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General relativity and its modified theories are unable to account for quantum mechanics and
cannot explain dark matter or the origin of the gravitation. This paper presents a theory that
describes how Newtonian gravitation originates at the level of the particle, and how particles
induce gravitation and respond to the source of gravitation. This paper provides a deeper
understanding of gravitation and a complete derivation of Newtonian gravitation from the level
of particles; and shows how some particles can act like being massless and does not follow the
Newtonian gravitation. In addition, This paper provides a new method, which determines a
steep spacetime curvature and provides a new aspect of the galactic center. Past measurements
of light-bending during total eclipses are consistent with the proposed theory.

1 Introduction

According to general relativity, the observed gravitational effect
results from the curvature of spacetime [1]. In 1919, the deflection
of light was measured and found to be as predicted by general rela-
tivity: gravitation from stars bends the paths of light rays. A tiny
shift in light rays around the Sun was observed during a total solar
eclipse [2].

In 1959, Pound and Rebka reported the first successful measure-
ment of the gravitational redshift, which is a phenomenon in which
the wavelength of a photon shifts to a longer wavelength when the
photon moves upward against a gravitational field [3, 4]. These and
other experimental results have confirmed the existence of gravi-
tational time dilation. Many experiments verified the existence of
gravitational time dilation and gravitational light-bending.

General relativity describes gravitational spacetime using ten-
sors. Between about 1960 and the mid-1980s a variety of modifi-
cations to special relativity have been proposed, including scalar-
tensor theories [5], vector-tensor theories [6], and tensor-vector-
scalar theories [7]. A number of physicists have invented alternative
theories, such as the Dickie framework and the parameterized post-
Newtonian formalism [5, 8, 9].

Recently, string theory has established a connection between
the microscopic world of high-energy particles and the large-scale
world of gravitation [2]. Physicists have also proposed a number of
models to describe mass [10]–[15].

Instead of using tensors, this paper utilizes the refraction prin-

ciple of Snell-Descartes to investigate gravitation from the particle
level to the cosmic scale.

The refractional trajectory of light is the shortest path that is
equivalent to the geodesic in a curved space. These two methods
describe the same thing, but the former uses calculus, and the latter
uses tensor calculus.

A ray of light changes its direction when it passes from one to
another medium because the speed of the light changes in different
media. This phenomenon is called refraction [16]. In gravitational
time dilation, the distance that light travels changes across gradu-
ally changing spacetime. This change also results in refraction by
gravitation.

Several works [17, 18] have described light-bending around a
mass using the refraction mechanism, but this paper extends it to a
complete derivation of Newtonian gravitation from the level of the
particle using the refraction principle.

The presented derivation provides us a clear understanding of
where the gravitation originated, how particles participate in creat-
ing gravitation and respond to gravitation, why all composite bodies
in a gravitational field have the same acceleration, and why a particle
acts like being massless.

Classical physics is applicable only to a flat space. Modern
physics has extended the space and time into a spacetime curvature
during a century. However, general relativity makes the mistake of
including a part of classical physics, and fails to describe a steep
curvature of spacetime. The Section 3.3 describes this in detail. To
avoid this mistake, this paper simply utilizes only the refraction
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principle, Lorentz invariance, and two proposed postulates. This
paper presents a new metric to describe a steep spacetime curvature,
and compares it with the prior one.

2 Overview
In string theory, particles consist of one-dimensional objects called
strings. We assume the following: (Postulate 1) The photon is a
straight open string as a particle. All strings flow with the speed of
light like the photon does, but the strings of the other particles flow
within their geometric space. The strings flow in various directions
depending on their geometry.

When multiple particles are chained together to comprise a nu-
cleus, their geometric orientations are restrained, and they flow
to various directions in their restrained space. When particles are
linked with each other to form a nucleus, statistically a set of strings
flow in every direction. Newtonian gravitation is obtained from the
statistically omnidirectional flows of strings.

There is no specific boson for gravitation. All of the particles
consist of strings and participate in creating gravitation, and respond
to gravitation. Hence, all composite bodies in a gravitational field
have the same acceleration [19]. However, a free and stationary
particle can exhibit imperfect omnidirectional movement, taking
a preferred orientation to minimize gravitational force, and in this
case it has a different acceleration that described by Newtonian
gravitation. In addition, a specific shape of particle can act like
being massless.

Figure 1 shows the omnidirectional flows of a string across
spacetime layers. The lower space layer has greater time dilation
than the upper one according to the gravitational time dilation. The
velocity of the string is constant across space layers, according to
the Lorentz invariance, but time is slower in the lower space. Thus,
the distance traveled in the lower space layer is shorter than in the
upper one for the same coordinate time.

Strings experience refraction like a ray of light as it passes
from one medium to another medium, changing its direction. Re-
fraction was experimentally and theoretically established by the
Snell-Descartes law four hundred years ago.

Figure 1: Omnidirectional movements and their refraction across space layers with
different time dilations.

The speed of light is slower in water than in air, thus the dis-
tance traveled is shorter in water. In a similar way, time is slower

in the lower space thus the distance traveled is shorter in the lower
space. The re-fractional trajectory of light is the shortest path that is
equivalent to the geodesic in a curved space.

Kinetic energy and thermal energy can also refracted by gravita-
tion, because the trajectory of movement depends on the shortest
path.

Refractions are illustrated as dotted lines in Figure 1. At the
first time, the central velocity of the particle is zero. A short time
later, the particle experiences refraction and the sum of the changes
of the vertical distance for every direction heads for the center of
gravitation. This refraction results in the gravitational acceleration.

This paper presents a derivation of Newtonian gravitation from
the refractions of omnidirectional flows across gradually changing
spacetime.

3 Derivation
This section shows the process for deriving for Newtonian gravita-
tion from refraction by gravitational time dilation.

3.1 Refraction

This section derives the changed altitude of an inclined string (a ray
of light) by refraction during a short time ∆t . We have to consider
two different cases, where the string heads downward and upward.
Then, we take into account all possible directions.

Let T (r) be the time ratio between the time at a distance r and
the time at infinity. The distance r is the coordinate distance from
the center of gravitation. The relationship between the elapsed time
at a distance r, ∆t(r), and the elapsed time at infinity, ∆t(∞), is given
by

∆t(r) = T (r)∆t(∞). (1)

Let Tr(r′) be the relative time at the distance r′ from the view-
point of an object that is at the distance r, then Tr(r′) is defined
by

Tr(r′) = T (r′)/T (r) (2)

The relative time at the distance r + ∆r from the viewpoint of
the object that is at the distance r, Tr(r + ∆r), is

Tr(r + ∆r) = T (r + ∆r)/T (r) (3)

We define sr(r) as the slope of the relative time from the view-
point of the object that is at the distance r with respect to the coordi-
nate distance.

sr(r) = lim
∆r→0

Tr(r + ∆r) − Tr(r)
∆r

= lim
∆r→0

T (r + ∆r)/T (r) − T (r)/T (r)
∆r

= lim
∆r→0

(
T (r + ∆r)

T (r)
− 1

)
1
∆r
.

(4)

The amount of refraction depends on the relative time (see Eq.
(10)). (Postulate 2) Hence, we assume that the slope of the relative
time sr(r) determine the gravitational acceleration and follow the
divergence theorem. This means that sr(r) is proportional to the
mass of the gravitational source and the inverse square of coordinate
distance, as in the following equation.

www.astesj.com 108

http://www.astesj.com


S.H. Baek / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 107-115 (2021)

sr(r) =
aM
r2 , (5)

where a is a coefficient, and M is the mass of the gravitational
source.

We define R as the following equation,

R ≡ aM. (6)

We call R the gravitational radius. It is similar to the
Schwarzschild radius but it is little different from that.

By combining Eqs. (4), (5), and (6), we get(
T (r + ∆r)

T (r)
− 1

)
1
∆r

=
R
r2 , (7)

T (r + ∆r)
T (r)

= 1 +
R
r2 ∆r. (8)

This equation is used to find the gravitational acceleration in the
next section.

3.1.1 Downward

This section derives the vertical acceleration for a string with an
inclined angle.

∆r is the small change in vertical distance that a string flows
during a small time ∆t.

In Figure 2, time is slower in the lower space than in the upper
space that is illustrated with a brighter rectangle. We have to be
aware of that the time dilation across spaces is continuous even
though Figure 2 makes it appear to be discontinuous.

∆" ! = #∆t

!! = #∆&!
'

'′ ∆"!#∆t

Figure 2: Refraction when an inclined string travels downward.

Accordingly, it takes ∆t in the lower space while it takes ∆tp in
the upper space. The former is less than the latter (∆t < ∆tp). The
length that a string travels is L in the lower space while it is Lp in
the upper space during the same coordinate time. L is c∆t and Lp is
c∆tp, where c is the speed of light in vacuum. The difference in the
distances traveled in the different spaces causes refraction.

When an inclined string makes an incident angle θ with the
vertical line, the incident angle changes into θ′ after a short time
∆t. The refraction index n describes the relationship between the
incident angle θ and the refraction angle θ′ is given by Snell’s law
[16].

1
n

=
sin θ′

sin θ
=

L
Lp

=
c∆t
c∆tp

=
∆t
∆tp

, (9)

Using Eqs. (1) and (9), we obtain

1
n

=
T (r + ∆r)

T (r)
, (10)

From Eqs. (8) and (10), we obtain

1
n

= 1 +
R
r2 ∆r. (11)

Using the geometry shown in Figure 2 and Eqs. (9) to (11), the
vertical distance that a string with the refraction angle θ′ travels for
a short time ∆t, ∆r, is given by

∆r = −c∆t cos θ′

= −c∆t
√

1 − (sin θ′)2

= −c∆t

√
1 −

(
1
n

sin θ
)2

= −c∆t

√
1 −

((
1 +

R∆r
r2

)
sin θ

)2

.

(12)

From Eq. (12), we obtain a quadratic function for ∆r as the
following.(

1
(c∆t)2 +

s2R2

r4

)
(∆r)2 +

2 ∗ Rs2

r2 ∆r + s2 − 1 = 0, (13)

where sin θ is substituted with s to simplify the equation. Using the
quadratic formula, the change in vertical distance, ∆r, is given by

∆r =
−Rs2/r2 ±

√
s2R2/r4 + (1 − s2)/(c∆t)2

1/(c∆t)2 + s2R2/r4

=
−

Rs2(c∆t)2

r2 ±

√
s2R2(c∆t)4

r4 + (1 − s2)(c∆t)2

1 +
s2R2(c∆t)2

r4

.

(14)

Let ∆rd be the change in vertical distance when a string heads
downward; then it is always negative. Hence, ∆rd is chosen as the
negative version of the two solutions of Eq. (14).

∆rd(θ) =
−

Rs2(c∆t)2

r2 −

√
s2R2(c∆t)4

r4 + (1 − s2)(c∆t)2

1 +
s2R2(c∆t)2

r4

, (15)

where s = sin θ and 0 ≤ θ < π/2.
When a string is parallel to the horizontal plane (θ = π/2), there

might be no gravitational acceleration. Hence, π/2 is excluded in
Eq. (15). This special case is discussed in Section 5.

Let ∆rn(θ) be the vertical distance traveled if it is not affected
by refraction, as shown in Figure 2. Then the small change of the
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downward velocity is given by

dvd = lim
∆t→0

∆rd(θ)
∆t

−
∆rn(θ)

∆t

= lim
∆t→0

∆rd(θ)
∆t

− (−
c∆t cos θ

∆t
)

= lim
∆t→0

−Rs2c2∆t
r2 −

√
0 + (1 − s2)c2

1 + 0
+ c cos θ

=
−Rc2dt sin2 θ

r2 − c cos θ + c cos θ

= −
c2R sin2 θ

r2 dt.

(16)

The refractional acceleration with a downward angle is obtained
by

ad(θ) =
dvd

dt
= −

c2R sin2 θ

r2 , (17)

where 0 ≤ θ < π/2.
The gravitational acceleration is determined by the incident an-

gle θ of the string. Acceleration is minimized when the incident
angle is perpendicular to the horizontal plane of the gravitation.
However, Newtonian gravitation is statistically composed of various
incident angles. This is described in the Section ’Every Direction’.

3.1.2 Upward

Here, let’s consider a case where a string flows upward, as shown
in Figure 3. The incident angle of a string, θ, is greater than π/2
and less than π. let φ = π − θ. We get the same equation as for the
refraction index, Eq. (9).

c∆" !

c∆"#'

θ

θ'

#

∆"
∆"! c∆"

Figure 3: a refraction when an inclined string travels upward.

1
n

=
sin φ′

sin φ
=

sin(π − θ′)
sin(π − θ)

=
sin θ′

sin θ
.

The vertical distance ∆r, is a positive value, it is hence given by

∆r = c∆t cos φ′ (18)

= c∆t

√
1 −

((
1 +

R∆r
r2

)
sin θ

)2

. (19)

It has a different sign than Eq. (12). However, this equation (19)
results in the same quadratic equation as Eq. (13).

Let ∆ru be the change in distance when a string heads upward.
∆ru is chosen as the positive version of the two solutions of Eq.
(14).

∆ru(θ) =
−

Rs2(c∆t)2

r2 +

√
s2R2(c∆t)4

r4 + (1 − s2)(c∆t)2

1 +
s2R2(c∆t)2

r4

, (20)

where s = sin θ and π/2 < θ ≤ π.
The small change in upward velocity is given by

dvu = lim
∆t→0

∆ru(θ)
∆t

−
c∆t cos θ

∆t

=
−Rc2dt sin2 θ

r2 + c cos θ − c cos θ

= −
c2R sin2 θ

r2 dt.

(21)

dvu is the same as dvd, thus the refractional acceleration with an
upward angle is the same as Eq. (17). We obtain

au(θ) =
dvu

dt
= −

c2R sin2 θ

r2 , (22)

where s = sin θ and π/2 < θ ≤ π.

3.1.3 Every Direction

If we remember the first postulate, the strings comprising a parti-
cle flow in several directions depending on its geometry with the
speed of light inside its particle space. Multiple particles that are
combined with each other make statistically omnidirectional flows,
which is regulated by Newtonian gravitation. Hence, we consider
all incident angles.

sin ∆%

1

2( sin %
sin%

%
∆%

∆)

Figure 4: Each incident angle has different amount of area in the three-dimensional
space.

The flow directions are evenly distributed in a sphere. Each
different incident angle makes a different ring area ∆S in the sphere
as shown in Figure 4. The number of flows with the incident angle
θ is proportional to the ring area ∆S (θ), which is given by

∆S (θ) = 2π sin θ sin ∆θ = 2π sin θ∆θ. (23)

We can obtain the statistical acceleration for all directions from
Eqs. (17), (22), and (23). The acceleration created by gravitational
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time dilation is given by.

a = lim
∆θ→0

∑π/2
0 ∆S (θ)ad(θ) +

∑π
π/2 ∆S (θ)au(θ)∑π

0 ∆S (θ)

= lim
∆θ→0

∑π
0 −2π c2R

r2 sin3 θ∆θ∑π
0 2π sin θ∆θ

=

∫ π

0 −
c2R
r2 sin3 θdθ∫ π

0 sin θdθ

= −
c2R
2r2

(
1
3

cos3 θ − cos θ
)∣∣∣∣∣∣π

0

= −
2c2R
3r2 .

(24)

3.2 Newtonian Gravitation

All particles consist of strings and participate in creating gravitation
and respond to gravitation. An object that moves with high-speed
experiences both time dilation and Lorentz contraction according to
the Lorentz transformations. The string flows at the speed of light.
Hence, we can expect not only gravitational time dilation but also
gravitational spatial contraction around strings. Gravitational spatial
contraction corresponds to the curved space of general relativity.

The acceleration created by gravitational spatial contraction is
the same as that produced by gravitational time dilation. So, the
total refractional acceleration created by both time and space is
doubled from Eq. (17) and described by the formula

g(θ) =
2c2R sin2 θ

r2 . (25)

The Newtonian acceleration that is created by both space and
time is doubled from Eq. (24). Finally, it is written using the
formula

g = −
4c2R
3r2 . (26)

We can compare Eq. (26) with the equation for Newtonian
gravitation as the following equation:

GM
r2 =

4c2R
3r2 , (27)

where M is the mass of the gravitational source, and G is the gravi-
tational constant.

The gravitational radius R is written

R =
3GM
4c2 . (28)

3.3 Gravitational Time Dilation Function

3.3.1 Proposed function

This section shows a derivation of this gravitational time dilation
function T (r).

We go back to Eq. (1). The gravitational time dilation function
T (r) is used to obtain a locally measured (proper) time dτ from the

coordinate time dt, which is the time measured by a stationary clock
at infinity.

dτ = T (r)dt. (29)

We combine Eqs. (10) and (11) into the following equation:

1 +
R
r2 dr =

T (r + dr) − T (r) + T (r)
T (r)

= 1 +
T (r + dr) − T (r)

T (r)
.

(30)

Using Eq. (30), the differential equation for the gravitational
time dilation function is given by

dT (r)
dr

=
R
r2 T (r). (31)

By solving this differential equation, the gravitational time dila-
tion function is given by

T (r) = t1e−
R
r , (32)

where t1 is a constant.
If T (∞) = 1, we get

T (r) = e−
R
r . (33)

Finally, from Eqs. (29) and (33), we get the relationship between
t and τ.

dτ = e−
R
r dt. (34)

3.3.2 Prior work

Here, we compare the proposed solution with the prior solution of
general relativity. The Schwarzschild metric as a solution to the
Einstein field equations is

ds2 = −c2(1 −
2GM
c2r

)dt2 + (1 +
2GM
c2r

)dr2

+ r2(dθ2 + sin2 θdψ2).
(35)

The Schwarzschild metric includes the counterpart of T (r) as in
the following equation:

dτ =

√
1 −

2GM
c2r

dt. (36)

Eq. (36) is different from Eq. (34) because it is derived using
the following classical equation of potential energy :

P = −
GMm

r
. (37)

This potential energy is for a flat spacetime where dl can be replaced
by dr. l is the locally measured (proper) length. r is the coordinate
length measured at infinity.

Here, this paper proposes a new potential energy for a curved
spacetime. The gravitational potential energy at a local position l is

P =

∫ l

∞

GMm
r2 dl. (38)
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We can get the the classical equation (37), if dl are replaced by
dr in Eq. (38). However, the energy is the product of the force and
the length that is locally measured at the viewpoint of the object.
The local displacement dl is longer than the coordinate displacement
dr in a curved spacetime. Hence, we should not use dl instead of
dr, and the classical potential energy cannot be used in a curved
spacetime.

3.3.3 Comparison with the prior work

If R/r � 1 (sluggish spacetime), the proposed equation T (r) has a
form similar to the Schwarzschild metric. The Taylor series of the
proposed time dilation function can be written

T (r)2 = 1 −
2R
r

+ (
2R
r

)2 1
2!

+ · · · . (39)

If R/r � 1, we can take only the first and the second terms of
the series. We obtain a form similar to the Schwarzschild metric as
the following:

T (r) '

√
1 −

2R
r

=

√
1 −

3GM
2c2r

, (40)

dτ '

√
1 −

3GM
2c2r

dt, (41)

where it is valid for a sluggish spacetime.
Eq. (41) has a form similar to Eq. (36), but Eq. (41) has 3/2

instead of 2 in Eq. (36). The reason for this difference is that the
straight string (photon) has different gravitational acceleration than
composite bodies with multi-directional flows, but the general rel-
ativity assumes that the straight string and composite bodies are
equivalent.

3.4 Gravitational Spatial Contraction

Let S (r) be the gravitational spatial contraction function. S (r) de-
termines how much space at the coordinate distance r is contracted.
Spatial contraction is reciprocal to time dilation according to the
Lorentz transformation. So, the spatial contraction function is

S (r) =
1

T (r)
= e

R
r . (42)

Let l be the locally measured (proper) length. Let r be the co-
ordinate length measured at infinity. The relationship between the
two lengths can be expressed by

dl = S (r)dr = e
R
r dr. (43)

The Schwarzschild metric includes the counterpart of the spatial
contraction function as the following equation:

dl =

√
1 +

2GM
c2r

dr. (44)

Eqs. (43) and (44) are different for the reason explained in the
previous section.

Figure 5 compares the two equations. Eq. (43) can produces a
much greater space for blackholes than Eq. (44). This may give us
a new clue for dark matter.
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d
l/d
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	eR/r

sqrt(1+2GM/(c2r))

Figure 5: Comparison of the space ratio (dl/dr) using the proposed metric (eR/r) and
general relativity (

√
1 + 2GM/(c2r)).

∆"!#! $!"#
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#!$#
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Figure 6: The trajectory of light bended by a star.

4 Gravitational Lens
When a ray of light travels around a star, we can determine the light
trajectory if the incident angle, the distance from the star, and the
mass of the star are given.

4.1 Numerical Method

This section describes a numerical method that finds the light tra-
jectory around a star. It is useful even if R/r is not small. The next
section introduces an analytical method that is valid when R/r � 1.

As shown in Figure 6, the stellar radius is rs. The given distance
from the center of the star is rn. The given incident angle of light is
θn. The next distance from the star, rn+1, after a short time ∆t, is

rn =
√

(c∆t sin θn)2 + (rn−1 − c∆t cos θn)2. (45)

For the short time ∆t, the angle made by the previous position,
the center of the star, and the next position of light, ∆φn, is obtained
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by

∆φn = sin−1 c∆t sin θn

rn
. (46)

The change in distance is defined by

∆r = rn − rn−1. (47)

The incident angle θi is

θi = θn + ∆φn. (48)

The refraction index is obtained from the time ratio (Eq. (9))
and the space ratio because the total refraction is caused by both
space and time.

1
n

=
sin θn+1

sin(θi)

=
T (rn + ∆r)

T (rn)
/

S (rn + ∆r)
S (rn)

' 1 +
2R∆r

r2 ,

(49)

where ∆r is infinitesimally small.
From Eq. (49), we get the next angle,

θn+1 =

 sin−1
(

1
n sin θi

)
, if θi < π/2;

π − sin−1
(

1
n sin θi

)
, otherwise.

(50)

We can iterate the sequences of Eqs. (45) to (50) to get the light
trajectory using a computer program.

4.2 Analytical Method

4.2.1 The prior method

The amount of light-bending seen from the Earth can be obtained
by a geodesic in a curved spacetime which is introduced in general
relativity. In 1911, Einstein obtained a deflection angle of

α =
2GMsun

c2r
[radians] =

0.87
r

[arcsec], (51)

where r is the visual distance in solar radii from the center of the
Sun.

In 1915, he modified the above equation by adding the effect
of curved space thus doubling the bending angle in the following
equation:

α =
4GMsun

c2r
[radians] =

1.75
r

[arcsec]. (52)

The derivation of this equation is described in prior articles [20].
This derivation is obtained from the velocity of light in a gravi-

tational field. Using Eqs. (36) and (44), we obtain the velocity of
light

v =
dr
dt

=

√
1 + 2GM/c2rdl√
1 − 2GM/c2rdτ

'

√
1 +

4GM
c2r

c, (53)

where GM/(c2r) � 1.
The full derivation of light-bending is too long to contain in this

paper.

4.2.2 Proposed method

From Eqs. (28), (34), and (43), our counterpart of Eq. (53) can be
written as

v =
dr
dt

=
S (r)dl
T (r)dτ

= e
3GM
2c2r c

=

√
e

3GM
c2r c '

√
1 +

3GM
c2r

c,

(54)

where GM/(c2r) � 1.

To get the angle of light-bending using the proposed method,
we can substitute Eq. (53) with Eq. (54). Finally, the angle of
light-bending is obtained by substituting 4 of Eq. (52) with 3.

α =
3GMsun

c2r
[radians] =

1.31
r

[arcsec]. (55)

4.3 The Expeditions: Gravitational Refraction and So-
lar Atmospheric Refraction

Over the last century, there have been many expeditions to mea-
sure light-bending during a total eclipse. Goldoni and Stefanini
summarized these observational results [21].

In 1919, two expeditions obtained the values 1.61 ± 0.30 and
1.98 ± 0.16 arcsec, where 1/r is omitted. In 1922, the obtained
mean values ranged from 1.42 arcsec to 2.16 arcsec. Freunclich et
al. obtained an average value of 2.24 ± 0.1 arcsec in 1929. Japanese
astronomers gave the average deflection value of 1.71 arcsec in
1936, but their plates were quite unreliable. Subsequent expeditions
obtained 2.01 ± 0.27, 1.70 ± 0.10, 1.66 ± 0.18, and 1.75 ± 0.06
arcsec, in 1947, 1952, 1973, and 2017, respectively. Even in the
latest result, the most critical item is that the plate scale is only 2
arcsec per pixel [22]. This low resolution makes it hard to obtain an
accurate result.

The major factors that can bend light are the atmospheric refrac-
tion of the Earth, the solar gravitational refraction (deflection), and
the solar atmospheric refraction. Prior measurements considered
the atmospheric refraction of the Earth but excluded that of the Sun.

NASA revealed that the solar atmosphere, called the corona, is
much larger than previously observed [23]. Its radius is 12 solar
radii, and the solar atmosphere is sparsely filled with solar particles,
which can slow down the speed of light and causes solar atmospheric
refraction. The past observations for light bending are measured
within the solar atmosphere.

The particle density in the solar atmosphere can also vary. This
may be one of the reasons why the observational results were vari-
ous. Unfortunately, we don’t have enough information to know how
much the solar atmosphere can refract light.

Due to the solar atmospheric refraction, observations should
be greater than the proposed expectation of 1.31. Past measure-
ments have ranged from 1.42 to 2.24, which are consistent with the
proposed theory.
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5 Quantum Gravity
The small change in vertical distance with the incident angle of π/2,
∆ru(π/2), is zero in Eq. (20). This means that there is no gravi-
tational force to circular strings that are parallel to the horizontal
plane of gravitation. The gravitational acceleration for the incident
angle of π/2, au(π/2), is nonzero in Eq. (22). However, if ∆t is
finite like the Planck time. the quantum gravitational acceleration
with the parallel angle is obtained as zero from Eq. (21) according
to the following equation.

aq(π/2) =
∆vu(π/2)

∆t

=
1
∆t

(
∆ru(π/2)

∆t
− 0

)
=

1
∆t

(
0
∆t
− 0

)
= 0.

(56)

In other words, the gravitational acceleration with the incident
angle of π/2 is zero, because the smallest length and the smallest
time are finite according to the quantum mechanics.

A lonely and stationary string with a circular shape can rotate
like a gyroscope, maintaining its rotational axis perpendicular to the
gravitational horizontal plane. When its incident angle become π/2
by gyroscopic rotation, there is no gravitational force to this string.
This explains how neutrinos have elusive mass [24] and how the
gluon acts like being massless.

A massive particle and a set of combined particles may create
nearly omnidirectional flows, which would regulate them to New-
tonian gravitation. However, a free, stable, and lonely particle can
also have imperfect omnidirectional flows, which will result in a
preferred orientation, to minimize gravitational force.

The gravitation is created by the strings. The strings interact
with the gravitation. Therefore, the gravitation in the microscopic
world depends on quantum mechanical geometric shapes of the
strings. This proposed theory is an entirely alternate theory of
quantum gravity. However, this may provide a clue for quantum
gravity [25, 26], supergravity [27, 28], and loop quantum gravity
[29, 30, 31].

Quantum gravity describes gravity according to quantum me-
chanics. Supergravity assumes the graviton has a superpartner.
Quantum gravity and supergravity postulate that the graviton is a
messenger particle of gravity. In these theories, the photon and the
gluon as force carriers for the electromagnetic interaction and the
strong interaction are massless. According to the proposed theory,
without the postulate of graviton, we can explain the gravitation is
created by all kinds of particles and some particles act like being
massless.

Loop quantum gravity (LQG) is a theory that merges quantum
mechanics and general relativity. LQG postulates that the structure
of space is composed of loops woven into an extremely fine network
with a scale on the order of a Planck length. Particles consist of
certain patterns of braiding of open and closed strings [13], which
can be modeled as the loop network. According to the proposed
theory, the source of gravitation is the strings, so the gravitation can
be modeled with quantum loops of open and closed strings.

The Compton Scattering experiment shows that photons have
momentum [32]. The several studies proposed and measured that the
photon consists of a positive charge and a negative charge [33, 34].
The photon is made out of the electromagnetic wave. This means
that the electromagnetic wave can create momentum and charges.
In addition, it can create gravitation and respond to gravitation.

6 Summary
This paper includes a complete derivation of the equation of Newto-
nian gravitation from gravitational time dilation using the refraction
principle. All particles participate in creating gravitation and re-
spond to gravitation.

The gravitational acceleration depends on the incident angle,
which explains why Newtonian gravitation is not regulated at the
level of particles. However, a set of multiple restrained particles
will result in nearly omnidirectional flows and can be regulated to
Newtonian gravitation.

Gravitation is caused by not only curved space but also curved
time. Composite bodies have less gravitational acceleration than a
photon with an incident angle of π/2 by 2/3.

The gravitational time dilation is an inverse exponential func-
tion, whose exponent is proportional to the mass and the inverse
of separation from the gravitational source. This is different than
the Schwarzschild metric, but it has a form similar to that in a slug-
gish spacetime because the general relativity mistakenly uses a part
of classical physics (potential energy) which is suitable for a flat
spacetime.
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