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 This paper is an extended version of the work presented at a conference held in Kyiv, 
Ukraine, in October 2020, which reported the result of the numeric simulation on the 
artificial antigravity. This paper further describes the derivation of the idea of the artificial 
antigravity, and adds the simulation of angular momentum that is needed to describe the 
antigravity. Also, because the angular momentum is the perpendicular movement to a three-
dimensional curved surface in a four-dimensional space-time, this paper challenges the limit 
of applying the curvature tensor in quantum mechanics; while, current quantum mechanics 
has been established on the flat surface. The artificial rotation of a hypothetical object is 
simulated, in which the gravity is so strong that the time-space can be distorted. The 
spherical polar coordinate system is selected to describe the curvature of the space, and the 
curvature tensor is formulated. Then the tensor is multiplied by the Euler’s rotation matrix 
to make the inner product for the gravitational energy and the outer cross-product for the 
angular momentum of the rotation. To simulate the distorted time-space, two cases are 
selected: the linear distortion and the non-linear distortion upon the distance from the center 
of the strong gravity; also, the speed of the rotation is set in two options: the slower and the 
faster. Then the equation of motion is set by the curvature tensor to calculate the coefficient 
of the gravitational energy on the surface of the sphere in the spherical polar coordinates, 
and to calculate the coefficient of the angular momentum in the perpendicular direction to 
the sphere. The result shows that the antigravity can be produced by rotating the object, and 
the angular momentum can show the opposite directions by the selection of the rotation 
speed.  
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1. Introduction 

This paper (hereinafter the “extended paper”) is an extension 
of the report presented at the 2020 IEEE 2nd International 
Conference on System Analysis_Intelligent Computing (SAIC) 
held in Kyiv, Ukraine, in October 2020 [1] (hereinafter the 
“conference paper”). The conference paper was a byproduct, on a 
sideline, of the other series of our research [2–7], which was aimed 
at finding the origin of the global climate change.  

At the beginning of the research [2-5], we assumed that Moon’s 
gravity could be related to the increase of the global temperature, 
then we calculated the coefficients of several variables such as the 
distance between Moon and Earth, the global temperature, the 
emitted carbon dioxide, with the method of econometrics, 
regarding the distance between Moon and Earth as the surrogate 
for the energy of the Moon’s gravitational field and gravitational 

waves. Then we reached an assumption that there should be anti-
gravitational waves as the antimatter of graviton (gravitational 
waves) similar to positron as the antimatter of electron; and, we 
derived the equation of motion of anti-gravitational waves, upon 
the equation of motion for gravitational waves [8] that was 
predicted in the flat surface in the rectilinear coordinate system, 
approximating the special theory of relativity. Then we reported 
the result of our analysis in a paper [6]. The geometrical relation 
between the positive and negative flows of gravitational waves 
(gravitational and anti-gravitational waves) that we made for [6] is 
shown in Figure 1.  

The next question was “How can both positive and negative 
flows be created?” Then we reviewed the general theory of 
relativity [8] that explained the gravitational field by the following 
equations: 
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Figure 1: Geometrical relation between positive and negative flows of 

gravitational waves [6] 
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 µνR is called the Ricci tensor, which is a variation of the 
curvature tensor, and α

µνΓ  is called a Christoffel symbol. Also, µνg
is called the fundamental tensor that makes the Christofell symbol. 
The equation (3) shows how the fundamental tensor describes a 
four-dimensional space-time. Here, the notation for the differential 
of the tensor is given by F

x
F µµ ∂

∂
=,

, where F is any function such 

as  and/or 
µνg , and µx  is the th−µ  variable (vector) in the 

given coordinate system.  
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The fundamental tensor also makes a geodesic, a path of extremal 
distance, as shown below. 

2332222112002 φθ dgdgdrgdtgds +++=                                    (4) 

In the equation (4), t  is time,  m  is the mass of a planet, r is 
the distance from the planet,  θ  is the angle from the axis of r , 
and φ  is the angle of the rotation around the axis of r  in the 
spherical polar coordinate system. In (3), there is a singularity at 

mr 2= : therefore, the space is divided into two regions, mr 2<
and mr 2> . In the region of mr 2< , the mass of the planet must 
be very dense and heavier and it can be a black hole. To connect 
these two regions, a different coordinate system was invented [8], 
which makes the distorted time, τ , and the distorted distance, ρ , 
by the following equations:  

)(rft +=τ                                                                      (5) 

)(rgt +=ρ                                                                       (6) 

The section 2.2. describes how this idea is taken into account in the 
numeric simulation. 

Then the equation (3) was transformed to the equation (7). 
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Then the geodesic was also transformed from (4) to (8).  
2332222112002 ϕθρτ dgdgdgdgds +++=                               (8) 

The followings show how to make (1) and (2) by the fundamental 
tensor:  
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According to [8], in the empty space where only the 
gravitational field of a planet exists, µνR becomes zero as shown in 
(12); then (13) is the equation of motion of a particle.  

0=µνR                        (12) 

0)
2
1( ,, =− αµνναµ

µν ggg                                                       (13) 

Then in order to describe gravitational waves moving in the 
gravitational field, the equation of motion is differentiated once 
again as shown below.  
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This equation leads to the equation (15), and this is the equation of 
motion for gravitational waves, according to [8]. 

0, =µναβ
µν gg                                                                             (15)   

The notation for the secondary differential of µνg , for example by 

the vectors, αx  and βx , is 
µνβααβµν g

xx
g

∂∂
∂

=
2

,
.                                                              

 Here, we show this equation only for describing how the 
gravitational field is related to the creation of gravitational waves; 
although, this extended paper doesn’t include the simulation of 
gravitational waves. 

Then we made the numeric simulation [7] on the curved space, 
deriving the mathematical forms of the components of the Ricci 
tensor (1). The following equation is an example of the Ricci tensor 
in case of 0µ ν= = , 2=α , 1β = : 

α
µνΓ
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 Then we calculated the coefficient of each component of the 
tensor, for =µ 0 , 1, 2 , 3 , =ν 0 , 1, 2 , 3 , =α 0 , 1, 2 , 3 , and =β
0 , 1, 2 , 3 , using a personal computer. The algorithm to calculate 
the coefficients is described in the section 2.3. 

After making the numeric simulation [7] with the curvature 
tensor, there was still a need to confirm the negative flow of 
gravitational waves that are to be created by some movement of a 
strong gravity; however, we could not find any suitable physical 
object that could be referred to. Therefore, we invented an idea of  
the hypothetical rotation of an artificial object shown in Figure 2 
as a possibility of the movement of a strong gravity. Then we 
reported the result of the simulation in the conference paper [1] as 
the “theory and simulation of artificial antigravity”. 

While the conference paper [1] has reported the result of the 
simulation on the gravitational energy made by rotating the very 
strong gravity, this extended paper reports one more feature, the 
angular momentum, by which we attempt to examine whether 
there is a consistent explanation of anti-gravitational waves shown 
in Figure 1, or not.  

 

Figure 2: Rotation of an object 

It is noted that there is no data taken out from any experiments 
in laboratories or observations in the cosmos, but this research is 
made solely on the mathematical model taken out from the general 
theory of relativity [8] as well as the classical mechanics [9].  

For the numeric simulation, we used a personal computer’s 
software, which was developed for the econometrics of geometry 
[10]. The algorithm of this software was originally developed in 
the rectilinear coordinate system; but, we used it for calculating the 
coefficients of the equation of motion in the spherical polar 
coordinate system as a special case of the curved space. In other 

words, we used the function of the orthogonal transformation of 
the matrix algebra as the surrogate for the tensor algebra needed in 
the general theory of relativity.  

2. Method 

2.1. Curvature Tensor before the Rotation 

For the simulation of this extended paper, we used the same 
curvature tensor shown in (17) that we used for our previous 
research for the conference paper [1]. This tensor is for simulating 
the gravitational field before the rotation. From it, we took the 
components of 11R , 

22R  and 
33R  for simulating the spatial 

movement of the object, but excluded 
00R  from the simulation 

because it is for the distorted time coordinate, which is beyond the 
scope of this research. 
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The diagonal components of μνR are shown in the equations from 
(18) to (21), which are taken from our previous research [7]. 
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µ  is given by the following equation with the mass of a planet, 
m : 

3
2

)2
2
3( m=µ                                                                                (22) 

2.2. Distortion of time and space in strong gravity 

We used the same assumption of our previous research [1] for 
simulating the distortion of time and space, as shown in Figure 3 
and Figure 4. In these figures, r  is the distance from the center of 
the strong gravity, t  is the time to travel for the distance, τ  is the  
distorted time (5), which expands and shrinks depending on the 
distance r  and the time t ; and, ρ is the distorted distance (6), 
which expands and shrinks depending on the time t  and the 
distance r .  

For the simulation, we created two models, Case-1 (non-linear 
model) and Case-2 (linear model) as shown in Table 1, which 
assign the functions of )(rf in the equation (5) and )(rg  in the 
equation (6).  
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Table 1: Two models for simulating the distorted time-space 

 Case-1  
(Non-linear model) 

Case-2 
(Linear model) 

)(rf  r⋅log  r/1  
)(rg  re  r  

 
Then we made the distributions of r  and t , following the 

description of [8], “Any signal, even a light signal, would take an 
infinite time to cross the boundary of a black hole”. However, we 
could not set the infinite values for the simulation; therefore, 
instead we set 24 discrete finite values in order to mock “It takes 
more time to travel closer to the center of the black hole”. The 
values of r  and t  are assigned to make input vectors for the 
numeric simulation with a personal computer.  

 
Figure 3: Time and distance from the center of the gravity, Case-1 (non-linear 

distortion): rrf log)( = and  rerg =)(  

 
Figure 4: Time and distance from the center of the gravity, Case-2 (linear 

distortion): 
r

rf 1)( = and  rrg =)(  

2.3. Algorithm for the gravitational energy with no rotation 

We used the same algorithm that we used for our previous 
research [1] to calculate the relative intensity of the gravitational 
energy with the curvature tensor, which was to be reflected by the 

stress-energy tensor placed at the end of the distance ϒ in Figure 3 
and 4.  

The Einstein’s equation that rules the motion of particles in the 
gravitational field is shown below. 

0)
2
1( , =− ν

µνµν RgR                                                      (23) 

Then we took the idea of the stress energy tensor from the 
classical mechanics [9] and set the equation (24), where T is the 
stress energy tensor and k  is a constant.  

kTRgR =− µνµν 2
1                                                          (24)  

 In order to calculate the coefficients of the tensor, we made the 
equation shown below, where 1c , 2c  and 3c  are the coefficients 
that make a column vector, c .   

)( 332211 XcXcXckTRkTH ++−=−= µν                        (25) 

For calculating c , we formed a 33×  matrix, X , by three vectors, 
1X , 2X  and 

3X , as shown in (26) for making the projected image 
of the gravitational energy on the surface of the sphere in the 
spherical polar coordinate system. 

][][ 332211321 RRRXXXX ==               (26) 

Then we formed H  with matrix algebra, as shown below. 

XckTH −=                         (27) 

To solve this equation, we set the constraint (28), where 'X  is the 
transposed matrix of X . 

0)('' =−= XckTXHX                        (28) 
The matrix algebra continues as shown in (29) and (30) to calculate 
the values of c . 

kTXXcX '' =                        (29) 

kTXXXc ')'( 1−=                 (30) 

 The standard errors of the coefficients are also calculated by 
(31) , where )(cV  is the variance of the c .   

12 )'(ˆ)( −= XXcV σ                                (31) 

2σ̂  is calculated by the equations from (32) to (34). 

)/('ˆ 2 lnee −=σ                 (32) 

kTMe ⋅=                 (33) 

')'( 1 XXXXIM −−=                  (34) 

n  is the number of rows of each column of X , while in this 
simulation the value of n  is 23 as shown in Figure 3 and 4. l  is the 
number of columns of X , and I  is a 2323×  unit matrix that holds 
1 (unity) in all diagonal components and 0 in the other components. 

1)'( −XX  is the inverse matrix of XX ' , and 'e  is the transposed 
vector of e .  

2.4. Algorithm for the gravitational energy with rotation 
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If the object rotates as shown in Figure 2, its coordinate system 
is transformed by the transformation matrix D  of the Euler’s 
angles [9] shown below.  
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For the rotation of the object around one axis of φ , the tensor 
of the object’s coordinate system, µνR , is multiplied by D ; then it 
is transformed as shown below.  
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The components, 
22sin R⋅φ  and 

11sin R⋅− φ  are anti-
symmetrical, which are perpendicular to the rotation axis, z  for φ  
of Figure 2. From the above transformed tensor after the rotation, 

µνRD ⋅ , we took out its diagonal components and formed (37), to 
calculate the relative intensity of the principal moment of the 
rotation.  
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Then we formed H  as shown below to calculate the coefficients 
of the diagonal components.  

)( 333222111 RcdRcdRckTH ⋅+⋅+⋅−=                                          (38) 

Henceforth we followed the same procedure explained in the 
section 2.3., but with the matrix shown below.  

[ ]332211 coscos RRRX ⋅⋅= φφ                (39) 

2.5. Algorithm for the angular momentum of the rotation 

 We formed a matrix shown in (40), by taking out the anti-
symmetrical components of 

µνRD ⋅ from (36); then formed a 
column vector shown in (41). 
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With the above column vector, we formed H  shown below, for 
calculating the coefficients of the vector’s components. 

)( 31123221 Ω⋅⋅−Ω⋅⋅−= dRcdRckTH                                     (42)           

Then we followed the same procedure as explained above, but 
with the matrix shown in (43) of the anti-symmetrical components. 
It is to simulate the angular momentum that is to be projected on 
the imaginary flat surface, which is perpendicular to the spherical 
surface.  

[ ] [ ]3113221122 sinsin Ω⋅−Ω⋅=⋅−⋅= dRdRRRX φφ            (43) 

here a little explanation is needed about 3Ωd  of (43). At first, ε  of 
(44) is an infinitesimal rotation operator. But, in general it has a 
form of (45) according to the Reference [9]. Then a rotated vector 
as the cross-product of µνR and Ωd  makes (46).   
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However, in this simulation, we assumed (47) and (48), which 
make (41) instead of (46). 

021 =Ω=Ω dd                 (47) 

φsin3 =Ωd                     (48) 

2.6. Input data   

The time t  and the distance r  are set as shown in Figure 3 for 
Case-1 and in Figure 4 for Case-2. For simulating the spatial 
expansion of the gravitational field, we assumed as if θ  would 
become larger in far distance as shown in Figure 5. For simulating 
the rotation of the object, we set two cases, assuming 1φ  (the 
rotation 1) and 

2φ  (the rotation 2) also as shown in Figure 5. With 
these settings, θsin , θcos , θcot , 1sinφ , 2sinφ , 1cosφ  and 2cosφ  
behave as shown in Figure 6.  

 
Figure 5: Angles, θ , 1φ  and 2φ , for the simulation 
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In addition, we set the stress-energy tensor as 1; because, the 
purpose of this simulation is to measure the relative intensity of 
each component of the tensors.  

 
Figure 6: θsin , θcos , θcot ,  1sinφ , 2sinφ , 1cosφ  and 2cosφ   

3. Result  

3.1. Gravitational energy and angular momentum: overview 

Figure 7 (Table 2) shows the relative intensity of the 
gravitational energy of the object, which is projected on the surface 
of the sphere of the curved space, and the angular momentum of 
the perpendicular vector to the surface. In Case-1 (non-linear 
distortion of the time and space), the gravitational energy (on 
curved surface) is negative (gravity) before the rotation, but it 
changes to positive (antigravity) in the rotation 1, and then to 
negative (gravity) again in the rotation 2. It means that the 
antigravity appears, depending on the speed of the rotation of the 
object. The sign of the angular momentum (on perpendicular 
vector) changes from positive to negative when the rotation 
becomes faster (from the rotation 1 to the rotation 2). It means that 
the direction of the angular momentum changes, depending on the 
speed of the rotation. In Case-2 (linear distortion of time and 
space), the gravitational energy is positive with no rotation (but 
smaller than in Case-1 and closer to zero) in Figure 7; while, the 
gravitational energy (negative) becomes larger when the object 
rotates faster. The angular momentum of Case-2 changes as it 
changes in Case-1. 

 

 
Figure 7: Gravitational energy on curved surface and angular momentum on 

perpendicular direction to the surface 

Note: In Figure 7, “On curved surface” means the gravitational 
energy, which is the sum of the calculated coefficients in the 
equation of (25) for the no rotation and the sum of the calculated 
coefficients in the equation of (38) for each of the rotation 1 and 
the rotation 2. “On perpendicular vector” means the angular 
momentum, which is the sum of the calculated coefficients of (42) 
for each of the rotation 1 and the rotation 2.  

Table 2: Intensities of gravitational energy and angular momentum: overview 

 Case-1 Case-2 
 On curved 

surface 
On 
perpendicular 
vector 

On 
curved 
surface 

On 
perpendicular 
vector 

No rotation -78.55 --- 1.770 --- 

Rotation 1 20.00 36.90 -8.178 14.77 

Rotation 2 -41.96 -43.00 -21.31 -15.29 

 
3.2. Gravitational energy in three directions 

Figure 8 (Table 3) and Figure 9 (Table 4) show the intensities 
of the gravitational energy, projected on the spherical curved 
surface in the components of 11R , 22R  and 33R  with no rotation, 
and in the components of 11cos R⋅φ , 22cos R⋅φ   and 33R  with the 
rotation 1 and the rotation 2.  

In Figure 8 for Case-1, only the component of 11R  appears on 
the surface with no rotation, and only the component of 11cos R⋅φ
appears with the rotation 1 and the rotation 2. The rotation 1 shows 
the antigravity (positive).  

In Figure 9 for Case-2, the component of 22cos R⋅φ  also 
appears in addition to the component of 11cos R⋅φ when the object 
rotates, and they become positive (antigravity) with the rotation 1 
and the rotation 2. Here, it is noted that the components of 

22cos R⋅φ  and 33R   don’t appear in Case-1 of Figure 8, but their 
calculated values are shown in Table 3; and, in Case-2 the 
component of 33R  doesn’t appear in Figure 9, but its calculated 
values are shown in Table 4.  

 
Figure 8: Projection of the gravitational energy in 3 directions on the surface of 

the curvature, Case-1 

 

Figure 9: Projection of the gravitational energy in 3 directions on the surface of 
the curvature, Case-2 
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Table 3: Intensity of gravitational energy in 3 components, Case-1 

Diagonal 
components 
of 

µνR  

c and )(cV of 

µνR before the 

rotation 

Diagonal 
components 
of rotated 

µνR  

c and )(cV  

(Rotation 1) 

c and )(cV  

(Rotation 2) 

11R  
 

-78.68 
(26.49) 

11cos R⋅φ  20.01 
(58.22) 

-42.05 
(52.30) 

22R  
 

0.1307 
(0.03369) 

22cos R⋅φ  -5.516 310−×  
(0.0803) 

0.08903 
(0.06829) 

33R  
 

-6.803 510−×  
(2.557 410−× ) 

33R  -3.290 410−×  
(3.869 410−× ) 

-2.990 410−×  
(5.403 410−× ) 

Note: The value without the bracket is the coefficient c; and, the value in the 
bracket is the standard error of the coefficient )(cV . By econometrics [10], briefly 

the calculated coefficient is more significant if its standard error of the coefficient 
is smaller than the value of the coefficient.  

Table 4: Intensity of gravitational energy in 3 components, Case-2 

Diagonal 
components 
of 

µνR  

c and )(cV of 

µνR before the 

rotation 

Diagonal 
components 
of rotated 

µνR  

c and )(cV  

(Rotation 1) 

c and )(cV  

(Rotation 2) 

11R  
 

1.767 
(7.364) 

11cos R⋅φ  
 

-8.368 
(11.85) 

-21.79 
(16.36) 

22R  
 

2.862 310−×  
(0.1469) 

22cos R⋅φ  0.1924 
(0.2427) 

0.4849 
(0.3369) 

33R  
 

1.110 510−×  

(2.224 310−× ) 

33R  
-2.854 310−×  

(3.673 310−× ) 

-7.281 310−×  

(5.099 310−× ) 

3.3. Angular momentum in two directions 

Figure 10 (Table 5) and Figure 11 (Table 6) show the 
intensities of the rotation’s angular momentum in two directions, 

22sin R⋅φ and 11sin R⋅− φ , which are perpendicular to the rotation 

axis, φ . In Figure 10 for Case-1, only the vector’s component of 
11sin R⋅− φ  appears for the rotation 1. For the rotation 2, the 

component of 11sin R⋅− φ appears, and 22sin R⋅φ is very slightly 
visible in this figure.  

 
Figure 10: Angular momentum of the rotating object in 2 directions, case-1 

 

Figure 11: Angular momentum of the rotating object in 2 directions, case-2 

In Figure 11 for Case-2, the vector’s component of 22sin R⋅φ  
also appears. In both Case-1 and Case-2, when the speed of the 

rotation increases from the rotation 1 to the rotation 2, the sign of 
the angular momentum changes from plus to minus. It means that 
the direction of the angular momentum reverses when the speed of 
the rotation of the object changes.  

This result suggests a consistency with our previous report on 
the direction of the spin momentum of gravitational waves [6] 
shown in Figure 1; however, because gravitational waves are 
beyond the scope of this extended paper, further discussion on the 
similarity between the direction of the angular momentum of the 
antigravity and the direction of the spin momentum of anti-
gravitational waves should be postponed to the other research.  

Table 5: Intensity of the rotation’s angular momentum, Case-1 

 c and )(cV  

(Rotation 1) 

c and )(cV  

(Rotation 2) 

223221 sin RdRdx ⋅=Ω⋅= φ  
 

9.077 210−×  
(5.072 210−× ) 

-4.816 210−×  
(5.931 210−× ) 

113112 sin RdRdx ⋅−=Ω⋅−= φ  36.83 
(46.33) 

-42.94 
(45.44) 

 

Table 6: Intensity of the rotation’s angular momentum, Case-2 

 c and )(cV  

(Rotation 1) 

c and )(cV  

(Rotation 2) 

223221 sin RdRdx ⋅=Ω⋅= φ  
 

0.2821 
(0.2621) 

-0.2285 
(0.2597) 

113112 sin RdRdx ⋅−=Ω⋅−= φ  14.48 
(16.65) 

-15.06 
(16.69) 

3.4. Physical meaning of the results   

When the idea of quantum mechanics was developed in the 
early 20th century, there was a discussion [11] to select the 
coordinate system for quantum mechanics from Einstein’s special 
theory of relativity or his general theory of relativity. He compared 
two types of the coordinate systems: one was on the flat space-like 
surface (Figure 12), and another on the curved space-like surface 
(Figure 13). In each figure, three-dimensional surfaces, S1, S2, S3, 
S1’ in Figure 12 and S in Figure 13, are placed in four-dimensional 
time-space, where X0 is for the time, and X1, X2, X3 for the space. 
The special theory of relativity is explained in Figure 12, while the 
general theory of relativity is in Figure 13. Figure 13 represents a 
three-dimensional curved surface in a four-dimensional space-
time, which has the property of being everywhere space-like, and 
the perpendicular vector to the surface has to be in the light-cone 
of Figure 13, according to [11].  

 
Figure 12: Flat space-like surface (remade from [11] 
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Figure 13: Curved space-like surface (remade from [11] 

Then it was predicted by [11] that this perpendicular movement 
to the curved space must have a physical meaning. However, it was 
found that the curvature tensor could not satisfy the condition for 
solving the equation of motion in such a perpendicular direction to 
the curved surface. Henceforward the theory of quantum 
mechanics was not developed on the curved surface of Figure 13, 
but on the flat surface of Figure 12.  

In our previous research for the conference paper [1], we made 
a simulation on the energy of the gravitational field, which was the 
projection on the spherical surface; but, not the movements of the 
vectors perpendicular to the spherical surface. However, in this 
extended paper, we also report the result of the simulation of the 
angular momentum, which is the perpendicular component of the 
movement of the curved surface. This part challenges the decision 
to use the flat surface for quantum mechanics in the early 20th 
century.  

For solving the equation of motion in a three-dimensional 
curved surface in a four-dimensional space-time, the curvature 
tensor is needed. But, in our research we used the spherical polar 
coordinate system as a surrogate of the curved surface so that we 
could still use the orthogonal transformation of the matrix algebra, 
which was available originally for the flat space.  

The vector components of the spherical surface are the 
projections of the gravitational energy; and, the movements of 
these vectors are the movements of the curved surface itself. It 
looks like Figure 14.  

 
Figure 14: The vector projected on the spherical surface 

In Figure 14, a flat rectangular plane is put on the surface of an 
imaginary spherical body. And, inside of the spherical body, there 
is one arrow that represents the gravitational force. The rotating 
object, which is not shown in this figure, is assumed to be located 
in the center of the spherical body. Also one rotation axis is shown 
in this figure. On this axis, there are two flat rectangular planes: 
one is for the distorted time, τ ; and, another is for the distorted 
distance, ρ . First, the arrow of the gravitational force inside of the 
imaginary spherical body is projected to each of these two flat 
planes that are with the signs of τ  and ρ . Then each of these two 
arrows is further projected to the flat rectangular plane that touches 
the surface of the spherical body. Here three vectors of (39) must 
be on this rectangular plane on the surface, and the calculated 
coefficients of (38) represent the intensities of the gravitational 
energy, shown in Figure 8 (Table 3) and Figure 9 (Table 4). If the 
speed changes in the rotation of the object, the direction of the 
rotation of the object doesn’t change, but the direction of the 
projected image of the arrow on the rectangular plane of Figure 14 
changes. Here it is noted that we didn’t include τ  in the simulation 
for this extended paper. 

For simulating the vectors of the angular momentum, we used 
the cross product of anti-symmetrical vectors as the projection of 
the momentum vector in the perpendicular direction to the curved 
surface. It looks like Figure 15. The vectors of (43) are projected 
on the perpendicular plane with the sign of ρ in this figure. The 
calculated coefficients of (42) are the intensities of the angular 
momentum, shown in Figure 10 (Table 5) and Figure 11 (Table 6). 
If the speed changes in the rotation of the object, the direction of 
the rotation of the object doesn’t change; but, the direction of the 
projected image of the arrow changes on the perpendicular plane 
for ρ  of Figure 15.  

 

Figure 15: The vectors projected on the perpendicular components of the 
spherical surface 

It is noted that we replaced the generally curved surface of 
Figure 13 by the spherical polar coordinate system as a surrogate 
for the simulation. And, we mocked the general movement of the 
curved surface by the rotation of the curved sphere as shown in 
Figure 15. In Figure 13, the perpendicular movement of the 
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generally curved surface is the movement in the light cone, and it 
is not necessarily the angular momentum. On the other hand, in 
Figure 15, the perpendicular movement of the spherical polar 
coordinate system appears as the angular momentum, only when 
the system rotates.  

4. Conclusions and Recommendations   

In this research, we investigated how the intensity and the 
direction change upon the gravitational energy and the angular 
momentum when the speed of the rotation of the artificial object 
changes, using Euler’s rotation matrix by calculating the 
coefficients of the equation of motion, which is made of the 
curvature tensor with the component on the curved surface and 
the perpendicular component to the surface. The result of the 
simulation shows that the rotating object, in which time and space 
are nonlinearly distorted by the strong gravity, can produce the 
antigravity as the projected image on the curved surface, and 
change the direction of its angular momentum on the projected 
perpendicular image to the curves surface.  

The change of the direction of the angular momentum upon 
the emerged antigravity implies our previous prediction [6] on the 
direction of the spin of anti-gravitational waves, in which anti-
gravitational waves have the clockwise spin, while gravitational 
waves have the anti-clockwise spin. However, the conclusion has 
not been made on this issue because the analysis we described in 
[6] was made on the flat space, while we made the simulation in 
the spherical polar coordinate system for this extended paper. In 
addition, the discussion about gravitational waves is beyond the 
scope of this extended paper and it should be deferred to the other 
research; although, the similarity between the antigravity and the 
anti-gravitational waves may have been implied by the equation 
of gravitational waves, which is to be derived as the secondary 
differential of the equation for the gravitational field.  

In addition, our simulation has challenged the limit of the 
general theory of relativity in its application to quantum 
mechanics, which is: the perpendicular movement to the generally 
curved surface could not satisfy the condition to solve the equation 
of motion. Henceforward the curved space was not used for setting 
quantum mechanics. However, we challenged this limit, by using 
the spherical polar coordinate system with the tensor algebra that 
makes the cross product of anti-symmetrical vectors for simulating 
the projection of the angular momentum in the perpendicular 
direction to the spherical surface.  

In this research, we used the system of spherical polar 
coordinates as the surrogate of the generally curved surface; 
however, in the near future, the developed computer technologies 
must increase the possibility of simulating the generally curved 
surface of the Einstein’s equations also for solving the equation 
of motion of quantum particles.  
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