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During the past years, a lot of research work have been done on the topic of smart grids and more
specifically on the charging of electric vehicles (EVs), which will become an essential aspect in
the coming years. The various works carried out on these themes have allowed the development
of efficient tools to organize energy exchanges within these networks and to make this energy
available to electric vehicles on certain time intervals. However, the problems related to the
compatibility between the different elements of these networks seem to be largely underestimated.
The collaborative work between IETR and Dropbird highlights the technological challenges
that significantly hinder the deployment of relevant charging algorithms and experiments with
dynamic programming-based algorithms to circumvent these obstacles.

1 Introduction

The advent of many electric vehicles implies some environmen-
tal changes, however, the conversion of a number of motorists to
electric vehicles implies a growth in electricity demand and adds
additional constraints on the power grid. Figure 1 shows the growth
(estimated by the french grid operator) in the number of EVs and
their demand for electricity on the French electrical grid in the
coming years

Year 2010 2016 2030

Number of EVs a few 100 000 5 millions
thousands

Cumul. power de-  a few MW 400 MW 20 GW

mand (3.7kW)

Cumul. power de- 100 MW 5 GW 250 GW

mand (50kW)

Needed energy afew GWh afew 100 GWh 10 TWh

per year

Cumul.  storage afew 10 MWh 2.5 GWh 125 GWh

capacity

Figure 1: Evolution of EV energy needs (France)

The need for electricity corresponds to the virtual demand (in
the scenario where all electric vehicles charge simultaneously), the
calculation of the annual energy needed is based on a scenario of
15kWh/100 km and 13,000 km/year (source: ENT2008, datas in per-
petual variation) and on a storage possibility of 20kWh of on-board
batteries (again, these data are constantly changing). On the basis

of these elements, we note that the energy required to recharge the
vehicle is always moderate compared to the total annual electricity
consumption (consumption of electric vehicles in 2030: 10 TWh,
-total grid consumption in 2016: 470 TWh), while the electricity
needs can be very large (several tens to several hundreds of GW,
compared to the total installed power in 2016 of 130 GW). The
development of EVs seems feasible without significantly increas-
ing electricity production, but the punctual need for energy can be
problematic if judicious recharging methods are not planned. A
research work carried out in Spain in 2011 [1]], shows the interest of
smart charging planning methods. In this work, a simple decrease
in the concurrency factor can decrease the additional costs of EVs
by 60-70%. On the other hand, the application of strategies that
allow charging during off-peak hours could also avoid up to 35% of
the necessary additional expenses. In conjunction with this limited
increase in electricity consumption, it is important to highlight the
storage opportunities that several million EVs will provide, and
the new possibilities for controlling an increasingly intermittent
electricity grid. In this paper, we will develop the implementation of
a smart parking with renewable energy generation and fixed storage
taking into account the constraints of the grid, while showing the
difficulties encountered due to interoperability issues. The load
management of an EV fleet is a subject that is widely covered in the
literature, around five main axes: bi-directional charging [2], decen-
tralised [3]], mobility management [4]], [S]], integration of renewable
energies [[6], adding ancillary services to the grid [7]].

Many algorithms based on different methods have been devel-
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oped and tested in simulation for the intelligent management of en-
ergy flows in a network with multiple sources and loads. Multi-agent
systems (MAS) allow the decentralisation of the energy manage-
ment system based on the collaboration of different actors. Initially
designed to model the collective behaviour of groups of individu-
als evolving together while being able to make their own choices,
MAS are today frequently used for energy management systems in
micro-grids with several sources [8]]. The energy management of
a system is usually carried out by an EMS (Energy Management
System) with centralised control. The use of multi-agent systems
is tantamount to decentralising energy control by giving decision-
making power to different actors. Another application example is
given by Taesic Kim et al. in their paper [9]. It is an application on
a micro-grid composed of a set of dwellings, each with production,
storage and load devices (domestic, electric car ...). An SMA so-
lution is proposed to optimise the energy flows within the network
in order to minimise peak load, reduce the energy costs of the in-
habitants and maximise the energy efficiency of the storage system.
Despite their wide use, the use of SMAs is controversial in the sci-
entific community, as the results of the interaction between agents
are sometimes unpredictable, therefore predicting the behaviour of
the overall system from these constituent entities can become very
complex.

Fuzzy logic is an extension of classical logic which allows the
imprecision of data to be taken into account and thus seeks to come
closer (to some extent) to the flexibility of human reasoning. It is
based on Lotfi Zadeh’s mathematical theory of fuzzy sets, which
presents an extension of classical set theory to imprecisely defined
sets. As opposed to Boolean logic, fuzzy logic allows to add a
degree of truth to a condition, which allows this condition to be in a
state different from true or false. In their paper [10]], Kyriakarakos
et al. give an example of the use of fuzzy logic for energy man-
agement in a microgrid with multi-source power supply for remote
areas. The network in question consists of an AC bus on which are
connected production elements : PV panels with their inverter, wind
generator, hydrogen fuel cell, loads : seawater desalination module,
various domestic loads, an electrolyser to create hydrogen from
water, and an electrochemical storage battery connected through an
AC/DC converter. Simulations have shown that the use of fuzzy
logic for energy control makes it possible to respect the constraints
imposed for a much smaller system dimensioning and therefore to
save a lot of energy and money. Another example of fuzzy logic
energy management including intelligent load management of elec-
tric vehicles is given in [11]. The performance of the algorithm is
evaluated from the point of view of peak consumption and charging
cost. Fuzzy logic makes it possible to implement inference systems
with seamless, flexible and non-linear decision making, closer to
human behaviour than conventional logic. Moreover, the rules are
expressed in natural language. This has many advantages, such as
including the knowledge of a non-computer expert at the heart of a
decision-making system or even modelling certain aspects of natural
language more finely. However, fuzzy logic has some drawbacks,
such as not being able to predict that the system will behave opti-
mally. Performance will therefore have to be measured a posteriori
and adjustments will be made by trial and error. For these reasons,
fuzzy logic hasn’t been chosen for this specific experimentation.

Artificial neural networks (ANN) are a family of bio-inspired
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algorithms : their principle is borrowed from the functioning of
biological neurons (in a simplistic way). They are designed to repro-
duce certain characteristics of biological memories by the fact that
they are parallel, capable of learning, able to store information in the
connections between neurons, able to process incomplete informa-
tion. An example of the use of neural networks for the control of a
generator in a micro-grid is given in [12]. The system is a micro-grid
for the production of energy and drinking water for regions isolated
from the power grid; it is composed of solar photovoltaic panels, a
diesel generator, an electrochemical storage battery, a desalination
unit, and conventional domestic loads. A neural network is used
to control the diesel generator (On/Off and intensity) in order to
minimise dependence on the generator, greenhouse gas emissions
and engine wear due to incomplete combustion. Another example
is given in [13]], where the design and validation of an innovative
control system based on an artificial neural network for a hybrid
micro-grid is proposed. The use of neural networks for energy flow
management is however complex to implement and may require a
large computing capacity.

In this paper, we will develop a supervision method for the intel-
ligent charging of electric vehicles based on dynamic programming.
This optimization method, developed by Richard Bellman in 1957,
consists in solving a global problem by breaking it down into sub-
problems, each with its own solution. After presenting the concept
of the microgrid, this method will be developed in section III of this
paper. The results obtained will be presented and analysed
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Figure 2: Experimental bench structure

2 Context and Experimental Bench
Dropbird is working on EV charging station management solutions

and also on a planned charging organization in order to improve
the performance of charging sites. The objective is to ensure max-
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imum access to energy for EV users and to reduce the negative
consequences for parking lot/network managers. This objective can
manifest itself in two ways: with a given set of constraints, ensure
that a maximum number of EVs can be charged or, with a given
amount of EVs, minimize the strain on the power grid.

In order to carry out our studies, a flexible experimental environ-
ment has been created. It consists of an energy management system
connected to multiple elements: EVSEs, DN, ESS, PV, remote con-
trol as shown in figure[2] Despite the fact that the environment is
experimental, the users are various real local workers so the user
satisfaction has to be respected the owned data is limited. The only
data gathered on the PEV is the vehicle characteristics (battery ca-
pacity) and the initial SoC. Communication is also allowed between
the EMS and the DN to receive requests of load demand response.

Fixed Installations:
IEC 60364/C15100

Data transfer:

WG IEC/ISO V2G /E\

Cell batteries:

IEC SC21A/C15100
battery assembly:
ISO TC22/8C21

Interfaces (sockets): IEC 62196 (SC23h)
Charging interfaces:IEC 61851 (TC69)

Figure 3: Normative context

g Do For DC/AC
S ﬁ F f— i
P + Converter | i E
hatt km
Pye
DC/AC
I Converter

Figure 4: Energy flow within the experimental micro-grid

The development of such an experimental platform requires to
meet normative constraints and standards. The main international
standards associated to EV charging can be seen in figure 3]

Figure ] sums up the energy flows exchanged by the different
equipments connected to the micro-grid.
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3 Algorithm structure

The energy management algorithms developed here are primarily
EV recharge control algorithms; however, they are intended to con-
trol not only the EVSEs but also all elements of the system. We can
speak of an EMS (energy management system) that will interact
with the different elements described in figure 2} the EMS com-
municates with the EVSEs of course, but also with the inverter of
the solar production, the fixed storage system, the distribution grid
manager. The figure [5] shows the exchanges of measurements or
control between the EMS and the other elements: an instantaneous
measurement of the photovoltaic production, of the battery state of
charge, of the charge power of each connected EV is transmitted to
the EMS at each time step of the algorithm.

Imadiance

pV LD EV_data

EMS

EV charg. power »{Pev  EV_data

EVs

Distri. Network

Figure 5: Information and control links

4 Dynamic Programming

Energy management in a parking lot with renewable energy sources
consists in making a sequence of decisions spread over a day. The
behavior of the users not being modeled, a simulation on an indeter-
minate day (working week or weekend) is rational. The concepts
of artificial intelligence and more particularly of decision support
are perfectly adapted to our problem. Enumeration (the simplest
principle) is used [14].

4.1 Choosing the right energy management tool

In order to develop an independent intelligent energy management
system, different strategies based on artificial intelligence were an-
alyzed in simulation: multi-agent systems, fuzzy logic, artificial
neural networks and dynamic programming.

4.2 Energy management uses

The method, defined by Bellman and used for sequential optimiza-
tion problems, was developed in the 1980s to manage water reser-
voirs in hydroelectric installations [[15]. Since the beginning of the
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2000s, it has been used for the optimized use of energy in electric
vehicles (such as the simultaneous management of several motors)
[L6]-[17], and, recently, for the management of electric energy
storage from wind power and the management of a fleet of electric
vehicles in [18]], [[19]].

4.3 Principle

Bellman’s principle of optimality forms the basis of the concept of
dynamic programming. This principle states that “every optimal
policy is composed of optimal sub-policies”. The simplest (and
most time-consuming) way to construct an optimal decision-making
scenario is to list all possible choices at each step time and deter-
mine the least costly path. The number of possible paths can be
considerably reduced using Bellman’s principle by considering only
the optimal subpaths at each computational step. As we elaborate
the different possible paths, at each time step k, we keep only the
best path that allows us to reach this state at this time: x(k). To use
this method, it is necessary to discretize the time in time steps k,
with 1;kjN, as well as each of the state variables xi, x5, x3, X4, X5.

Dynamic programming is both a mathematical optimization
method and a computer programming method. It is an algorithmic
method for solving optimization problems.
Dynamic programming is used in particular for problems requiring
a sequential decision-making sequence. It allows to determine the
optimal trajectory by considering the problem as an optimal path to
compute, and by decomposing it into sub-paths.

For example, if you want to solve the following optimization
problem :

T-1

min " Cy(x;, ) + K(xr) (1)
Uy UT—1 pure

2)

Xe+1 = fi(xy, uy), for xp given
u; € Ui(xy)

where

e Cy(x,u) is the cost to go from ¢ to ¢ + 1 starting from the state
x by applying the # command;

e K(x) is the final cost for the final state x;
e f, is the dynamic function of the system;

o U,(x,) is the set of possible commands at time ¢ starting from
state x.

Problem can be written as follows :

T-1
min {Lo(xo, uo)+ min " Cilx,up) + K(xT)} 3)
U()seens ur—1 U yeuny Ur—1 1
X1 = fi(Xe, uy) “)
x1 = fo(xo,uo)  (5)

u; € Ui(xy)
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Or again :

(6)

n%n Co(xo, uo) + Vi(fo(xo, uo))

Where Vi(x) is the value for the problem starting from the state
x; = xattime ¢ = 1.

The optimal value V;, (x) starting from the state x at time step ¢
can thus be written :

T-1
Vo) = min " Ci(x,u) + K(xr) (7)
U yenny Ur—1
=ty
with X1 = fi(Xe, U, Xy = X
u; € U(xy)
The Bellman equation appears:
Vr(x) = K(x) Vx e Xy )]
Vilx) = min Ci(xp,u;) + Vi o filx,u))  Vx e Xy 9
UQyeney Ur-1 N——
Xt+1
And the optimal strategy is given by :
(10

77 (x) € arg min{ Co(xe, uy) + Vi1 o filxp, uy) p ¥x € Xp
———

Xe+l

5 Simulations and Results

5.1 Validation of the operation of the dynamic pro-
gramming algorithm

Before carrying out complex simulations using dynamic program-
ming algorithms, a first series of tests was performed on a simple
case that is easy to grasp in order to verify the behavior of the system
controlled by the dynamic programming algorithms, and to validate
that its behavior seems intuitively coherent. For this purpose, a
simulation with a single EV (always connected) and a fixed battery
was carried out, with the parameter to minimize the cost of charging.
The simulation does not take into account photovoltaic production.
The electricity tariff is variable depending on the time of day and
defined so that the EV is not able to charge 100% while the cost is
at its lowest (consistent with the values of nominal charging power
and battery capacity). Thus, to enable the EV to charge at minimum
cost, the system must necessarily be controlled so that the storage
battery also charges during the low cost period, and provides the
EV with this low-cost energy purchased from the EV outside the
off-peak period. The state of charge of the battery must also be the
same at the beginning and end of the simulation.
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Figure 6: Test of the dynamic algorithm : after DP algorithm has been implemented,
a simple intuitive case has been used to check its correct behaviour. The figure shows
the battery is charged when electricity price is low according to cost function as long
as it is possible

The results of the simulation are given in figure [6] The first
graph describes the variation of the hourly rate of electricity for
our simulation, the second graph represents the charge of the elec-
tric vehicle in blue (1 for in charge and O for no charge) and the
variations of the state of charge of its internal battery in red. The
third graph represents the charge and the variation of the state of
charge for the fixed storage battery. It is immediately apparent that
the algorithm controlled the system logically: the EV was charged
when energy was cheapest (cost function to be minimized: total
price of recharge). Since this was not enough time for the EV to
receive enough energy to fully charge, the fixed battery was used
well: it was also recharged when electricity was cheap, so that
enough energy was stored to complete the charge of the EV outside
the period of low price, and end the day with exactly the same level
of charge as at the beginning. The timing of the energy delivery
is random, from a cost minimization point of view, so it makes no
difference whether the EV is charged with battery energy before
or after the off-peak period, since the battery starts the day with a
fairly high state of charge (70 percent), and no setpoint has been
implemented for this action. This result allows to validate this first
test of consistency of the dynamic programming algorithms.

In this paper, a simulation based on elementary rules makes it
possible to judge the efficiency of the dynamic programming algo-
rithms implemented: cases 1 and 2 are designed by implementing
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simply-expressed rules to control the system.

e 1. Incase 1, the EV is always charged at nominal power as
long as the demand exists (presence of EV and SoC less than
1), the power taken from the grid corresponds to the difference
between the demand and what can be produced by the solar
panels.

e 2. Incase 2, the EV is also charged at constant nominal power,
the fixed batteries tend to compensate for solar production
(they produce if the power demanded Pve is higher than the
power of the solar panels Ppv and are charged otherwise).
The energy in the fixed batteries must be the same at the be-
ginning and end of the day (battery state of charge at 70%)
to justify the consistency of the simulation, and to compare
with the case without fixed storage.

e 3. In the third case, a decision-making process is based on
a single decision at each time step: charging EVs at rated
power or not charging, which allows the cost matrix to be
filled quickly (no use of the fixed battery). The cost func-
tion chosen is to minimize the total energy consumed by the
network, as modeled by equationT4]

N-1
minJ = min Z Py iq(k) * cost(k)
k=1
N-1
= min ) (Py(k) = Ppy (k) * cosi(k)
k=1

(1)
(12)

e 4. A fourth case is also added for comparison purposes, simi-
lar to case 3, but this time to minimize the cost of energy over
a day, as modeled by equation[I2}

N-1
minJ = min Z Py iq(k)
k=1
N-1
= min )" Ppy(k) = Ppy(k)
k=1

13)

(14)

5.2 Simply-expressed rules (cases 1 and 2)

For the first case, the results are given in the figure[/|: in blue, the
photovoltaic production over the day, in cyan the hourly energy
pricing, which was defined in collaboration with the distribution
network manager in order to limit the consumption of the EVs over
3 periods corresponding to morning, midday, and evening peaks. All
the electric vehicles arrive at 6:00 am and are automatically charged
without planning as soon as they arrive (red curve on the figure).
The charging is not optimized and does not take into account the
pricing or the photovoltaic production.

For the second case, the fixed storage battery is added, allowing
to store the energy produced by the solar panels in order to increase
the self-consumption of renewable energy. The first graph of the
figure 8] shows the use of the battery (in red, the power supplied by
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the battery, and in green the state of charge). On the second graph,
we find the behavior of case 1, since it is still a simulation without

load planning intelligence.

. ‘
£

| \

1

Battery power (A.U)
——— Battery SoC

Battery : Power (A.U) // SoC
g & °
L I——

Figure 8: Reference case 2 : with battery

5.3  Minimizing energy consumption

We have now integrated the dynamic scheduling algorithm to plan
the charging in an intelligent way. In the figure[0] we can see on
the top graph the hourly charging, and on the bottom one, we find
in green the PV production, in blue the charging power, and in red,
the state of charge of the EV batteries. In this case, the algorithm
is designed to minimize energy consumption, so EV charging is
favored during the time slots when renewable production is at its
maximum.

Electricity cost (A.U)

8
\
\

\

2
T
\

2
T
\
L

T
1

EV charge (kW)

Time (h)

Figure 9: Results for minimal energy consumption
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5.4 Minimizing charging cost

For the last case, the cost function to minimize is the total cost.
Thus, we can see on the figure [I0]that EV charging is planned on
periods when electricity is cheaper and renewable generation is also
available.

Electricity cost (A.U)

s -

EV charge (kW)

Figure 10: Results for minimal charging cost

5.5 Experimental test

The developed dynamic programming algorithm has been imple-
mented and tested for minimizing charging cost in a real parking
lot with 22kW AC EVSEs, which is illustrated on figure[T1] The
experimentation environment has been created and developed on
the experimental site of the French distribution network operator.
We also developed a supervision interface to remotely monitor the
system and energy supply strategies. Figure [[2] shows the web
monitoring interface. Experimental data is confidential but the first
experimental results are consistent with the simulations.

Figure 11: Experimental environment : part of the EVs, EVSEs and PV panels used
for our study

160


http://www.astesj.com

D. Roszczypala et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 155-163 (2021)

EA drop'n plug

Nombre de points de charge sur cette borne : 4

Prise N°3

0 kW

Prise N°1
DAAFABO2

Interrompu

14.395 kW

PN
-,

Prise N°4

0 kw

Prise N°2

Figure 12: Screen capture of the web monitoring interface used for experimental
data

6 Limits of deterministic model

Difficulties in using a deterministic model for inconsistencies with
reality and planning is due to a lack of access to system data. Unlike
the EV driver, the operator responsible for managing the charg-
ing stations is unable to easily visualize the SoC visible on the
dashboard. Data exchanges between the EV and the EV charging
infrastructure (IRVE) are governed by the IEC 61851 standard (and
soon by the IEC 15118 standard). However, the access to the SoC
through the EVSE will not be facilitated by EV manufacturers. This
decision, political and commercial above all, limits the development
of smart charging stations. The relevance of the criteria to be used
for efficient load planning is discussed in [20]. The need to have
access to certain data (arrival / departure of VE, SoC, etc.) for ro-
bust management algorithms is also mentioned. The unpredictable
behaviour of people using ESVE:s is considered a non-deterministic
aspect.

6.1 Data gathering

In order to compensate for the lack of information described above,
a system for collecting data from users can be set up. In the case of
a fleet of electric vehicles of a company or that of people having a
subscription to a public or private parking, the collaboration of the
people in charge of the recharging of the electric vehicles and their
agreement to provide the data necessary for the correct sequencing
of the algorithm is the main drawback of this method. One solution
to retrieve the data is that each user declares the EV’s expected
departure time, model and state of charge. Without going through a
declarative process, an experiment was carried out to recover useful
data for recharging EVs. The company Dropbird was tested a com-
munication system between the EV and the EVSE through on-board
diagnostics (OBD). The first tests carried out seem very promising.

6.2 Users behaviour modelling

Modelling user behavior is a key issue, whether access to the SoC
is available or not. So far, all users have been modelled as arriv-
ing at the same time to charge their EV. This particular case is not
realistic. Also, an optimization taking into account more realistic
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user behaviour was carried out. An optimized management law for
a family of random cases (in the sense of “average”) is preferred
over the search for a list of optimal choices for a given case. An
identification of the recurring behaviours of the users will be car-
ried out from real behaviour data, which will make it possible to
create a matrix of transitions between the different possible states.
Each transition will be associated with a probability of passing from
one state to another (present/absent) depending on the arrival time,
presence time and/or state of charge.

10 ?—? ﬁ o ¢ .
g 7 poo-boad -y ; ‘1 1
£ [ W | ] ,. |
E 5 I 34 boee &4
< 4 i’ _—

3 | \ J

\

2 | |

1 | 600084 L—o—a

0

0 5 10 15 20
Hours

Figure 13: Attendance factor added to model to take into account the probability of a
new incoming vehicle to the parking, depending on the time of the day

6.3 Users behaviour quick approximation

A study of fictitious cases was carried out with the aim of making
a first approximation of user behavior. Fictitious users whose be-
haviour is modelled by several random variables (initial state of
charge, battery capacity, arrival time) were simulated.

Fictitious users whose behaviour is modelled by several random
variables were simulated: initial state of charge, battery capacity,
arrival time. These variables are initialized for each EV when it ar-
rives by picking a random value from a range of realistic values. An
“attendance” variable was defined on the basis of our observations.
This variable gives the probability that an EV will arrive to recharge,
depending on the time of day, as illustrated to the Figure

In order to observe the impact of user behaviour on the load
planning and to compare the planning in cases where access to the
state of charge is possible or not, a simulation was carried out on a
parking lot. not having renewable energies. Figure 14 shows, for
different scenarios, the distribution of the final state of charge and
the final energy on board for all the electric vehicles that have used
the parking lot during the day. For the same user behaviour but with
different management methods, 3 simulations were performed. In
Fig. 14a), the state of charge of the incoming vehicles is unknown
to the parking manager, the energy is allocated first to the earliest
arrived EV.
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Figure 14: Number of EVs for each value of final energy and final SOC at departure
time, for three different strategies of allocation of available energy : first come first
served (a), minimum energy (b), random (c)
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Figure 15: Cumulative probability of EV final Energy / final SOC at departure time.
Cumulative distribution is given for 2 strategies : priority to first arrived or priority
to lowest energy

In Figure 14 (b), it is considered that the SoC and the battery
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capacity of each EV are accessible. The energy is then allocated
to the EV with the lowest autonomy, that is to say to the EV with
the minimum stored energy. In Fig. 14c), the SoC of the incoming
vehicles is unknown. Energy is assigned to the EV when it comes
to connect. To allow another waiting EV to start charging, we must
wait for an EV to reach full charge or for an EV start. The choice
is made randomly if several EVs are on standby. The simulation
of figure 14b) shows that it is possible to significantly reduce the
number of EVs with final energy less than 15 kWh (the distribution
is shifted to the right). Figure 15 compares more explicitly the cases
illustrated in Figures 14 (a and b).

In figure 13, the criterion used is the energy available in the
EVs from the car park (at the end of charging). The distribution
of this data is used to qualify our load planning algorithm. This
distribution is given for 2 planning algorithms: in red for the case
where the energy allocation is given to the EV with the minimum
energy (the SoC is accessible) and in blue for the case where the
energy allocation is given on first arrival (the SoC is not accessible).
A criterion corresponding to a range of approximately 100 km is
set, i.e. approximately a minimum energy at the end of charging of
15kWh. For the case without access to the SoC, this value is guaran-
teed for 60% of the EVs, while for the case with access to the Soc,
this value is guaranteed for 70% of the EVs. To ensure a minimum
energy level for each EV at the end of charging, knowledge of SoC
is essential.

7 Conclusion and perspectives

In this paper, the optimization of energy flows within a network
of micro-parking lots with EV charging stations and energy pro-
duction was carried out using dynamic programming algorithms.
Their proper functioning has been first validated in simulation by
considering a predetermined use. The implementation of the algo-
rithms in a real experimental demonstrator has been made. The first
results obtained validate the effectiveness of the algorithms. This
is the first step in a long process, the final objective of which is the
creation of an energy management system. The final objective is
to propose an optimal management law for all types of car parks
equipped with recharging infrastructures, taking into account their
specificity. Among the work to be developed, we can cite the in-
creasing complexity of dynamic simulation by adding degrees of
freedom, but also the strengthening of the study of user behavior in
order to define random cases based on reality.
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