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 The paper presents the technique for the user-friendly numerical simulation of coupled 
oscillators described by the Kuramoto model. Oscillators couplings are defined as arbitrary 
2𝜋𝜋-periodic functions given by the Fourier series. Matlab procedure was developed to 
generate netlist for the equivalent electrical circuit diagram of the Kuramoto model. The 
input data of the procedure include the natural frequencies of oscillators and the amplitudes 
of the couplings harmonics. Kirchhoff equations of the equivalent circuit coincide with the 
equations of the Kuramoto model.  The generated netlists provide obtaining the simulation 
results using standard circuit simulator. These results numerically coincide with the 
transients computed using the original Kuramoto model. The presented examples confirm 
the convenience and effectiveness of the proposed approach. 
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1. Introduction  
This paper is an extension of work originally presented at the 

24th European Conference on Circuit Theory and Design, ECCTD 
2020 [1] and this is refinement of work where we proposed 
simulation tool for analyzing ensembles of oscillators.  

Studying the collective behavior of coupled oscillators is 
fundamental problem that has wide application in nature, science, 
and technology. Simulation of large networks of coupled 
oscillators is actual multidisciplinary problem due to high demand 
in various research areas of including biology, chemistry, physics, 
electronics etc. [2].  

The relevance of this issue has been constantly increasing 
recently due to the growing interest in the study of oscillatory 
neural networks [3, 4], to the problem of mutual injection locking 
of oscillators under parasitic couplings in integrated circuits [5], 
and to various other applications. 

The ensemble of physical oscillators is described by system of 
ordinary differential equations (ODE). Respectively, the analysis 
of the ensemble can be performed by numerical methods for ODE 
solving. This approach is effective for an ensemble with small 
number of simple oscillators [6]. Direct ODE solving of large 
oscillator ensembles requires too high computational effort. 
Therefore, simplified models are required for effective simulation 
of large oscillator systems [7].  

The simplification techniques assume that the coupling 
strength between the oscillators is rather weak [8, 9]. In this case 

the coupled oscillator waveform can be considered to coincide 
with the waveform of this oscillator in free running mode. Then 
the set of system variables includes only the phases of the 
oscillators. 

The most widespread simplified model is the Kuramoto model 
(KM) [4, 9, 10] represented by ODE system with respect to phase 
variables. Kuramoto model describes each oscillator with a single 
phase variable. The oscillatory interconnections are described in 
Kuramoto model by 2π-periodic coupling functions. 

The standard mathematical packages are usually used for the 
KM numerical solving. Most often Matlab software [11] is applied 
(see, for example, [12, 13]). Also, Python codes can be used for 
solving KM ODE system [14, 15]. 

However, using standard software packages leads in practice 
to some difficulties and does not provide effective simulation of an 
ensemble of oscillators in many applied cases. The user needs to 
think through the names of variables, repeatedly include the same 
operators in the code and describe the necessary operations for 
each specific task. This increases the amount of data preparation, 
takes a lot of time and leads to additional user errors. 

For this reason, the development of universal approach and 
software tool to improve numerical efficiency of Kuramoto model 
applications and provide convenient analysis of the simulation 
results is the actual problem of simulation of ensemble of physical 
oscillators.  
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The above limitations are the motivation for the development 
of new numerical approaches that significantly increase the 
usability of applied tools. 

The paper [16] is devoted to this topic. The paper is directed to 
reduce the arisen difficulties in process of the numerical solution 
while KM application. The approach [16] is based on representing 
the KM in the form of the state equations for an equivalent 
electrical circuit and applying an electrical simulation tool to this 
circuit. The obtained circuit simulation results are numerically 
equal to the results of KM simulation.  

However, the implementation of the approach presented [16] 
has the following disadvantages: 

• an equivalent circuit is constructed under the wave digital 
concept [17] which is run on digital signal processors and is 
not suitable for standard circuit simulators;  

• coupling functions in KM can only be represented by 
sinusoids with the same amplitude, arbitrary functions are not 
allowed; 

• considered sinusoidal coupling functions cannot include 
phase delay that leads to the impossibility to analyze some 
important types of coupled oscillators. 

• The contribution of the presented paper is connected with new 
approach that allows to eliminate the limitations of [16]. We 
propose the following principles for constructing KM 
equivalent circuit: 

• the equivalent circuit should be suitable to analyze by means 
of standard circuit simulators. Such a circuit consists of 
standard electrical components which can be described by 
input netlist; 

• coupling functions of arbitrary 2𝜋𝜋-periodic form can be 
considered in KM and specified by truncated Fourier series 
with the given harmonics amplitudes and phases; 

• special-purpose technique to generate the equivalent circuit 
netlist should be applied. 

In comparison with paper [1] the contribution involves 
additional simulation example to illustrate capabilities of the 
developed approach for analyzing oscillator ensembles. 

The rest of the paper is organized as follows. Section 2 
describes the known mathematical forms of the KM equations. 
Section 3 explains the forming the equivalent circuit for a given 
KM. Section 4 outlines the principles for the netlist generation 
procedure. Numerical experiments are presented in Section 5. 

2. Kuramoto Model 

2.1. Basic Model Equations 

KM defines the behavior of a system of N weakly coupled 
oscillators. Each oscillator is characterized by its natural frequency 
(fundamental) 𝜔𝜔𝑚𝑚  and the time-varying instantaneous phase 
𝜃𝜃𝑚𝑚(𝑡𝑡). In its simplest form, corresponding to the initial Kuramoto 
proposal (1) KM is represented as an ODE system [18, 19]: 

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
= 𝜔𝜔𝑚𝑚 +

𝐾𝐾
𝑁𝑁

� 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚)
𝑁𝑁

𝑛𝑛=1
, 𝑚𝑚 = 1. . . 𝑁𝑁.        (1) 

here K is the coupling strength assumed to be the same for all 
couplings. This form made it possible to obtain estimates of the 
behavior of the synchronized ensemble of oscillators. However, 
the assumption about the same couplings is not met in most cases, 
so more general form of KM was proposed [20, 21]   

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
= 𝜔𝜔𝑚𝑚 + � 𝐴𝐴𝑚𝑚𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚)

𝑁𝑁

𝑛𝑛=1
, 𝑚𝑚 = 1. . . 𝑁𝑁.     (2) 

here 𝐴𝐴𝑚𝑚𝑛𝑛 is the individual coupling strength between m-th and n-
th oscillators. Form (2) of KM is more flexible tool to represent 
real sets of coupled oscillators. 

The natural extension of KM also considers the external 
periodic force [22, 23] as the excitation with a given phase 𝜃𝜃𝑒𝑒 
applied to internal oscillators. In such case the Right-Hand Side of 
m-th equation (2) is supplemented by external coupling functions 
of the form 𝐴𝐴𝑚𝑚,e(𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑚𝑚) .    

In the simplest case when one oscillator is excited by a single 
stimulus, the KM equation has the form: 

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝜔𝜔 + 𝐴𝐴𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝜃𝜃𝑒𝑒).                              (3) 

The phase of the periodic excitation is 𝜃𝜃𝑒𝑒 = 𝜔𝜔𝑒𝑒𝑡𝑡 where 𝜔𝜔𝑒𝑒 is 
the excitation frequency that in the synchronized mode coincides 
with the oscillator frequency. The oscillator phase is 𝜃𝜃 = 𝜔𝜔𝑒𝑒𝑡𝑡 + ϑ 
where φ is the initial phase of the synchronized oscillator. After 
substituting expressions for phases 𝜃𝜃𝑒𝑒 , 𝜃𝜃  into (3) we obtain the 
algebraic equation with respect to ϑ and the condition of its 
solution existence defining the locking range of the oscillator 

𝜔𝜔𝑒𝑒 − 𝜔𝜔 = 𝐴𝐴𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗) , |𝜔𝜔𝑒𝑒 − 𝜔𝜔| ≤ 𝐴𝐴𝑒𝑒 .                    (4) 

In general case the locking range 𝜔𝜔𝑚𝑚𝑛𝑛 of m-th oscillator under 
the excitation by n-th oscillator is equal to the coupling factor 𝐴𝐴𝑚𝑚𝑛𝑛. 

𝜔𝜔𝑚𝑚𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑛𝑛 .                                          (5) 

System (2) with antisymmetric sinusoidal coupling functions 
always results in a synchronized behavior for a set of identical 
oscillators. However, starting from [24], it was found that some 
dynamical systems of identical oscillators can demonstrate 
unsynchronized states with quasiperiodic oscillations. Such states, 
defined as  chimeras [25, 26], can be represented by KMs with 
additional phase shifts in sinusoidal arguments. Using notation (5), 
we can write: 

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
= 𝜔𝜔𝑚𝑚 + � 𝜔𝜔𝑚𝑚𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚 + 𝜑𝜑𝑚𝑚𝑛𝑛)

𝑁𝑁

𝑛𝑛=1
,        (6) 

that can also be presented as the sum of sines and cosines due to 
sin(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚 + 𝜑𝜑𝑚𝑚𝑛𝑛) = 𝑎𝑎 sin(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) + 𝑏𝑏 cos(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) . 

KM in the form (6) does not capture some of the effects 
inherent in coupled oscillators. E.g., superharmonic 
synchronization [27] of m-th oscillator under the excitation by k-th 
harmonic of n-th oscillator cannot be taken into account.  Thus, 
more complicated coupling functions are needed, and the most 
general form of KM was defined as [10, 22] 
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𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
= 𝜔𝜔𝑚𝑚 + � ℎ𝑚𝑚𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚)

𝑁𝑁

𝑛𝑛=1
.                 (7) 

Here ℎ𝑚𝑚𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚)  are 2π-periodic coupling functions that 
are often approximated to desired accuracy using truncated Fourier 
series with sufficiently large number of terms: 

ℎ𝑚𝑚𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) = � 𝐴𝐴𝑚𝑚𝑛𝑛
(𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) + 𝜑𝜑𝑚𝑚𝑛𝑛

(𝑘𝑘))
𝐾𝐾𝑚𝑚

𝑘𝑘=1
.    (8) 

Constant terms in the Fourier series (5) are zeroes (𝐴𝐴𝑚𝑚𝑛𝑛
(0) = 0) 

due to the compensation of nonzero terms by the change of 
fundamentals 𝜔𝜔𝑚𝑚  in (1). Similarly, diagonal entries are also 
assumed to be 𝐴𝐴𝑚𝑚𝑚𝑚

(𝑘𝑘) = 0 for all k. 

Under notations (5) one can represent (8) as 

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
= 𝜔𝜔𝑚𝑚 + � � 𝜔𝜔𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) + 𝜑𝜑𝑚𝑚𝑛𝑛
(𝑘𝑘)�

𝐾𝐾𝑚𝑚

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1
. (9) 

Here 𝜔𝜔𝑚𝑚𝑛𝑛
(𝑘𝑘)  is equal to the locking range of superharmonic 

synchronization [13] of m-th oscillator under the excitation by k-th 
harmonic of n-th oscillator. 

2.2. Modified Model Equations  

To enhance the user-friendliness when simulating coupled 
oscillators, we have made some modifications to the KM (9).  

Couplings activation moments were included in the model 
assuming all couplings were initially disabled.  

The activation moment is defined by adding to the coupling 
function time-dependent multiplier 𝑢𝑢(t − 𝜏𝜏𝑚𝑚𝑛𝑛)  were u(t) is the 
unit step function, 𝜏𝜏𝑚𝑚𝑛𝑛  is the coupling activation moment. Then 
coupling function from KM (6) has the form: 

𝑔𝑔𝑚𝑚𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚, 𝑡𝑡) = 𝑢𝑢(𝑡𝑡 − 𝜏𝜏𝑚𝑚𝑛𝑛)𝜔𝜔𝑚𝑚𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚 + 𝜑𝜑𝑚𝑚𝑛𝑛) . (10) 

For the coupling functions defined by Fourier series (8), (9) we 
indicate the activation moment 𝜏𝜏𝑚𝑚𝑛𝑛

(𝑘𝑘)  for each k-th Fourier term. 

Main results of KM simulations are presented by oscillator 
phases 𝜃𝜃𝑚𝑚. However, the phase waveforms are often inconvenient 
for analyzing the simulation results due to include a linear 
component. More user-friendly data is represented by 
instantaneous frequency waveforms, that indicate the 
synchronization mode by their constant values. The instantaneous 
frequency in angular (𝜔𝜔𝑚𝑚

𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢) or regular (𝑓𝑓𝑚𝑚
𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢) forms is determined 

as following: 

𝑓𝑓𝑚𝑚
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 =

𝜔𝜔𝑚𝑚
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

2𝜋𝜋
=

1
2𝜋𝜋

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
.                                (11) 

Note that the angular form of the instantaneous frequency 𝜔𝜔𝑚𝑚
𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 

(7) is used in any KM form (1), (2), (6) and (9). This also 
corresponds to the Right-Hand Side of KM. But usually the user 
needs to analyze the frequency in the regular form 𝑓𝑓𝑚𝑚

𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 , so to 
avoid superfluous transforms one can convert KM to a form with 
respect to regular frequencies by dividing it by 2π. Then KM (9) is 
represented as 

1
2𝜋𝜋

𝑑𝑑𝜃𝜃𝑚𝑚

𝑑𝑑𝑡𝑡
=

= 𝑓𝑓𝑚𝑚 + � � 𝑢𝑢�−𝜏𝜏𝑚𝑚𝑛𝑛
(𝑘𝑘)�𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑚𝑚) + 𝜑𝜑𝑚𝑚𝑛𝑛
(𝑘𝑘)�

𝐾𝐾𝑛𝑛

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

.
    (12) 

where 𝑓𝑓𝑚𝑚 = 𝜔𝜔𝑚𝑚 2𝜋𝜋⁄ , 𝑓𝑓𝑚𝑚𝑛𝑛
(𝑘𝑘) = 𝜔𝜔𝑚𝑚𝑛𝑛

(𝑘𝑘) 2𝜋𝜋⁄ . 

3. Representation of Kuramoto Model by Equivalent 
Electrical Circuit 

The behavior of the oscillator ensemble can be obtained by the 
simulation of the electrical circuit if state equations of the circuit 
coincide with the KM ODE system (12) of the ensemble. Thus, we 
proposed the following structure of the equivalent circuit. 

Each m-th oscillator from KM corresponds to the node in the 
equivalent circuit with the same index m. The voltage of the node 
is equal to the phase of KM (12): 𝜃𝜃𝑚𝑚(𝑡𝑡) ≡ 𝑉𝑉𝑚𝑚(𝑡𝑡). 

The devices connected in parallel to m-th node include: 

1. Capacitor Cm=1/(2π) representing the phase differentiation 
in the left-hand side of (12). The capacitor current is numerically 
equal to the instantaneous frequency of m-th oscillator: 

𝐼𝐼𝑚𝑚
𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐶𝐶𝑚𝑚 ∙ 𝑑𝑑𝑉𝑉𝑚𝑚 𝑑𝑑𝑡𝑡⁄ = 1 2𝜋𝜋⁄ 𝑑𝑑𝜃𝜃𝑚𝑚 𝑑𝑑𝑡𝑡⁄ = 𝑓𝑓𝑚𝑚

𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡).      (13) 

2. Independent current source numerically equal to the 
fundamental of m-th oscillator 

𝐼𝐼𝑚𝑚
𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 = 𝑓𝑓𝑚𝑚.                                              (14) 

3. Nonlinear current sources correspond to Fourier terms in the 
Right-Hand Side of (9). Each source represents k-th Fourier 
harmonic of a coupling function from m-th to n-th oscillator: 

𝐼𝐼𝑚𝑚,𝑛𝑛.𝑘𝑘
ℎ𝑎𝑎𝑎𝑎𝑚𝑚(𝑡𝑡, 𝑣𝑣𝑛𝑛 , 𝑣𝑣𝑚𝑚) =

= �𝑡𝑡 − 𝜏𝜏𝑚𝑚𝑛𝑛
(𝑘𝑘)�𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝑉𝑉𝑛𝑛 − 𝑉𝑉𝑚𝑚) + 𝜑𝜑𝑚𝑚𝑛𝑛
(𝑘𝑘)�.

               (15) 

here parameters 𝑓𝑓𝑚𝑚, 𝜏𝜏𝑚𝑚𝑛𝑛
(𝑘𝑘) , 𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘), 𝜑𝜑𝑚𝑚𝑛𝑛
(𝑘𝑘) are defined in KM (12). 

One can see that Kirchhoff Current Law (KCL) equations for 
the equivalent circuit with M nodes corresponding to all oscillators 
of KM represent the same ODE system as the initial KM: 

- the KCL equation for the node of m-th capacitor coincides 
with m-th equation of KM (12), 

- the voltage (V) of m-th node is numerically equal to the 
instantaneous phase (rad) of m-th oscillator, 

- the current (A) through m-th capacitor is numerically equal to 
the instantaneous frequency (Hz) of m-th oscillator due to 
(11). 

Note that m-th node in the equivalent circuit (13-15) is floating 
due to the capacitor connection to the current sources. Hence the 
initial capacitor voltage equal to the initial oscillator phase should 
be defined to provide transient simulation. 

The example in Figure 1 represents the equivalent circuit for 
KM of the pair of coupled oscillators. 
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Figure 1: The equivalent circuit for KM of the pair of coupled oscillators. 

Input netlist of the circuit in Figure 1 for oscillators’ 
fundamentals f1=100Hz, f2=102Hz and couplings parameters, 
f12=f21=1Hz, τ12=1sec., τ21=5sec. has the form: 

Input netlist for KM of the pair of coupled oscillators. 
.params inv2pi=0.5/pi    *parameter to define constant 1/2π 
* oscillators (13) 
C1   0   ph1  {1/2π}     
C2   0   ph2  {1/2π} 
* fundamentals (14) 
I1   ph1  0  100 
I2   ph2  0  102 
* couplings  (15) 
B12 ph1 0 I = 1*sin(v(ph2,ph1))*u(time - 1) 
B21 ph1 0 I = 1*sin(v(ph1,ph2))*u(time - 5) 
* initial phases of oscillators 
.IC  𝑣𝑣(ph1) = 0 
.IC  𝑣𝑣(ph1) = 0 

.end    
 

After processing the netlist by LTspice circuit simulator [28] 
one can obtain instantaneous frequencies of oscillators as current 
waveforms of capacitors C1 and C2 (13). Examples of the 
waveforms I(C1), I(C2) are presented in Figure 2. 

The waveforms in Figure 2a are obtained for parameters given 
in the presented netlist. While both couplings at t < 1sec are 
disabled the oscillators produce their natural frequencies f1=100Hz 
and f2=102Hz.  At t=1sec coupling 1-2 is activated but the coupling 
factor f12=1Hz is insufficient (|f1- f2| =2 > f12) to provide 
synchronization  of the oscillator #2 by the oscillator #1. So, beats 
appear in the instantaneous frequency waveform at 1 < t < 5sec. 
After the activation of both couplings at t > 5sec the oscillators are 
mutually synchronized with common frequency 101Hz. 

 
Figure 2: Simulated waveforms of instantaneous frequencies of capacitances 
currents obtained for f1=100Hz and a) f2=102Hz, b) f2=103Hz, c) f2=101Hz 

Figure 2b demonstrates simulation results for an increased 
value of the second fundamental to f2 = 103Hz. results for an 
increased value of the second fundamental to f2 = 103Hz. The 
discrepancy of fundamentals is too large (|f1-f2| = 3Hz) to provide 
synchronization even under the activation of both couplings. 

The decrease of the second fundamental to f2=101Hz ((|f1- f2| 
=1Hz) leads to waveforms in Figure 2c with synchronization under 
both unidirectional and bidirectional couplings. 

4. Automatic Forming of Input netlist by Matlab 
Description of Kuramoto Model 

For the convenience of forming a Input netlist of an equivalent 
electrical circuit, we introduce the naming rules for nodes and 
components of the circuit that is shown in Table 1. 

Table 1: Netlist names corresponding to m-th oscillator. 

m-th circuit components (KM variable) Nota
tion 

Netlist 
name 

m-th node (m-th oscillator) m phm 

Node  voltage (oscillator phase) vm v(phm) 

m-th capacitor Cm Cm 

Capacitor current (instantaneous frequency) 𝐼𝐼𝑚𝑚
𝐶𝐶  I(Cm) 

m-th DC current source (natural frequency) 𝐼𝐼𝑚𝑚
𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 Im 

Behavioral current source (coupling harmonic) 
k - harmonic index, m,n – oscillators indexes 

𝐼𝐼𝑚𝑚,𝑛𝑛.𝑘𝑘
ℎ𝑎𝑎𝑎𝑎𝑚𝑚 Bm_n_k 

 

Cm             0     phm      {1/2π};   differentiation operator    

Im            phm     0          fm;          natural frequency 

………………………………………… 

Bm_n_k   phm   0                   k-th harmonic of mn coupling                           

 +  𝐼𝐼 = 𝑢𝑢�t − 𝜏𝜏𝑚𝑚𝑛𝑛
(𝑘𝑘) �𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘) sin�𝑘𝑘�𝑣𝑣(phn) − 𝑣𝑣(phm)� + 𝜑𝜑𝑚𝑚𝑛𝑛
(𝑘𝑘)� 

………………………………………….. 

………………………………………….. 

.IC  𝑣𝑣(phm) = 𝑃𝑃𝑃𝑃𝑚𝑚;            initial phase of m-th oscillator 

One can see from this fragment that the netlist of the equivalent 
circuit contains significant amount of duplicate or redundant text 
data because the same oscillator indexes can be repeated in many 
component names. For example, the oscillator index m is included 
in the name of the node representing the oscillator phase and in the 
name of each component connected to the node.  

Redundancy increases for the netlists with many Fourier 
harmonics (Bm_n_k). In this case  the same indexes of oscillators 
must be presented in each behavioral source (Bm_n_k) both as the 
part of its name and names of reference nodal voltages v(phn). 

To eliminate the redundancy of the input data, we propose to 
generate the Input netlist using the procedure based on the 
description of interacting oscillators in compact form without data 
duplication. The form is convenient for filling out by the user. 
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When developing the procedure, we firstly changed the set of 
primary parameters in favor of relative values. Considering that 
KM is applicable to the ensemble of oscillators with close natural 
frequencies one can introduce the “base frequency” parameter 𝑓𝑓𝑏𝑏, 
which is close to average fundamentals of all oscillators.  

Individual natural frequencies are set by defining its relative 
deviations (𝑟𝑟𝑚𝑚) from the base frequency: 

𝑟𝑟𝑚𝑚 = (𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑏𝑏) 𝑓𝑓𝑏𝑏⁄  or 𝑓𝑓𝑚𝑚 = (𝑟𝑟𝑚𝑚 + 1) ∙ 𝑓𝑓𝑏𝑏 .           (16) 

The coupling factors 𝑓𝑓𝑚𝑚𝑛𝑛
(𝑘𝑘) in (10) are  determined by relative 

values 𝑟𝑟𝑚𝑚𝑛𝑛
(𝑘𝑘) with respect either to the base frequency: 

  𝑟𝑟𝑚𝑚𝑛𝑛
(𝑘𝑘) = 𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝑓𝑓𝑏𝑏� ,                                  (17) 

or to the natural frequency of the excited oscillator, 

  𝑟𝑟𝑚𝑚𝑛𝑛
(𝑘𝑘) = 𝑓𝑓𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝑓𝑓𝑚𝑚� = 𝑓𝑓𝑚𝑚𝑛𝑛
(𝑘𝑘) �(𝑟𝑟𝑚𝑚 + 1) ∙ 𝑓𝑓𝑏𝑏��  .        (18) 

The choice between options (17), (18) depends on the control  
logical variable mr=0/1 that is set for all KM couplings. 

Phases in (10) are set relatively to 2π:  𝜙𝜙𝑚𝑚
𝑘𝑘 = 𝜑𝜑𝑚𝑚

𝑘𝑘 2𝜋𝜋⁄  . 

  𝜙𝜙𝑚𝑚
𝑘𝑘 = 𝜑𝜑𝑚𝑚

𝑘𝑘 2𝜋𝜋⁄ .                                                                 (19) 

The procedure to generate an Input netlist is developed using 
Matlab software [7], so parameters (13) – (15) are grouped in the 
Matlab data types that include: 

1.  Simple numeric variables: 

 - fb – basic frequency. 

 - mr – type of relative parameter. 

 - Tsim – simulation time. 

2. Cell array osc that contains oscillators’ parameters. Each 
array element contains parameters of one (m-th) oscillator: 

- the relative deviations of natural frequency rm (16); 

- the initial phase θm(0). 

The oscillator parameters are set by assigning them to the array 
element with the oscillator index, e.g. 

osc{n1} =[ rn1   θn1(0)];     

osc{n2}=[ rn2];    

…… 

osc{nL}=[ rnL θnL (0)]; 

Oscillator indices (n1, n2, …nL) are arbitrary non-repeating 
integers. The value of zero initial phase can be  omitted (see n2). 

3. Cell matrix coup with parameters of couplings. Each matrix 
entry (m, n) defines cell array of parameters of harmonics 
𝐼𝐼𝑚𝑚,𝑛𝑛.𝑘𝑘

ℎ𝑎𝑎𝑎𝑎𝑚𝑚(𝑡𝑡, 𝑣𝑣𝑛𝑛 , 𝑣𝑣𝑚𝑚) (15) for given indexes of excited (m) and exciting 
(n) oscillators. The sequential number of the parameter vector 
presents the harmonic index k and components of the vector define 
coupling factor, phase shift and switching moment of the 
harmonic. Thus, the coupling function (m, n) with k harmonics is 
represented as matrix entry with parameters of all harmonics: 

coup{m,n}={[ 𝑟𝑟𝑚𝑚𝑛𝑛
(1) 𝜙𝜙𝑚𝑚𝑛𝑛

(1)  𝜏𝜏𝑚𝑚𝑛𝑛
(1) ][ 𝑟𝑟𝑚𝑚𝑛𝑛

(2) 𝜙𝜙𝑚𝑚𝑛𝑛
(2)  𝜏𝜏𝑚𝑚𝑛𝑛

(2) ] … 
[𝑟𝑟𝑚𝑚𝑛𝑛

(𝑘𝑘) 𝜙𝜙𝑚𝑚𝑛𝑛
(𝑘𝑘) 𝜏𝜏𝑚𝑚𝑛𝑛

(𝑘𝑘)] };  

For example, the pair of coupled harmonic oscillators in Figure 
1 is defined by the following description: 

fb=100;  

osc{1}=[0];   

osc{2}=[0.06];  

coup{1,2}={[0.01 0  1]};  

coup{2,1}={[0.01 0  5]}; 

One can see that this description is more compact than 
presented above Input netlist of the equivalent circuit in Figure 1. 
More essential reducing of the size of input data can be achieved 
for KM containing many coupling functions with large number of 
Fourier harmonics. 

Thus, to simulate the oscillator ensemble defined by the given 
KM one should perform the following operations: 

- form Matlab description of the KM by filling-in cell array osc 
with parameters of oscillators and filling-in cell matrix coup 
with parameters of couplings; 

- generate Input netlist by applying the developed procedure to 
the formed KM description; 

- apply standard circuit simulator to the generated netlist; 

- analyze time-domain dependences of phases and frequencies 
by applying the simulator waveform viewer to the 
corresponding nodal voltages and capacitances currents. 

5. Numerical Examples  
Here we present two numerical examples that illustrate the 

application of the developed approach to the analysis of ensembles 
of oscillators. To simulate the generated equivalent circuit, the 
LTspice circuit simulator [28] was used. 

The first example presents 8 ensembles of 9 oscillators with 
natural frequencies evenly distributed in the interval [98 – 102] Hz: 

  𝑓𝑓𝑛𝑛 = 95 + 𝑠𝑠, 𝑠𝑠 = 1 … 9.                               (20) 

The oscillators are sequentially coupled in forward direction 
and have one or two reverse couplings forming different versions 
of closed sequence that are shown in Figure 3.a1-a8. The figure 
3aN represents the  version with the index N of the intermediate 
oscillator between reverse couplings (Figure 3a1 is the version  
with one coupling). 

 
Figure 3: Series of oscillators 1-8 with reverse couplings through N-th 

oscillator:  aN), N=1…8. 
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All couplings in each ensemble a1-a8 are defined by sine 
functions (2) with the same coupling factor 𝑟𝑟𝑚𝑚𝑛𝑛

(1) = ρ (for all m, n).  

The aim of the experiments is to determine for each version the 
value of the common coupling factor providing the ensemble 
synchronization - ρsynch and to compare obtained values for 
different versions. To obtain the results  the ensembles in Figure 
a1-a8 must be simulated for a range of overall coupling factors. 

To perform the simulation the developed procedure was 
applied. As an example we present below Matlab descriptions of 
KM for a1, a5 and corresponding simulation results. 

% Matlab description for KM a1 

fb = 100; mr = 0;  Tsim=15; 

osc{1}=[-0.08]; osc{2}=[-0.06]; osc{3}=[-0.04];  

osc{4}=[-0.02]; osc{5}=[0.0]; osc{6}=[0.02];  

osc{7}=[0.04]; osc{8}=[0.06]; osc{ 9}=[0.08]; 

coup{2,1}={[ρ 0 1]}; coup{3,2}={[ρ 0 1]};  
coup{4,3}={[ρ 0 1]}; coup{5,4}={[ρ 0 1]};  
coup{6,5}={[ρ 0 1]}; coup{7,6}={[ρ 0 1]}; 
coup{8,7}={[ρ 0 1]}; coup{9,8}={[ρ 0 1]}; 
coup{1,9}={[ρ 0 1]};  

Simulation results are represented in Figure 4a-d, where the 
waveforms of the instantaneous frequencies f1(t) and  f9(t) are 
shown for the different values of coupling factors:  

1. Small value ρ = 1.3Hz ≈ 0.125ρsynch (Figure 4a). The 
waveforms are close to sine curves.  

2. Moderate value ρ = 5.4Hz ≈ 0.5ρsynch (Figure 4b). The 
distortions of sinusoids increase. 

3. The value approaching the synchronization value  ρ = 
10.8Hz ≈ 0.99∙ρsynch (Figure 4c). The waveforms are represented 
by pulsed curves both for f1(t) and  f9(t). 

4. The minimal value for the synchronization ρ = ρsynch = 
10.8Hz (Figure 4d). Initial pulses disappear and after that both 
instantaneous frequencies are equal to the constant  
synchronization frequency f1(t) =  f9(t) = fsynch  

 
Figure 4: Simulation results for KM a1, The instantaneous frequencies f1(t) and  

f9(t) for the values of the common coupling factor ρ: a) ρ = 1.3Hz; b) ρ = 5Hz; c) 
ρ = 10.8Hz; d) ρ = ρsynch = 10.8Hz. 

Matlab description for KM a5 differ from KM a1 by replacing 
coupling coup{1,9}={[ρ 0 1]}; by 2 couplings: 

coup{1,5}={[ρ 0 1]};  coup{5,9}={[ρ 0 1]}; 

Experimental waveforms of the instantaneous frequencies f1(t), 
f5(t) and  f9(t) are shown in Figure 5, for the similar coupling 
factors: ρ = 1.05Hz, ρ = 4.2Hz, ρ = 8.35Hz, ρsynch = 8.41Hz. 

 
Figure 5: Simulation results for KM a5, The instantaneous frequencies f1(t) 

and  f9(t) for the values of the coupling factor ρ: a) ρ = 1.05Hz; b) ρ = 4.2Hz; c) ρ 
= 8.4Hz; d) ρ = 8.41Hz. 

Simulations like Figure 4, 5 were performed for all oscillator 
ensembles a1-a8 (Fig 3). The obtained numerical characteristics 
are presented in Table 2. Each column of the table contains: 

- the name of the  ensemble (N), 

- the common coupling factor  providing synchronizing (fij), 

- the deviation of the synchronization frequency from the 
basic frequency (Δfsyn). 

Table 2 Numerical characteristics of oscillator ensembles a1-a8 

N a1 a2 a3 a4 a5 a6 a7 a8 

fij 10.86 16.49 8.01 14.36 8.411 13.97 9.15 12.41 
fs 97.11 99.79 100.0 99.23 100.0 100.0 100.3 97.08 

 

The second example is a ring sequence (Figure 6a) of 5 
oscillators with couplings, which are sequentially switched on with 
a delay of 5 seconds. The natural frequencies of the oscillators are 
evenly distributed in the interval [98 - 102] Hz (base frequency - 
100 Hz). Each coupling function in an open loop 1–2–3–4–5 
contains only the first harmonic with zero phase shift 𝜙𝜙𝑚𝑚𝑛𝑛

(1) = 0 and 
coupling factors are 𝑓𝑓𝑚𝑚𝑛𝑛

(1)=3Hz (𝑟𝑟𝑚𝑚𝑛𝑛
(1)=0.03). 

The aim of the numerical experiments is to analyze the 
dependence of the synchronization process on the magnitude of the 
coupling function between the first and fifth oscillators (𝑔𝑔51(𝜃𝜃15)).  

The initial description of the ring ensemble is presented in 
Figure 6b for 5-1 coupling factor 𝑟𝑟15

(1) = 0.005. Waveforms of 
instantaneous frequencies of oscillators obtained as simulation 
results are presented in Figure 7. 

 
Figure 6: a) The ring of 5 coupled harmonic oscillators, b)  matlab description of 

the ring. 

At t < 5sec the instantaneous frequencies of all oscillators 
coincide with their natural frequencies because all couplings are 
disabled. After coupling 1-2 is switched on at t = 5sec the second 
oscillator is synchronized by the natural frequency of the first one. 
Similarly the synchronization of oscillators 3 , 4 occurs at t = 10sec 
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and at t = 15sec correspondingly. But enabling coupling 4-5 at t = 
20sec does not lead to the synchronization of oscillator 5 because 
the discrepancy of frequencies (f5 – f1 = 4Hz) exceeds the coupling 
factor 𝑟𝑟54

(1) = 𝑟𝑟54
(1) ∙ 𝑓𝑓𝑏𝑏 = 3Hz. As a result, the oscillator 5 

instantaneous frequency at 20 < t < 25sec is a periodic waveform. 
Enabling coupling 5-1 closes the ring and interrupts all 
synchronizations at t > 25 sec where instantaneous frequencies of 
all oscillators are time varying waveforms.  

 
Figure 7: Simulation results obtained using matlab description in Figure 6b. 

In more details the waveforms at t = 24-28 sec. can be seen in 
Figure 8a which is the first one of the plots in Figure 8a-e 
representing simulation results for some values of 5-1 coupling 
factor 𝑟𝑟15

(1). The unsynchronized behavior of the oscillators is seen 
in two intervals: 𝑟𝑟15

(1)≤ 0.041 (Figure 6a,b) and 𝑟𝑟15
(1)≥ 0.078  (Figure 

6e). In the interval 0.0042 ≤ 𝑟𝑟15
(1)  ≤ 0.077 (Figure 6c-d) all 

oscillators are mutually synchronized. 

Thus, two bifurcation points can be defined in the axis of 
values of the coupling factor. At 𝑟𝑟15

(1) =  0.00415 the transition 
from unsynchronized (Figure 8b) to synchronized (Figure 8c) 
mode occurs. The inverse transition (from Figure 8d to Figure 8e) 
occurs at 𝑟𝑟15

(1) = 0.0775. 

A similar analysis of the impact of the coupling factor was 
performed for the 5-1coupling function with a non-zero phase shift 
(𝜙𝜙15

(1) = 𝜋𝜋 2⁄ ). The results are shown  in Figure 9. 

The input description of the 5-1 coupling is presented as 

coup{1,5}={[0.025 0.25 25]}; 

 
Figure 8: Simulation results for various 5-1 coupling factors a) 𝑟𝑟15

(1)=0.005, b) 
𝑟𝑟15

(1)=0.041, c) 𝑟𝑟15
(1)=0.042, d) 𝑟𝑟15

(1)=0.077 e) 𝑟𝑟15
(1)=0.078. 

 

 
Figure 9: Simulation results for various 5-1 coupling factors under phase shift 

𝜙𝜙15
(1) = 𝜋𝜋 2⁄ :  a) 𝑟𝑟15

(1)=0.024, b) 𝑟𝑟15
(1)=0.025. 

Some obtained waveforms in Figure 9 demonstrate the 
transition from unsynchronized (Figure 9a) to synchronized 
(Figure 9b) mode in the single bifurcation point 𝑟𝑟15

(1)≈0.0245. 

The simulated waveforms in Figure 10 are obtained under 
varying the second harmonic magnitude (𝑟𝑟15

(2)) of 5-1 coupling 
function. The phase shift and all other harmonics of the coupling 
function are zeroes. 

coup{1,5}={[ ] [0.014  0  25]}; 

 
Figure 10: Simulation results for 5-1 for coupling function with the second 

harmonic only (𝑟𝑟15
(1)=0.0): a) 𝑟𝑟15

(2)=0.014, b) 𝑟𝑟15
(2)=0.015. 

Here similarly to Figure 9 the domains of unsynchronized and 
synchronized modes are separated by the sole bifurcation point of 
the second harmonic  𝑟𝑟15

(2) ≈ 0.0145. 

Thus, the presented experiments showed the useful application 
of the proposed approach to simulating coupled oscillators. 

6. Conclusions 

The paper presents the numerical approach to simulate 
ensembles of arbitrary oscillators. The principles of operation of 
the required software based on the circuit simulator and the Matlab 
system are developed.  

The proposed approach for analyzing an ensemble of 
oscillators is based on the construction of model of electrical 
circuit. The Kirchhoff equations of this model coincide with the 
Kuramoto model equations of the considered ensemble. The 
unambiguous correspondence between the currents and voltages of 
the equivalent circuit and the phases and frequencies of the 
Kuramoto model is provided. As a result, simulating the equivalent 
electrical circuit performs the computation of the transients in the 
ensemble including computation of oscillatory phases and 
frequencies. The analysis of obtained transients is supported by 
plotting tools of modern electrical simulators.  
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The set of simple rules provides constructing of the equivalent 
circuit for coupling functions defined by their Fourier series. The 
numerical procedure has been developed to automatically create 
the input netlist. The routine generates netlist by processing the 
compact form of user-friendly ensemble description. The 
description includes lists of oscillator parameters and 
communication parameters represented as a Matlab structure. 

The presented numerical examples have demonstrated the 
efficiency and convenience of the proposed approach. 
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