respective class expected output, 1, 0 or -1. The overall 
decision on the 3s level is taken by applying one of the rules: 
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• Majority voting (the segment is associated with the class for 
which most of the samples of the segment belong to the 
respective class); 

• Average output: the average output score of the samples on 
the segment is closest to the expected output of a certain class. 

Concerning the network architecture, we have tested several 
configurations of FFNNs, 2 to 4 layers, with 6 to 10 neurons on 
each layer. As the performance of the test depends on the 
initialization of the training process, we provided 5 tests for each 
configuration. Because of the great choice of parameters, such as 
the length of the analysis window, or flow, fhigh, and configurations 
to be investigated, we could not exhaust all the possible 
combinations. The tables 3 and 4 present some relevant results. 
Table 3: FFNN – MFCC -results of 5 tests using networks of 4 layers, with 9, 8, 
7, 6 neurons respectively 88ms analysis windows, , [flow, fhigh] =[0, 7.4] kHz, 18 
Mel-coefficients, and Spectral flatness. Training was accomplished by Bayesian 
Regularization, and classification using the majority voting rule 

 Chainsaw Forest Vehicle General 
test1 52.36 93.10 62.69 70.13 
test2 51.83 75.86 62.69 64.13 
test3 48.69 89.66 60.00 66.91 
test4 50.26 81.90 68.46 67.94 
test5 58.64 93.10 61.92 71.60 

Table 3 shows one the best performance, identification rates 
expressed in percent, obtained using Mel-cepstral features as input, 
using a 4 layers FFNN, with 9, 8, 7, 6 neurons on each layer, 88ms 
analysis windows, [0, 7.4] kHz, frequency interval for which the 
coefficients were computed. 18 Mel-coefficients were extracted, 
and Spectral flatness and ZCR added on each analysis frame. 
Training was accomplished by Bayesian Regularization, the 
default in MATLAB, and classification using the majority voting 
rule. The average performance was 68.14%. Similar results were 
obtained using other configurations, for instance an identification 
rate of 67.43% was achieved with a 3-layer network, 88ms analysis 
frame, [flow, fhigh] =[0, 10] kHz,  17 Mel cepstral coefficients, with 
SF added. However, all the tests provided a low identification rate 
for the “chainsaw” class. This performance is lower, or comparable 
to the ones obtained applying the classical GMM and DTW 
approaches. 

Table 4 presents the results of 5 tests using FFNN of 4 layers, 
with 9, 8, 7, 6 neurons respectively, with Power Spectrum 
coefficients as input, 88ms analysis windows, [0, 7400] Hz 
frequency interval for spectral features. At training we applied the 
Bayesian Regularization algorithm and at classification the 
majority voting rule. The average performance was 78.82%.  
Table 4: FFNN – Power Spectrum – results of 5 tests using networks of 4 layers, 
with 9, 8, 7, 6 neurons respectively, 88ms analysis windows, [flow, fhigh] =[0, 7.4] 
kHz, training models obtained by Bayesian Regularization and classification using 
the majority voting rule 

 Chainsaw Forest Vehicle General 
test1 74.86 92.24 74.61 80.67 
test2 65.96 91.37 78.46 79.35 
test3 78.01 87.06 77.69 80.96 
test4 67.53 80.17 78.46 75.98 
test5 75.39 77.58 78.07 77.16 

Tables 5 and 6 present some relevant results obtained using the 
LMA algorithm at training.  

Table 5 presents the identification rate (in percent) of 5 tests 
using a 4-layernetwork, an analysis frame of 88ms, [flow, fhigh] =[0, 
10] kHz,  18 Mel cepstral coefficients, without adding extra 
parameters. At classification, the majority voting rule was applied. 
The average achieved performance was 69.54%. 
Table 5: FFNN – MFCC -results of 5 tests using networks of 4 layers, with 9, 8, 
7, 6 neurons respectively 88ms analysis windows, , [flow, fhigh] =[0, 10] kHz, 18 
Mel-coefficients. Training was accomplished using LMA, and classification using 
the majority voting rule 

 Chainsaw Forest Vehicle General 
test1 58.12 90.52 70.77 73.94 
test2 52.36 85.35 65.39 68.52 
test3 44.50 87.07 75.00 70.57 
test4 40.31 76.72 67.31 62.96 
test5 49.74 87.93 72.31 71.30 

 

Table 6 presents the results of 5 tests using networks of 3 
layers, with 9, 8, 7 neurons respectively, 88ms analysis windows, 
and the frequency interval [0, 3700] Hz, applying LMA training 
and classification using the majority voting rule. The average 
recognition rate was 79.17%.  
Table 6: FFNN applied on Power Spectra results of 5 tests using networks of 3 
layers, with 9, 8, 7 neurons respectively, 88ms analysis windows, , [flow, fhigh] = [0, 
3700] Hz, training models obtained by LMA and classification using the majority 
voting rule 

 Chainsaw Forest Vehicle General 
test1 72.77 84.48 77.69 78.62 
test2 75.39 79.31 85.76 80.67 
test3 69.11 89.65 69.23 76.13 
test4 69/63 90.08 79.61 80.38 
test5 64.92 87.93 84.23 80.08 

  
Table 7: FFNN applied on Power Spectrum results of 5 tests using networks of 4 
layers, with 10, 9, 8, 7  neurons respectively, 88ms analysis windows, [flow, fhigh] = 
[0, 3700] Hz, training using LMA and classification and the average score on the 
3s frames 

 Chainsaw Forest Vehicle General 
test1 50.26 92.24 65.769 70.42 
test2 61.25 95.69 70.769 76.57 
test3 43.97 94.82 65.00 69.25 
test4 53.40 93.10 70/38 73.35 
test5 57.59 98.27 62.30 73.20 

Table 8: Average Identification rates obtained using FFNN applied on Power 
Spectra, with 3 layers with 9, 8, 7 neurons, respectively,  using different values 

for fhigh  and lengths of the analysis frame, training with Bayesian  Regularization 
and majority vote classification. 

 analysis frame lengths 
22ms 44ms 88ms 
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[0, 3700] 71.04 76.31 78.83 
[0, 7400] 74.98 76.02 77.22 
[0, 10000] 69.64 74.76 76.02 
[0, 12000] 72.61 75.17 74.00 
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Table 7 contains the results of 5 tests applying FFNN to 
spectral coefficients, calculated on the frequency domain [0, 3.7] 
kHz, using a 88ms analysis windows, and applying the LMA 
training on 4-layer networks with 10, 9, 8, 7 neurons. The 
classification algorithm used the average score on 3s frames. The 
average performance was 72.56%. 

 
Figure 14:  Average Identification rates for different values of fhigh and length of 

the analysis frame 

As an overall conclusion of the results, the Fourier spectrum as 
input to FFNN yielded very good results when applying the 
classification majority vote rule. The average score rule produced 
poorer results, with a low performance for the “chainsaw” class,  
but they are still better than using Mel-cepstral analysis or the 
GMM and DTW approaches. The BR and LMA produced 
comparable results, maybe LMA results were more balanced 
among the 5 tests (the standard deviation among the identification 
rates is lower). Concerning the network architecture for the Fourier 
spectrum variants of 2, 3 or 4 layers produce comparable results, 
especially when using the majority voting rule. The LMA training 
resulted in performance quite similar results as those obtained 
using the BR, for many configurations besides the one illustrated 
in Table 6, and the results are well balanced among the three 
classes of sounds. Perhaps the identification rates for the 
“chainsaw” class are a bit lower. In what concerns the average 
score classification, the 3 layers FFNN seemed to work better than 
4-layer nets. 

Concerning the analysis window, the results are better in all the 
cases for lengths of 44ms or 88ms. Table 8 and Figure 14 present 
the average overall identification rates for the FFNN applied on 
power spectra using the BR training, and majority voting at 
classification, several analysis window lengths and frequency 
intervals. The best average score is obtained for  the spectrum 
restricted to [0, 3700]Hz, and an analysis window of 88ms, but in 
fact the results are very close among the frequency intervals. 
Among the 5 tests for each configuration there were many  
identification rates above 80%. 

With regard to the results obtained using the Mel-cepstral 
coefficients as input, the conclusion concerning the optimum 
analysis window length is that window lengths greater than 44ms 
produced better performance. The frequency intervals [0, 7.4] kHz 
and [0, 10] kHz yielded better results. The general conclusion is 
that adding Spectral flatness and sometimes ZCR helped to 
increase the performance, although the example of Table 5 is an 
exception. 

4.4. Experiments using the LSTM 

In the experiments using LSTM we used the same input as in 
the FFNN experiments. The number of hidden units was set to 100 
and each cell configured with 5 layers, the default MATLAB 
configuration. Table 9 presents the best results obtained so far by 
applying LSTM. We have fed as input 18 dimensional sheer Mel-
cepstral vectors, calculated on 44ms analysis window and filtering 
the frequency domain to [0, 12] kHz. The average performance 
among the 5 tests is 64.85%.  As can be seen the identification rates 
are unbalanced among the three classes. In any other 
configurations the results were even worse.  
Table 9: Results of 5 tests using LSTM applied on an input set of Mel-cepstral 18-
dimensional vectors, calculated on 44ms analysis windows, and the frequency 
interval of [0, 12] kHz 

 Chainsaw Forest Vehicle General 
test1 48.69 86.20 47.69 61.05 
test2 37.69 93.10 56.92 63.83 
test3 42.40 97.41 45 62.07 
test4 67.53 90.51 47.69 67.78 
test5 62.82 93.10 53.46 69.54 

 

Concerning the experiments using as input the Fourier 
spectrum we failed to obtain interesting results, as the network did 
not behave well at training Figures 15, 16 present the estimation of 
the achieved accuracy during the training process for LSTM 
applied to Mel-cepstral input and power spectra respectively. 
While the first process achieves maximum accuracy in less than 
100 iterations the LSTM applied to power spectra achieves less 
than 80% in more than 300 iterations. 

 
Figure 15:  Accuracy estimation during training for a LSTM - MFCC process 

 
Figure 16: Accuracy estimation during training for a LSTM applied on Fourier 

power spectra. 
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Regarding the experiments using as input the Fourier spectrum 
we failed to obtain interesting results, as the network did not 
behave well at training Figures 15, 16 present the estimation of the 
achieved accuracy during the training process for LSTM applied 
to Mel-cepstral input and power spectra respectively. While the 
first process achieves maximum accuracy in less than 100 
iterations the LSTM applied to power spectra achieves less than 
80% in more than 300 iterations. 

5. Conclusions and future work  

The goal of this study was to test some state-of-the-art 
methodologies applied in AESR, Gaussian Mixtures Modelling, 
Dynamic Time Warping, and two types of Deep Neural Networks, 
in the context of forest acoustics.  Another specific objective was 
to evaluate the behaviour of these techniques, in several 
configurations, such as different lengths of the analysis window, 
or find the frequency intervals on which the Fourier spectrum is 
more relevant for such type of applications.  

We have succeeded to achieve significantly better 
performances using Feed Forward Neural Networks, in a certain 
setup, compared to the classical methods, GMM, and DTW. We 
used two types of networks (Deep Feedforward Neural Network 
and LSTM) and have fed as inputs two types of data, Mel-cepstral 
and Fourier power spectral coefficients. In this context we tested 
two training methods, the Levenberg-Marquardt Algorithm, and 
the Bayesian Regularization, and two different classification 
approaches.   

Deep Feed Forward Neural Networks experiments output the 
best results when using the sheer spectral features, and especially 
when using the majority voting rule, with an average identification 
rate of over 78%, with about 10% higher than other methods 
performance. This fact suggests that FFNN, based on Fourier 
spectral features, using a less complex processing sequence, is able 
to produce more valuable features than the elaborate Mel cepstral 
analysis. A difference is in the number of features at input, while 
the Mel features are fewer than 20, the spectrum on [0, 7400] Hz 
frequency interval means about 170 coefficients.  

 
Figure 17:  FFNN using Mel cepstral input applies a range of transforms 
(frequency conversion. spectrum filtering, logarithm, Discrete Cosinus 
Transform) on the Fourier spectrum and feeds the result to the network 

 
Figure 18:  FFNN using Fourier Spectrum coefficients as has a simpler 

schema, and probably devises more valuable features through the layers of 
the network 

Figures 17, 18 summarize this idea. Figure 17 presents the 
more complex row of operations to be accomplished on the power 
spectrum when the input to the FFNN involves Mel-cepstral 
analysis. Figure 18 presents the straightforward processing of 

spectrum by the FFNN, when just spectral coefficients are fed to 
the network. 

The disappointing results using the LSTM network may have 
several reasons. One of them may be the unproper use of the LSTM 
MATLAB tool. A second reason may reside in the fact that this 
type of network might be not suited to the kind of problem we want 
to solve.  

Another advantage of using FFNN is the fact that it is easy to 
implement in programming environments other than MATLAB. 
While the models can be generated in MATLAB, the classification 
part can be implemented in other programming languages, like 
C++, Java, etc. using the parameters established at training.  

Concerning the length of the analysis window the experimental 
results have shown that its length must be set above 44ms or 
higher. We have chosen the length of the analysis window 
somehow empirically, therefore the use of an analytical approach, 
e.g., [41], to establish the proper length of the frame would be a 
future direction of research.   

We could not draw a well-founded conclusion about the 
optimal frequency interval, as for 3.7 kHz to 10 kHz, the results do 
not vary too much.  

Although the neural networks have apparently the advantage 
of  training jointly several classes of data, this did not result in 
better results in comparison with the classical methods.  

As future work we intend to extend our research by including 
the CNN framework. 

Another important objective would be investigation of 
methods to merge decision of several sources, possibly by using a 
probabilistic logic.  

Another important objective is to extend the field of research 
to other AESR applications, in the field of scientific environment 
monitoring (e.g., detect bird or species), or early detection of 
disasters such as land sliding or avalanches, where acoustic 
emissions are among the data used as input.   
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