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This paper details an extension to the SLIP model named spring loaded inverted pendulum
model with swing legs (SLIP-SL). SLIP-SL extends the SLIP model by introducing swing leg
dynamics while keeping its passive nature. This way, reference trajectories for the center of
mass and swing foot trajectories can be simultaneously obtained which was not possible with
the SLIP. This makes implementation easier and can increase tracking performance. We show
how a variety of feasible two-phased walking trajectories can be obtained for this template
model using direct collocation optimization methods. It is also shown through simulation studies
that reference SLIP-SL trajectories can be used to control a fully actuated bipedal robot with
the proposed feedback linearization controller to reach a stable cyclic gait.

1 Introduction

This paper is an extension of the work originally presented at
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM). IEEE, 2020 [1].

All the environments that we live and work in are designed to
be traversed by humans who have a bipedal gait. This makes the
bipedal robots advantageous since they would easily adapt to these
environments. Bipedal robots can move in discontinuous terrains
(ex. stairs) and turn in narrow spots. These and many other reasons
have driven researchers to study the bipedal gait as a locomotion
method for robots.

There is a variety of methods that researchers can choose to
control the gait of a bipedal robot. Using an inverted pendulum
model as a template in conjunction with the zero moment point
(ZMP) criterion has been used extensively [2], [3]. An up and
coming method is obtaining optimal trajectories and inputs through
various optimization methods and using them as a reference [4], [5].
Another popular method is to use simple models that can recreate
certain fundamental aspects of human or animal gait, as template
models for bipedal robots. A template model that is commonly
used for this purpose is called the bipedal spring loaded inverted
pendulum (SLIP) model [6], [7].

Bipedal SLIP model consists of two complaint legs and a point
mass (Figure 2). This model is passive, i.e. there are no external
inputs, and its motion is determined by the mechanical parameters
and initial conditions. By choosing these carefully, a range of trajec-

tories can be obtained that converge to a limit-cycle. Humans walk
in a two phased manner and Bipedal SLIP model can mimic this gait.
Human gait is explained with great detail in [8]. These two phases
are called single stance phase and double stance phase. In the single
stance phase, only one leg is in contact with the ground and the
other leg is “swinging”. And in the double stance phase, both feet
are on the ground. However, SLIP model has one big assumption
that differs substantially from a human gait: in the single stance
phase, swing leg is assumed to move instantaneously to the proper

Figure 1: SLIP-SL Model in the single stance phase
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touch-down position. This means that when the bipedal SLIP is
chosen as the template model for the controller of a bipedal robot,
desired trajectories for the swing foot can not be obtained from
it. Additional steps are necessary to achieve the swinging motion.
[9] proposes a conceptual model where SLIP model is combined
with a segmented leg so that the effects of swinging can be studied
but reference trajectories and a controller is necessary to achieve
the desired motion. In this paper, an extended SLIP model will be
proposed so that reference center of mass trajectories and swing
foot trajectories can be obtained simultaneously. This model will
be called spring loaded inverted pendulum model with swing leg
(SLIP-SL) which is shown in Figure 1.

SLIP-SL also has a two-phased gait and in the double stance
phase, it is the same as the bipedal SLIP model. The difference
is in the single stance phase where the model consists of three
massed elements. The model also has three springs to facilitate
the movement of these components. SLIP-SL model doesn’t have
any inputs, so it keeps the passive nature of the bipedal SLIP. The
passive nature necessitates that proper spring parameters and initial
conditions are chosen so that feasible trajectories can be realized.
In this paper, direct collocation methods [10] were used to conduct
simultaneous parameter and trajectory optimization for finding the
suitable parameters. Then, a feedback linearization controller is
proposed to track the obtained SLIP-SL trajectories with a 5-link
fully actuated bipedal robot model. Effectiveness of the proposed
controller and SLIP-SL’s ability to be used as a template for walking
are investigated through simulation studies.

This paper is organized as follows: Section 2 describes the dy-
namics of SLIP-SL and the bipedal robot model, Section 3 details
the optimization work that is needed for finding feasible SLIP-SL
trajectories, Section 4 introduces the proposed feedback lineariza-
tion controller and in Section 5 simulation results are presented and
discussed.

2 Systems and Modeling
This section will begin by introducing the bipedal SLIP model which
is followed by the extended SLIP model named SLIP-SL and finally
the model for the bipedal robot will be introduced. Explanation of
the SLIP model will be brief since there are many works such as
[6] that do an excellent job and going in depth on the matter. This
paper will focus on the extended model and fully covers it but it is
recommended to have a basic knowledge of the SLIP.

2.1 Bipedal SLIP Model

Bipedal SLIP Model can be seen in Figure 2. It consists of a point
mass and two massless legs made out of springs. This model can
mimic the two phased walking of humans, namely the single and
the double stance phase. In the double stance phase, both feet are
on the ground and both spring-like legs are pushing the mass. Then,
a lift-off event happens where the foot in the back leaves the ground
and the model goes into the single stance phase. This phase con-
tinues until the touch down event (when the swing foot touches
the ground, depending on the angle of attack α and the free length
of the spring L0) at which point it goes back to the double stance

phase. This continues in a cycle and walking motion is achieved.
The springs are always in contraction and they are always pushing
since an actual leg can not pull us towards the ground.

This system is passive so its motion is determined by its param-
eters such as such as spring stiffness, angle of attack and the initial
conditions such as initial the velocity. Different types of gaits can
be achieved with this model by changing the parameters and ini-
tial conditions so that a stable human-like gait with double peaked
ground reaction forces can be achieved. This model has been very
popular among researchers because of its simple nature and it has
been extensively used to generate reference trajectories for center
of mass (CoM) position. However, it has one significant assumption
which is that the swing leg is assumed to move instantaneously to
the proper position required for touch-down. This is possible since
the springs are assumed to be massless. However, this is not the
case for actual robots which must perform the swinging motion with
actual massed legs so that they can walk. So, when the SLIP model
is used as a reference, additional steps are necessary to generate the
swing leg motion. Also, since SLIP model ignores the swinging
motion, adding it later on might prove to be difficult and will act
as a disturbance to the CoM trajectory. That is the advantage of
the SLIP-SL model which we will introduce. It is an extension to
the SLIP model to include swing leg dynamics in the single stance
phase.

Figure 2: Bipedal SLIP Model

2.2 SLIP-SL model

Spring loaded inverted pendulum model with swing leg (SLIP-SL)
can be seen in Figure 1 and its motion throughout a full step is
represented in Figure 3. This model also walks in two phases, like
its predecessor. In the double stance phase, SLIP-SL and SLIP are
identical. What makes SLIP-SL different from the SLIP model is
the addition of swing leg dynamics in the single stance phase. In
the single stance phase, SLIP-SL consists of 3 massed elements
which are the main mass ‘M’, a massed swing leg and a point mass
representing the swing foot and 3 springs which are the linear spring
that connects ‘M’ to the ground, the torsional spring that is con-
nected between the point mass and the swing leg and the linear
spring which connects the swing foot and the swing leg. After the
touch-down event, SLIP-SL goes to the double stance phase, the
swing elements disappear and the model becomes the same as the
SLIP model in the respective phase. SLIP-SL consists of a point
mass and two massless springs in the double stance phase.

In the single stance phase, equation of motion for the SLIP-SL
model can be written as:
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M̃(q̃) ¨̃q + C̃(q̃, ˙̃q) + G̃(q̃) = S̃τ̃ (1)

Figure 3: SLIP-SL Model

where q̃ = [xM , yM , θ, r]T are the generalized coordinates, M̃(q̃) ∈
R4×4 is an inertia matrix, C̃(q̃, ˙̃q) ∈ R4 is a Coriolis and centrifugal
terms vector, G̃(q̃) ∈ R4 is the gravity term, τ̃ ∈ R3 are the resultant
forces and torques due to springs and S̃ ∈ R4×3 is the appropriate
mapping matrix for them. The resultant forces can be calculated as:

τ̃ =

k0,ss(L0,ss − Lst,ss)
kswLeg(θ0 − θ)
kswFoot(r0 − r)

 , (2)

where k0,ss, kswLeg and kswFoot are the stiffness values for the stance
leg spring, the torsional spring at the “hip” and the linear spring
connecting the swing foot with the swing leg, respectively and L0,ss,
θ0 and r0 are the free positions of those springs where subscript “ss”
indicates the single stance phase. Lst is the length of the stance leg.
xM and yM respectively represent horizontal and vertical positions of
the main mass, θ represents the angle of the swing leg with respect
to the vertical axis and r represents the distance between the end of
the swing leg and swing foot point which are represented in Figure
1.

In the double stance phase, dynamics of the SLIP-SL model can
be written as:

m
[
ẍCoM
ÿCoM

]
= Fsw + Fst + mg, (3)

where

m = mM + mswLeg + mswFoot, (4)

indicates the total mass of the system, xCoM and yCoM are the horizon-
tal and vertical positions of the center of mass and g = [0,−9.81]T

is the gravitational acceleration. Forces generated by the stance and
swing leg springs can be calculated as:

Fst = k0,ds

(
L0,ds

Lst
− 1

) ([
xCoM
yCoM

]
−

[
x f oot

0

])
, (5)

Fsw = k0,ds

(
L0,ds

Lsw
− 1

) ([
xCoM
yCoM

]
−

[
x−f oot

0

])
, (6)

where subscript “ds” indicates the double stance phase. Definitions
of xfoot can be seen in Figure 3.

2.3 Bipedal Robot Model

In this part, the dynamics of the 5 linked bipedal robot will be intro-
duced. This model consists of 5 links which are connected to each
other with revolute joints and it moves in the sagittal plane. The
model is fully actuated and has an ankle torque.

Dynamics of the bipedal robot in the single stance phase can be
written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Su, (7)

where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized coordinates,
M(q) ∈ R5×5 is an inertia matrix, C(q, q̇) ∈ R5×5 is a Coriolis and
centrifugal terms matrix, G(q) ∈ R5 is the gravity term, S ∈ R5×5 is
the distribution matrix of actuation torques and u ∈ R5 are the input
torques. This model can be seen in Figure 4 with the description of
generalized coordinates and input torques (indicated with the red
arrows).

Like the SLIP-SL model, bipedal robot model also has a two
phased walking pattern. In the single stance phase, only one foot
is on the ground and other is doing the swinging motion. Single
stance phase ends and the system goes into the double stance phase
when the swing foot touches the ground.

When the swing foot contacts the ground, a collision occurs
where the generalized momentum of the system changes discontin-
uously. This can be modeled by assuming that an impulse force
acts on the system to change the velocities while position is kept the
same. This can be expressed as:

M(q)∆q̇ = JT
c λimpact, (8)

where Jc ∈ R
2×5 is a constraint Jacobian matrix that maps the joint

velocities to the swing foot velocity in horizontal and vertical di-
rections. The generalized reaction forces in x and y directions are
indicated as λimpact = [λx

impact, λ
y
impact]

T ∈ R2. Assuming that the
impact is inelastic, velocity of the swing foot touching the ground

Figure 4: 5 link fully actuated robot model
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will become zero after the impact which can be written as:

Jc(q)q̇+ = 0⇔ Jc(q)∆q̇ = −Jc(q)q̇−, (9)

where − superscript indicates the moment just before the impact
and + just after the impact. By solving (8) and (9) for λimpact the
following expression can be derived:

λimpact = −(Jc M−1 JT
c )−1 Jc q̇−. (10)

By inserting λimpact into (8), we can obtain:

q̇+ = (I − M−1 JT
c (Jc M−1 JT

c )−1 Jc)q̇−, (11)

which are the generalized velocities just after the impact. At the
moment of impact, definitions of the legs are also switched (swing
leg becomes the stance leg and vice versa).

The system is now in the double stance phase where both feet
are in contact with the ground. To model this, a constraint force
λds = [λx

ds, λ
y
ds]

T ∈ R2 is added to keep the swing foot on the ground.
In the vertical direction, this constraint force can only push the
robot (λy

ds > 0). With the non-slip assumption, double stance phase
dynamics can be modeled by introducing the following constraint:

Jc(q)q̇ = 0. (12)

Using this constraint, dynamical equation of the double stance
phase can be written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Su + JT
c λds. (13)

The constraint force λds can be obtained by taking time deriva-
tive of equation (12) as:

Jc q̈ + J̇c q̇ = 0, (14)

and inserting it into (13) as follows:

λds = −(Jc M−1 JT
c )−1(Jc M−1(Su − Cq̇ − G) + J̇c q̇). (15)

3 Direct Collocation Optimization
In this section, the optimization conducted to find periodic trajec-
tories for SLIP-SL will be described. SLIP-SL is a passive model
which means its gait solely depends on its mechanical parameters
and initial conditions. In order to find the proper value, Direct Collo-
cation Methods [10] were used in this study. These methods tackle
the trajectory optimization problem by discretizing and converting
it into a form which can be handled by nonlinear programming
(NLP) solvers. There are many commercially available NLP solvers
and in this study OpenOCL [11] will be used which can handle the
multi-phase and simultaneous trajectory and parameter optimization
problem. Finding the global minimum is not guaranteed when using
the direct collocation methods. Global minimum is not easily found
in a nonlinear problem with constraints such as 16. The advantage
of direct collocation over other optimization methods such as ge-
netic algorithms or learning based algorithms is that dynamics of the
system can be embedded as constraints to the optimization problem
painlessly.

The optimization can be formulated as:

min
xi,p,Ti

2∑
i=1

(∫ Ti

Ti−1

Ji(xi(t), p)dt
)

for i ∈ {1, 2}

s.t. ẋi = fi(xi(t), p)
ri,k(xi(µi,k), p) ≤ 0,

(16)

where t ∈ [0,Ti] is the time, Ti is the end time of the respective
phase, xi(t) is the state trajectory, p are the parameters, Ji(x, p) are
the path cost functions, fi(x, p) are the system dynamics (described
in Section 2.2) and ri,k(xi, p) are the grid-constraints. i = 1 repre-
sents the single stance phase and i = 2 represents the double stance
phase for SLIP-SL (T1 is when the touch-down happens at the end
of “ss” and T2 is when the lift-off happens at the end of “ds”). In this
paper, the Cost of Transport (CoT) [6] and a cost function to keep
the swing foot low was used. CoT is an indicator of the walking
efficiency.

Path, boundary and stage transition constraints are needed so
that the solver can find feasible walking trajectories. Path constraints
are:

• Bounds were set for the parameters to be optimized:

15000 ≤ k0,i ≤ 16000 [N/m], i ∈ {ss, ds}

1 ≤ L0,ss ≤ 1.2 [m]
0 ≤ kswFoot ≤ 20000 [N/m]
0 ≤ kswLeg ≤ 15000 [Nm/rad]
0 ≤ θ0 ≤ 2π [rad]
− 10 ≤ r0 ≤ 10 [m]

(17)

• Stance leg spring in the single stance phase and both legs’
springs in the double stance phase are always under contrac-
tion: Lst,ss ≤ L0,ss, Lst,ds ≤ L0,ds, Lsw,ds ≤ L0,ds

• Constraining the vertical position of CoM: 0 [m] ≤ yCoM ≤

0.85 [m]

• Swing foot is always above the ground during the single
stance phase: yswFoot ≥ 0

• Elliptic virtual obstacle must be avoided by the swing foot
during the single stance phase:

(
xswFoot − dobs

wobs

)2

+

(
yswFoot

hobs

)2

≥ 1, (18)

where dobs = xswFoot = 0 [m] is the horizontal position of the
ellipse obstacle, wobs = 0.2 [m] and hobs = 0.04 [m] are width
and height of the ellipse.

• Swing foot vertical velocity must be greater or equal to zero:
ẋswFoot ≥ 0

• Vertical acceleration of CoM should be negative in the single
stance phase so that system doesn’t try to lift the CoM up
when there is only one leg on the ground: ÿCoM,ss ≤ 0 [m/s2]

www.astesj.com 87

http://www.astesj.com


J. Chang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 84-91 (2021)

Figure 5: Snapshots of SLIP-SL’s one step where gray dot in the single stance phase
indicates the position of the point mass ‘M’ and the circle indicates the position of
CoM

Boundary constraints:

• Swing foot starts on the ground from a stationary position
in the beginning of the single stance phase and touches the
ground at the end of the single stance phase: yswFoot(0) = 0,
ẋswFoot(0) = 0, ẏswFoot(0) = 0, yswFoot(T1) = 0

• Initial step length and the final step length should be same
(for cyclic walking): xfoot − x−foot = x+

foot − xfoot

• The initial position of the main mass relative to the stance
foot should be the same as the final one (for cyclic walking):
xstFoot,0 − xM(0) = xstFoot(T2) − xM(T2)

• Constraints for cyclic walking: yCoM(0) = yCoM(T2),
ẋCoM(0) = ẋCoM(T2), ẏCoM(0) = ẏCoM(T2)

• At the stage transition, CoM position and velocity were con-
strained to be continuous.

• At the end of the double stance phase, swing leg should be
ready to lift off, i.e. swing leg spring should be at its free
length: Lsw,ds(T2) = L0,ds

Parameters to be optimized are spring stiffness values k0,ss, k0,ds,
kswFoot, kswLeg, their respective free positions L0,ss, L0,ds, r0,θ0 and
the initial conditions.

The optimization was conducted on MATLAB 2019b software
by using 10 collocation points for each stage. Resulting spring
parameters can be seen in Figure 6 for various trajectories and a
snapshot of SLIP-SL’s one step can be seen in Figure 5 for a sample
trajectory. Trajectory ‘A’ from Figure 6 will be used as the reference
in Section 5 where the step size was also constrained to 0.25 [m] to
avoid large ankle torques. The constant mechanical parameters of
SLIP-SL are given in Table 1.

Table 1: SLIP-SL’s constant mechanical parameters

mM : 70 [kg] mswLeg : 7 [kg]
mswFoot : 3 [kg] Lthigh : 0.7 [m]
IswLeg = mswLegl2thigh/12 [kg · m2] IswFoot = mswFootL2

thigh

4 Feedback Linearization Control
In this section, the proposed controller will be introduced so that
5 linked bipedal robot model can track the reference SLIP-SL tra-
jectories. The controller uses the feedback linearization notion,

in a similar manner to [12] where a total energy control approach
was used with the bipedal SLIP model. However, in this paper, a
trajectory tracking approach will be used.

4.1 Single Stance Phase

For the control of the robot in the single stance phase, there are
three main tasks: tracking CoM trajectory xG ∈ R

2, tracking swing
foot trajectory ξ ∈ R2, controlling the trunk orientation θ5 ∈ R. The
velocities related to these tasks can be calculated as:

ẋt,ss = Jt,ss(q)q̇, (19)

where ẋt,ss = [ẋG, ξ̇, θ̇5]T is the velocity in the task space where
subscript “ss” indicates the single stance phase and Jt,ss(q) =

[JG, Jξ, Jθ5 ]T are the combination of Jacobian matrices. JG maps
generalized velocities to the velocity of the center of mass, Jξ maps
generalized velocities to swing foot velocities and Jθ5 maps gen-
eralized velocity to the trunk’s angular velocity. By taking the
time derivative of Equation (19) and inserting the obtained q̈ into
Equation (7) we can get:

ẍt = Jt,ss M−1(Su − Cq̇ − G) + J̇t,ss q̇. (20)

Inputs should be chosen as:

u = S−1
(
MJ−1

t,ss(ẍtd ,ss − J̇t,ss q̇) + Cq̇ + G
)
, (21)

to get ẍt = ẍtd ,ss. By choosing:

ẍtd ,ss =


KPG (xCoM,des − xCoM) + KDG (ẋCoM,des − ẋCoM)
KPG (yCoM,des − yCoM) + KDG (ẏCoM,des − ẏCoM)

KPsw (xsw,des − xsw) + KDsw (ẋsw,des − ẋsw)
KPsw (ysw,des − ysw) + KDsw (ẏsw,des − ẏsw)

KPT (θ5,des − θ5) + KDT (−θ̇5)

 (22)

where KP and KD are the proportional and derivative gains for the
controller and θ5,des is the desired trunk angle, desired trajectories
can be tracked. Desired trajectories will be chosen as the SLIP-SL
trajectories that were obtained in Section 3. In this study, the desired
trunk angle was chosen as θ5,des = π [rad].

4.2 Double Stance Phase

During the double stance phase, swing foot remains on the ground
which means there is one less task to be carried out. This means
that some modifications should be made to the single stance phase
controller so that it can be used in the double stance phase. The task
space for the double stance phase then becomes:

ẋt,ds =

[
ẋG

θ̇5

]
∈ R3. (23)

This reduction in dimension of the task space is somewhat prob-
lematic since we need to determine 5 separate inputs but the dimen-
sion of ẋt,ds is 3 which means there is more than one correct way
to allocate the inputs. To calculate the proper inputs, the following
equation can be used:

q̇hip = Jhip,sw(qsw)q̇sw = Jhip,st(qst)q̇st, (24)
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Figure 6: Optimization results for various SLIP-SL trajectories. For the trajectory A, step length was constrained to 0.25 [m] to get better ankle torques and this trajectory is
the one that was used as reference in Section 4. For B, C and D trajectories, average velocity constraints were added. In this figure, resulting mechanical parameters, costs of
transport and step length are given as well as the SLIP-SL’s yCoM trajectory. In the plots on the right, gray background means that the SLIP-SL is in double stance phase.

where Jhip, i(qi) is the jacobian matrix that maps the corresponding
legs angular velocities, q̇st = [θ̇1, θ̇2]T and q̇sw = [θ̇3, θ̇4]T , to the
velocity of the hip. This holds since both foot are on the ground
during the double stance phase. From equation (24),

q̇st = J−1
hip,st(qst)Jhip,sw(qsw)q̇sw, (25)

can be obtained to get:

q̇ =


J−1

hip,st Jhip,sw 02×1

I2×2 02×1
01×2 1

︸                    ︷︷                    ︸
Γ(q)

[
q̇sw
θ̇5

]
︸︷︷︸

q̇a

. (26)

After taking the time derivative of (26), then substituting the q̈
and q̇ terms from (26) into (7) and multiplying with ΓT from left,
following can be obtained:

Ma(q)q̈a + Ca(q, q̇)q̇a + Ga(q) = ua, (27)

where 
Ma = ΓT MΓ

Ca = ΓT (CΓ + MΓ̇)

Ga = ΓT G

ua = ΓT Su

(28)

Using a similar technique that was used for deriving (21):

ua = Ma J−1
t,ds(ẍtd ,ds − J̇t,ds q̇a) + Ca q̇a + Ga, (29)

can be found where ẍtd ,ds should be chosen as:

ẍtd ,ds =

 KPG (xCoM, des − xCoM) + KDG (ẋCoM − ẋCoM)
KPG (yCoM, des − yCoM) + KDG (ẏCoM, slipsl − ẏCoM)

KPT (θ5,des − θ5) + KDT (−θ̇5)

 . (30)

However, only ua ∈ R
3 can be obtained in this way which only

has dimension 3. What we need to control the robot is u ∈ R5. One
way to calculate u is by using the relation ua = ΓT Su given in (28)
as:

u = S−1

W−1Γ(ΓT W−1Γ)−1︸                 ︷︷                 ︸
(ΓT )+W

ua

 , (31)

where (ΓT )+W is the weighted matrix inverse operation. W ∈ R5×5

matrix can be used to penalize high input torques such as the ankle
torque but we selected it as identity matrix for this paper.

Controllers for the single and double stance phases are thus
derived. Another important aspect of the controller in tracking the
SLIP-SL trajectories is the switching of phases at the correct mo-
ments. When the biped robot is in the double stance phase and the
tracked trajectory goes into single stance phase, controller switches
to the single stance phase controller and commands the robot to lift
its foot so it too can switch to the proper phase.
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5 Simulation Results and Discussion
In the following simulation study, the designed controller’s ability
to track the reference SLIP-SL trajectories and the suitability of the
SLIP-SL as a template model for walking will be tested. Table 3
shows the mechanical parameters of the 5 link robot and Table 2
shows the chosen gain values for the controller and the torque limits
on the motors were set at 200 [Nm]. Gain values are chosen with
the help of a particle swarm optimization algorithm (PSO) [13]. We
were able to find controller parameters that resulted in stable gaits
easily by hand-tuning but with the help of PSO we were able get
results with better walking efficiency.

Table 2: Control Parameters

KPG : 54 KDG : 9
KPsw : 82 KDsw : 8
KPT : 36 KDT : 4

The simulations were implemented in MATLAB 2020b’s
Simulink environment with ode45 solver and variable step settings
(absolute tolerance was set to 1e-8).

Figure 7 shows the resulting CoM trajectory and trunk orien-
tation the controlled system when the proposed controller is used.
Figure 8 shows the swing foot trajectories for the same system. It
can be seen that the proposed controller does a good job in track-
ing the reference trajectories of the SLIP-SL template, which were
obtained in Section 3. The reference SLIP-SL trajectories for the
swing foot would not be available if a template such as the popular
SLIP was used.

Table 3: 5 Link Model Parameters

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

Ii = mil2i /12 [kg · m2], i = 1, 2, 3, 4, 5

It can be seen in Table 2 that relatively low gains were chosen
for this study. Tracking performance can be increased by using
larger gains but since this model is fully actuated and has an ankle
torque, zero moment point (ZMP) condition must also be checked.
ZMP criterion states that if the center of pressure moves to the toe
(or to the “outside” of the foot), foot would rotate and system would
be under actuated [14]. For this trajectory, center of pressure stays
within a 30 [cm] foot.

Figure 9 shows snapshots of one step of the 5 link models gait.
to check the stability of the gait, Poincaré map approach was consid-
ered [12]. The dimensions of the Poincaré map were selected as the
θP = atan2(ẏCoM, ẋCoM), yCoM and total energy of the 5 link model
E at the vertical leg orientation (VLO). VLO happens when CoM of
the 5 link model is at the same horizontal position as the stance foot.
VLO was chosen as the Poincaré section because the horizontal po-
sition doesn’t need to be considered at this point. Poincaré stability
criterion indicates that if the return map converges to a fixed point,
a hybrid system with impact effects can be considered periodic [12].
Poincare Map for the controlled 5 link model is shown in Figure 10.
It can be seen that the gait converges to a stable point in the section
after a couple of steps which indicates stability.

Figure 7: Trajectory tracking results for CoM horizontal position, vertical position
and trunk orientation

The CoT value for the reference SLIP-SL trajectory was 0.7520
and this value is 0.7745 for the controlled 5 link robot. Also, the
average velocity of the SLIP-SL trajectory was 0.7080 [m/s] and
this value was 0.6974 [m/s] for the controlled system. These values
being very similar between the reference and the controlled model
also indicates the validity of the proposed controller. Cost of trans-
port being slightly higher is expected because the 5 linked model
needs to keep its body upright but SLIP-SL doesn’t have this issue.

In this paper, it was also shown that by using direct collocation
optimization, various SLIP-SL trajectories can be obtained (Figure
6) that resemble the walking gait. Cost of transport tended to de-
crease when the average velocity of the gait was increased and step
length was not constrained but this kind of trajectories can be more
demanding on the inputs and they sometimes resulted in large ankle
torques which was troubling for the ZMP criterion. Also stiffness
of the legs were limited to 15000 [Nm] ≤ k0,i ≤ 16000 [Nm], i ∈
{ds, ss} to keep the CoM height within a certain range.

This stiffness limits was chosen to have a similar height trends
with [12] and [6] where k0 was 15696 [Nm]. It can be seen that
k0,ss , k0,ds for the given trajectories but it was possible to find
feasible trajectories with k0,ss = k0,ds, even with k0,ss = k0,ds =

Figure 8: Trajectory tracking results for the swing foot
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Figure 9: Snapshots from a step of the 5 Link model

15696 [Nm] but this doesn’t really mean that linear leg springs were
the same in single and double stance phase since L0,ss , L0,ds. The
free length of the springs in the double stance phase was set to 1 [m]
to be the same with [12] but L0,ss needs to be larger than this value
to keep the CoM high enough. If L0,ss was 1.0 [m], CoM would sag
further than desired range in the single stance phase.

6 Conclusion
In this paper, a template model called SLIP-SL was proposed which
is an extension to the popular SLIP model. SLIP model can gener-
ate the reference CoM trajectories that can mimic the two-phased
walking but it doesn’t have the swing leg dynamics. Thus, when this
template model is used, additional steps are necessary for obtaining
the swing foot trajectory so that the actual robot can be controlled.
Since the swinging motion is a huge part of the walking gait that
needs to be taken into account, SLIP-SL adds this dynamics while
keeping the passiveness of the SLIP model.

Since the SLIP-SL is passive, proper mechanical parameters
and initial conditions needs to be determined to get feasible walking
trajectories. It was demonstrated that direct collocation methods can
be used to find the proper parameters for the passive SLIP-SL model.
This step was crucial since there are many parameters that needs
to be decided and other more exhaustive search methods might
not work. It was shown that a variety of trajectories with different
average velocities, CoM behaviors etc. can be obtained using the
same basic principles. Then, a controller was introduced to track the

Figure 10: 2D section of the Poincaré Map where the numbers indicate the step
number (zoomed in version is shown in the right upper corner of the figure)

obtained reference trajectories and it was shown that it can satis-
factorily track the reference SLIP-SL trajectories to reach a stable

gait while also satisfying the ZMP criterion. These results also con-
firmed that SLIP-SL can be used as a template model for walking
robots.

In the future, we would like to introduce robustness to this pas-
sive system by making the springs variable ones and controlling
them to reject disturbances. Another area we would like to explore
is achieving a variable speed gait with the bipedal model. We want
to achieve this by smoothly switching between different reference
SLIP-SL trajectories.
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