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We propose a novel framework exploiting domain-aware aspect similarity for solving the multi-
source cross-domain sentiment classification problem under the constraint of little labeled data.
Existing works mainly focus on identifying the common sentiment features from all domains with
weighting based on the coarse-grained domain similarity. We argue that it might not provide an
accurate similarity measure due to the negative effect of domain-specific aspects. In addition,
existing models usually involve training sub-models using a small portion of the labeled data
which might not be appropriate under the constraint of little labeled data. To tickle the above
limitations, we propose a domain-aware topic model to exploit the fine-grained domain-aware
aspect similarity. We utilize the novel domain-aware linear layer to control the exposure of
various domains to latent aspect topics. The model discovers latent aspect topics and also
captures the proportion of latent aspect topics of the input. Next, we utilize the proposed topic-
attention network for training aspect models capturing the transferable sentiment knowledge
regarding particular aspect topics. The framework finally makes predictions according to
the aspect proportion of the testing data for adjusting the contribution of various aspect
models. Experimental results show that our proposed framework achieves the state-of-the-art
performance under the constraint of little labeled data. The framework has 71% classification
accuracy when there are only 40 labeled data. The performance increases to around 82%
with 200 labeled data. This proves the effectiveness of the fine-grained domain-aware aspect
similarity measure.

1 Introduction

Online shopping becomes more and more popular during the pan-
demic. Product reviews serve as an important information source
for product sellers to understand customers, and for potential buyers
to make decisions. Automatically analyzing product reviews there-
fore attracts people’s attention. Sentiment classification is one of
the important tasks. Given sufficient annotation resources, super-
vised learning method could generate promising result for sentiment
classification. However, it would be very expensive or even im-
practical to obtain sufficient amount of labeled data for unpopular
domains. Large pre-trained model, such as the Bidirectional En-
coder Representations from Transformers model (BERT) [1], could
be an universal way to solve many kinds of problems without ex-
ploiting the structure of the problem. In [2], the author apply large
pre-trained model to handle this problem task, which has sufficient

labeled data only in source domain but has no labeled data in tar-
get domain, with fine tuning on source domain and predicting on
target domain. In [3], the author train the large pre-trained model
using various sentiment related tasks and show that the model could
directly apply to the target domain even without the fine-tuning
stage. However, these large pre-trained models do not consider the
structure of the problem and they have certain hardware requirement
that might not be suitable in some situations. We focus on smaller
models, which have a few layers, in this work in order to handle
the constraint of little labeled data1. Besides using the gigantic
pre-trained model, domain adaptation (or cross-domain) [4, 5] at-
tempts to solve this problem by utilizing the knowledge from the
source domain(s) with abundant annotation resources and transfers
the knowledge to the target domain. This requires the model to
learn transferable sentiment knowledge by eliminating the domain
discrepancy problem. Domain adversarial training [6, 7] is an ef-
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1To give a brief comparison of our proposed framework and the large pre-trained model, we present the performance of the standard BERT-Large model in the experiment

section. We ignore other variants of the large pre-trained models as they are not the major focus of this work.
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fective method to capture common sentiment features which are
useful in the target domain. Various works using domain adversarial
training [8]–[11] achieve good performance for single-source cross-
domain sentiment classification. It could be also applied to the large
pre-trained model to further boost the performance [12]. Moreover,
it is quite typical that multiple source domains are available, the
model might be exposed to a wider variety of sentiment information
and the amount of annotation requirement for every single domain
would be smaller. A simple approach is to combine the data from
multiple sources and form a new combined source domain. Existing
models tackling single-source cross-domain sentiment classification
mentioned above could be directly applied to this new problem
setting after merging all source domains. However, the method
of combining multiple sources does not guarantee a better perfor-
mance than using only the best individual source domain [13, 14].
Recent works measure the global domain similarity [15]–[17], i.e.
domain similarity between the whole source and target domain, or
instance-based domain similarity [18]–[21], i.e. domain similarity
between the whole source domain and every single test data point.
We observe that these approaches are coarse-grained and ignore
the fine-grained aspect relationship buried in every single domain.
Domain-specific aspects from the source domain might have nega-
tive effect in measuring the similarity between the source domain
and the target domain, or the single data point. For instance, we
would like to predict the sentiment polarity of some reviews from
the Kitchen domain and we have available data from the Book, and
the DVD domain. Intuitively, the global domain similarity might
not have much difference as both of them are not similar to the
target. However, reviews related to the cookbook aspect from the
Book domain, or reviews talking about cookery show from the DVD
domain might contribute more to the prediction of Kitchen domain.
Discovering domain-aware latent aspects and measuring the aspect
similarity could be a possible way to address the problem. Based on
this idea, we introduce the domain-aware aspect similarity measure
based on various discovered domain-shared latent aspect topics us-
ing the proposed domain-aware topic model. The negative effect of
domain-specific aspects could be reduced.

Existing models measuring domain similarity have another draw-
back. They usually train a set of expert models with each using a
single source domain paired with the target domain. Then, the do-
main similarity is measured to decide the weighting of each expert
model. Another way is to select a subset of data from all source
domains which are similar to the target data. We argue that these ap-
proaches are not suitable under the constraint of little labeled data as
each single sub-model is trained using a small portion of the limited
labeled data which might obtain a heavily biased observation. The
performance under limited amount of labeled data is underexplored
for most of existing methods as they require considerable amount
of labeled data for training. In [22], the author study the problem
setting applying the constraint. However, they assume equal contri-
bution for every source domain. We study the situation under the
constraint of little labeled data and at the same time handling the
contribution of source domains using fine-grained domain-aware
aspect similarity.

To address the negative effect of domain-specific aspects dur-
ing the domain similarity measure, and also the limitation of the
constraint of little labeled data, we propose a novel framework

exploiting domain-aware aspect similarity for measuring the contri-
bution of each aspect model representing the captured knowledge
of particular aspects. It is capable of working under the constraint
of little labeled data. Specifically, the framework consists of the
domain-aware topic model for discovering latent aspect topics and
inferring the aspect proportion utilizing a novel aspect topic control
mechanism, and the topic-attention network for training multiple
aspect models capturing the transferable sentiment knowledge re-
garding particular aspects. The framework makes predictions using
the measured aspect proportion of the testing data, which is a more
fine-grained measure than the domain similarity, to decide the con-
tribution of various aspect models. Experimental results show that
the proposed domain-aware aspect similarity measure leads to a
better performance.

1.1 Contributions

The contributions of this work are as follows:

• We propose a novel framework exploiting the domain-aware
aspect similarity to measure the contribution of various aspect
models for predicting the sentiment polarity. The proposed
domain-aware aspect similarity is a fine-grained measure
which is designed to address the negative effect of domain-
specific aspects existing in the coarse-grained domain simi-
larity measure.

• We present a novel domain-aware topic model which is capa-
ble of discovering domain-specific and domain-shared aspect
topics, together with the aspect distribution of the data in an
unsupervised way. It is achieved by utilizing the proposed
domain-aware linear layer controlling the exposure of differ-
ent domains to latent aspect topics.

• Experimental results show that our proposed framework
achieves the state-of-the-art performance for the multi-source
cross-domain sentiment classification under the constraint of
little labeled data.

1.2 Organization

The rest of this paper is organized as follows. We present related
works regarding cross-domain sentiment classification in Section
2. We describe the problem setting and our proposed framework in
Section 3. We conduct extensive experiments and present results in
Section 4. Finally, we talk about limitations and furture works in
Section 5, and summarize our work in Section 6.

2 Related Works
Sentiment analysis [23]–[25] is the computational study of people’s
opinions, sentiments, emotions, appraisals, and attitudes towards
entities [26]. In this work, we focus on textual sentiment data
which is based on review of products, and the classification of the
sentiment polarity of reviews. We first present the related works
of single-source cross-domain sentiment classification. Next, we
further extend to multiple-source case.
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2.1 Single-Source Cross-Domain Sentiment Classifica-
tion

Early works involve the manual selection of pivots based on prede-
fined measures, such as frequency [27], mutual information [5, 28]
and pointwise mutual information [29], which might have limited
accuracy.

Recently, the rapid development of deep learning provides an
alternative for solving the problem. Domain adversarial training is
a promising technique for handling the domain adaptation. In [8],
the author make use of memory networks to identify and visualize
pivots. Besides pivots, [9] also consider non-pivot features by using
the NP-Net network. In [10], the author combine external aspect
information for predicting the sentiment.

Large pre-trained models attract people’s attention since the
BERT model [1] obtains the state-of-the-art performance across
various machine learning tasks. Researchers also apply it on the
sentiment classification task. Transformer-based models [2, 12, 3]
utilize the amazing learning capability of the deep transformer struc-
ture to learn a better representation for text data during the pre-
training stage and adapt themselves to downstream tasks (sentiment
classification in our case) using fine tuning. However, we argue that
the deep transformer structure has been encoded with semantic or
syntactic knowledge during the pre-training process which makes
the direct comparison against shallow models unfair. It also has
certain hardware requirement which hinders its application in some
situations.

Methods mentioned above focus on individual source only and
they do not exploit the structure among domains. Although we can
still directly apply these models to solve the problem by either train-
ing multiple sub-models and averaging predictions, or merging all
source domains into a single domain, having a performance better
than using only the single best source is not guaranteed. Therefore,
exploring the structure or relationship among various domains is
essential.

2.2 Multi-Source Cross-Domain Sentiment Classifica-
tion

Early works assuming equal contribution for every source domain
[30]–[32] could be a possible approach to handle the relationship
between source domains and the target. Other solutions try to align
features from various domains globally [33]–[22]. However, the
source domain with higher degree of similarity to the target domain
contributing more during the prediction process is a reasonable
intuition. These methods fail to capture the domain relation. Re-
cent works try to measure domain contribution in order to further
improve the performance.

Researchers propose methods to measure the global domain
similarity [15]–[17], i.e. the domain similarity between the whole
source and target domain, or the instance-based domain similarity
[18]–[21], i.e. the domain similarity between the whole source do-
main and every single test data point. In [15], the author measure
the domain similarity using the proposed sentiment graph. In [17],
the author employ a multi-armed bandit controller to handle the
dynamic domain selection. In [18], the author compute the attention
weight to decide the contribution of various already trained expert

models. [20] also utilize the attention mechanism to assign impor-
tance weights. They incorporate a Granger-causal objective in their
mixture of experts training. The total loss measuring distances of
attention weights from desired attributions based on how much the
inclusion of each expert reduces the prediction error. Maximum
Cluster Difference is used in [19] as the metric to decide how much
confidence to put in each source expert for a given example. In [21],
the author utilize the output from the domain classifier to determine
the weighting of a domain-specific extractor.

These methods measure the coarse-grained domain relation and
ignore the fine-grained aspect relationship buried in every single
domain. In addition, these methods do not consider the constraint
of limited labeled data, which is the main focus of this work.

3 Model Descriptions

3.1 Problem Setting

The problem setting consists of the source domain group Ds and
the target domain Dt. The source domain group has m domains
{Dsk }|

m
k=1 while there is only one target domain. For each source

domain, we have two sets of data: i) the labeled data L = {xl
i, y

l
i}|

nL
i=1

and ii) the unlabeled data U = {xu
j , d j}|

nU
j=1 where nL and nU are the

number of data of labeled and unlabeled data respectively, and d j

is the augmented domain membership indicator. Note that yi is the
sentiment label for the whole review xi and we do not have any
fine-grained aspect-level information. The kth source domain can
be written as Dsk =

{
Lsk = {xl,sk

i , ysk
i }|

nLsk
i=1 ,Us = {xu,sk

j , dsk
j }|

nUsk
j=1

}
. The

data of the target domain has similar structure except that we do
not have the sentiment label, i.e. Dt =

{
{xt

i}|
nt
i=1,Ut = {xu,t

j , d
t
j}|

nUt
j=1

}
respectively. nLsk

is the number of labeled data and they are the
same for all k. We set all dsk

∗ to k and all dt
∗ to m + 1. The ob-

jective of the multi-source cross-domain sentiment classification
is to find out a best mapping function f so that given the training
data T = {Ds1 ,Ds2 , ...,Dsm ,Dt}, the aim is to predict the label of the
target domain labeled data yt

= f (xt).

3.2 Overview of Our Framework

We describe our proposed framework exploiting domain-aware
aspect similarity. Specifically, there are two components: i) the
domain-aware topic model discovering domain-aware latent aspect
topics, ii) the topic-attention network identifying sentiment topic
capturing the transferable aspect-based sentiment knowledge. The
first component captures both domain-specific and domain-shared
latent aspect topics, and infers the aspect distribution of each review.
It is an unsupervised model that utilizes only the unlabeled data.
It is analogous to the standard topic model which discovers latent
topics as well as topic distributions. However, the standard topic
model is not capable of controlling discovered latent topics. Our
proposed domain-aware topic model is capable of separating discov-
ered latent topics into two groups: we name them as domain-specific
aspect topics and domain-shared aspect topics. The topic control is
achieved by using the domain-aware linear layer described in the
latter subsection. Specifically, the model discover nspec domain-
specific aspect topics for every domain, and nshare domain-shared
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aspect topics which are shared among all domains. Each review has
a nspec + nshare dimensional aspect distribution with the first nspec
dimension corresponding to domain-specific aspect topics and the
last nshare dimension corresponding to domain-share aspect topics.
Discovered aspect topics and inferred aspect distributions have three
important functions:

• By considering only domain-shared aspect topics, the neg-
ative effect of domain-specific aspect topics could be min-
imized for measuring the contribution during the inference
process.

• The overall aspect distribution of the testing data reveals the
importance of each discovered aspect topic following the
assumption that the topic appearing more frequent is more
important for the target domain.

• The aspect distribution of the unlabeled data could be used
for picking reviews with a high coverage of a particular set of
aspect topics.

Based on the domain-shared aspect distribution of the target do-
main, we divide discovered domain-shared aspect topics into groups
with each group having unlabeled reviews from all domains with
high aspect proportion forming the training dataset for the second
component. Specifically, we divide domain-shared aspect topics
into groups based on the overall aspect distribution of the target
domain. We aim at separating aspect topics and train an expert
model for each group of aspects. Each aspect model focuses on a
particular set of aspects so as to boost the learning capability of that
set of fine-grained aspect topics. Therefore, we need to construct
the dataset carrying the information related to selected aspect topics.
We select the unlabeled data from all domains with high aspect pro-
portion of a particular set of aspect topics to form the aspect-based
training dataset.

Each of the aspect-based training dataset guides the next com-
ponent to focus on the corresponding aspect group and identify the
related transferable sentiment knowledge. The obtained training
dataset is jointly trained with the limited labeled data using the topic-
attention network to generate an aspect model for each aspect-based
training dataset. The topic-attention network is a compact model
which is designed to work effectively under limited training data.
The topic-attention network captures two topics simultaneously: i)
the sentiment topic and ii) the domain topic. The sentiment topic
captures the transferable sentiment knowledge which could be ap-
plied to the target domain. The domain topic serves as an auxiliary
training task for constructing a strong domain classifier which helps
the sentiment topic to identify domain-independent features by us-
ing domain adversarial training. These two topics are captured by
the corresponding topical query built in the topic-attention layer.
These topical queries are learnt automatically during the training
process. The limited labeled data works with the sentiment classifier
to control the knowledge discovery related to sentiment (sentiment
topic captures sentiment knowledge while domain topic does not),
while the unlabeled data works with the domain classifier to control
the knowledge discovery related to domain. Finally, the framework
makes predictions using various aspect models with contribution
defined by the aspect distribution of the testing data. For example, if
the testing data has a higher coverage regarding aspect group 1, then

naturally the prediction made by the aspect model of group 1 should
contribute more to the finally prediction as intuitively that aspect
model would have more related sentiment knowledge to make judge-
ment. We believe this fine-grained latent aspect similarity would
provide a more accurate sentiment prediction than the traditional
coarse-grained domain similarity due to the fact that we eliminate
the negative effect of domain-specific aspects when measuring the
similarity between the testing data and the expert models.

We first describe the architecture of the two components. Then,
we describe the procedure of inferring the sentiment polarity of
reviews of the target domain.

3.3 Domain-Aware Topic Model

Figure 1: Diagram depicting the proposed domain-aware topic model. The middle
part provides a high-level overview of the proposed domain-aware topic model.
The model aims at inferring the dense representation of the unlabeled data from all
domains in terms of aspect topic proportion. The model discovers domain-specific
aspect topics and domain-shared aspect topics utilizing the domain-aware linear layer
which is illustrated in the upper part of the figure. The model is trained by minimizing
the reconstruction loss calculated by using the input data and the reconstructed data,
and the regularization loss based on the inferred α and the predefined Dirichlet prior.

The domain-aware topic model follows the mechanism of the
variational autoencoder framework (VAE) [35] which utilizes the
encoder for inferring the latent variable (the Dirichlet prior α in
our case representing the expected aspect distribution) and the de-
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coder for reconstructing the input. Researchers try to apply the
VAE network for achieving functionalities of standard topic model
in a neural network way, such as inferring the topic proportion of
the input and the word distribution of each topic. This provides
some advantages such as reducing the difficulty of designing the
inference process, leveraging the scalability of neural network, and
the easiness of integrating with other neural networks [36]. How-
ever, the standard VAE using Gaussian distribution to model the
latent variable might not be suitable for text data due to the sparse-
ness of the text data. The Dirichlet distribution used in the topic
model [37] has a problem of breaking the back-propagation. Cal-
culating the gradient for the sampling process from the Dirichlet
distribution is difficult. Researchers propose approximation meth-
ods [38, 39, 40, 41] in order to apply Dirichlet distribution to the
neural topic model. We follow the rejection sampling method [42]
in this work. Although discovered topics might carry extra informa-
tion which might be helpful for identifying the hidden structure of
the text data, it is not intuitive for applying this information to help
the sentiment classification task. We introduce the domain-aware
linear layer for controlling the formation of domain-specific and
domain-shared aspect topics. To the best of our knowledge, we do
not find any similar aspect topic control layer applied for multiple-
source cross-domain sentiment classification in related works. The
domain-aware linear layer identifies both domain-specific aspect
topics and domain-shared aspect topics. We utilize domain-shared
aspect topics only which could provide a more accurate measure
for calculating the similarity. In addition, the inferred aspect topic
proportion is used for constructing the aspect-based training dataset,
and determining the level of contribution of each aspect model.
Details of the architecture of the model are described below.

3.3.1 Encoder

The input of the encoder is the bag of words of the review. Specifi-
cally, we count the occurrence of each vocabulary in each review
and we use a vector of dimension V to store the value. This serve as
the input representing the review. The encoder is used to infer the
Dirichlet prior of the aspect distribution of the input. The bag-of-
words input is first transformed using a fully connected layer with
RELU activation followed by a dropout layer.

Layerenc(x) = Dropout
(
RELU(Wencx + benc)

)
(1)

3.3.2 Domain-Aware Linear Layer

Next, the output is fed into the domain-aware linear layer for obtain-
ing domain-specific and domain-shared features. The domain-aware
linear layer has m + 1 sub-layers including m domain-specific sub-
layers handling the feature extraction of the corresponding domain
and 1 domain-shared sub-layer handling all domains as follows:

LayerDLdx
(x) =

[
WDLdx

x + bDLdx
; WDLsharedx + bDLshared

]
(2)

where dx is the domain ID of the input x, and [; ] represents the op-
eration of vector concatenation. The output xDL is batch normalized
and passed to the SoftPlus function to infer the Dirichlet prior α
of the aspect distribution. To make sure each value in α is greater

than zero, we set all values smaller than αmin to αmin.

α = max

(
SoftPlus

(
BatchNorm(xDL)

)
, αmin

)
(3)

We use the rejection sampling method proposed in [42] to sample
the aspect distribution z and at the same time it allows the gradient
to back-propagate to α.

3.3.3 Decoder

The decoder layer is used for reconstructing the bag-of-word input.
The sampled aspect distribution z is transformed by the domain-
aware linear layer as follows:

Layerdec(x) =
[
Wdecdx

x; Wdecsharedx
]

(4)

The output xdec is batch normalized and passed to the log-softmax
function representing the log probability of generating the word.

y = ln

(
Softmax

(
BatchNorm(xdec)

))
(5)

3.3.4 Loss Function

The loss function includes the regularization loss and the reconstruc-
tion loss. The regularization loss measures the difference of the log
probability of generating the aspect distribution z between two prior,
α and α as follows:

Lreg = lnP(z|α) − lnP(z|α), P(y|x) ∼ Dir(x) (6)

where α is inferred by the model and α is the predefined Dirichlet
prior. The reconstruction loss is the log probability of generating
the bag-of-word input calculated as follows:

Lreconstruct = −

V∑
i=1

yixi (7)

where V is the vocabulary size, yi is the log probability of the ith
word generated by the model, and xi is the count of the ith word in
the input.

3.4 Topic-Attention Network

The topic-attention network aims at capturing the transferable sen-
timent knowledge from the limited labeled data of various source
domains. To achieve this goal, the network is designed to capture
two topics simultaneously: i) the sentiment topic, and ii) the do-
main topic. The sentiment topic identifies the transferable sentiment
knowledge from the input data while the domain topic helps to train
a strong domain classifier. We use the technique of domain adver-
sarial training [6, 7, 43] to maintain the domain independence of
the sentiment topic. However, instead of using the standard gradient
reversal layer, we use the adversarial loss function [22] to achieve
the same purpose with a more stable gradient and a faster conver-
gence. The model has two training tasks: i) the sentiment task for
identifying the sentiment knowledge, and ii) the auxiliary domain
task for training a strong domain classifier. The adversarial loss
function is applied to the domain classifier output of the sentiment
topic and the sentiment classifier output of the domain topic to hold
the indistinguishability property of these two topics. Details of the
architecture of the model is described below.
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Figure 2: Diagram depicting the proposed topic-attention network. The bottom part
provides a high-level overview of the proposed topic-attention network. The network
captures two topics, i.e. the sentiment topic and the domain topic, from the review
data and classifies the sentiment polarity and the domain membership. The adversar-
ial loss maintains the indistinguishability of topics (domain indistinguishability of the
sentiment topic and sentiment indistinguishability for the domain topic). Therefore,
the sentiment knowledge captured by the sentiment topic could be transferred to the
target domain. The colored dashed boxes show the scope of updating parameters for
the corresponding loss.

3.4.1 Encoding Layer

Each word is mapped to the corresponding embedding vector and
then transformed by a feed-forward layer with tanh activation for
obtaining the feature vector h.

h = tanh
(
Wenc Embedding(x) + benc

)
(8)

3.4.2 Topic-Attention Layer

The feature vector hi of the ith word is re-weighted by the topical
attention weight βk

i calculated as follows:

βk
i =

mieq>k hi∑kw
i′=1 mi′eq>k hi′

× nm (9)

where k indicates the topic (either sentiment or domain topic), mi

is the word-level indicator indicating whether the ith position is a
word or a padding, nm is the number of non-padding words, and
qk is the topical query vector for topic k learnt by the model. Note
that we have two topical query vectors representing two topics. The
topical feature vector tk

i of the topic k and the review i is obtained
by summing feature vectors weighted by the corresponding topical
attention weight βk

∗ as follows:

tk
i =

Wi∑
j=1

βk
jh j (10)

where Wi is the number of words in review i. tk
i represents extracted

features of the review by topic k.

3.4.3 Decoding Layer

This layer consists of two decoders with each handling one train-
ing task, namely the sentiment decoder and the domain decoder
for classifying the sentiment polarity and the domain membership
respectively. Note that the review feature vector of labeled data
is passed to the sentiment decoder while the unlabeled data of the
aspect groups is passed to the domain decoder. Although we use
the same tk to represent the input feature vector in the following
two equations, they are actually representing the review features
captured from the labeled data, and unlabeled data respectively.
Specifically, the review feature vector is linearly transformed and
passed to the Softmax function for obtaining a valid probability
distribution.

psen,k = Softmax(Wsentk + bsen) (11)

pdom,k = Softmax(Wdomtk + bdom) (12)

Note that there are four outputs generated by the decoding layer,
including two outputs generated by the captured features of two
topics passing to the sentiment decoder, and similarly the remaining
two generated by the domain decoder. The two topics are sentiment
and domain topic, i.e. k = {sen, dom}. Therefore, the four outputs
are: psen,sen and psen,dom coming from the labeled data passing to
the sentiment decoder (the first superscript) having specific features
captured by the sentiment and domain topic (the second superscript)
respectively, and pdom,sen and pdom,dom coming from the unlabeled
data passing to the domain decoder having specific features captured
by the corresponding topic.

3.4.4 Loss Function

We use the standard cross entropy loss to measure the classification
performance:

Lsen,k = −
1
nL

nL∑
i=1

lnpsen,ki,si
(13)

Ldom,k = −
1

nU

nU∑
i=1

lnpdom,ki,di
(14)

where si and di are the class indicator specifying the sentiment po-
larity or the domain membership of the ith training data, and p∗i,c is
the predicted probability regarding the cth class. Therefore, we have
four cross entropy losses. The loss generated by the sentiment de-
coder from the sentiment topic and the loss generated by the domain
decoder from the domain topic are used to update all parameters
of the model using back-propagation. The remaining two are used
to update the parameters of the decoding layer only. We introduce
the adversarial loss function for doing adversarial training for both
tasks as follows:

fadv(p) =

c∑
i=1

(pi −
1
c

)2 (15)
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where c is the number of classes and pi is the predicted probability
for the class i. Note that c for sentiment task is 2 while it is m + 1
for the domain task. We use the probability distributions generated
by the sentiment decoder from the domain topic psen,dom, and by the
domain decoder from the sentiment topic pdom,sen, to calculate the
adversarial losses, which are used to update the parameters of the
encoding layer and the topic-attention layer.

3.5 Training Strategy

We first train the domain-aware topic model using the unlabeled
data Xu from all domains. The model is then used for predicting
the aspect proportion of the unlabeled data Xu and testing data Xt

to obtain αu and αt. Note that the domain-aware topic model is
an unsupervised model that does not utilize any labeled data from
source domains nor target domain. The aspect score θt of the target
domain is calculated using the mean value of the domain-shared
aspect part of αt over all testing data:

θt =
1
nt

nt∑
i=1

αt
i[−nshare :] (16)

where αt
i[−nshare :] represents the last nshare dimensions of the

vector αt
i. Therefore, θt is a nshare dimensional vector with each

value representing the importance score of the corresponding aspect
topic for the target domain. We divide the domain-shared aspect
topics into k groups based on their importance score using θt in
descending order. The set topicgk′

contains the topic indices of the
k′th aspect group. For each group gk′ , we select top n unlabeled data
from all domains based on the aspect topic score of the k′th group
ωu

k′ , which is the sum of the corresponding domain-shared aspect
proportion of the k′th group for the uth review using its discovered
aspect proportion:

ωu
k′ =

∑
i∈topicgk′

αu[i] (17)

where αu[i] represents the value in the ith dimension of αu.
Next, we train k aspect models using the topic-attention network.

For each aspect model, the limited labeled data Xl,Y l is used for
training the sentiment task while the group of selected unlabeled
data gk′ is used for training the auxiliary domain task. The last step
is to utilize the obtained models for predicting the sentiment polarity
of all testing data xt. Let AMk′ be the aspect model trained by using
the dataset {Xl,Y l, gk′ }, we denote the sentiment prediction of the
sentiment topic generated by the model as pt′

k′ for the target review
xt′ as follows:

pt′
k′ = AMk′ (xt′ ) (18)

Finally, we combine the sentiment predictions of the sentiment
topic generated by all aspect models having each contributes accord-
ing to the aspect proportion of the testing data to obtain the final
prediction:

pt′ =

k∑
i=1

ωt′
i pt′

i (19)

where ωt′
i is the contribution of the ith aspect model to the final

prediction.

4 Experiment

4.1 Experiment Settings

We use the Amazon review dataset [5] for the evaluation of our
proposed framework. The Amazon review dataset is a common
benchmark for sentiment classification. We use 5 most common
domains, namely Book, DVD, Electronics, Kitchen and Video. For
each experiment cross, we reserve one domain as the target domain
and use others as source domains. There are 5 combinations in total
and we conduct experiments on these 5 crosses. For each domain,
we follow the dataset setting in [9] collecting 6000 labeled data,
with half positive and half negative polarity. We do further sam-
pling to select a subset of the labeled data to fulfill the constraint
of little labeled data. We first construct two lists with each having
3000 elements representing the index of the labeled data of positive
and negative class respectively. We randomly shuffle the lists and
pick first n indices. Next, we select the labeled data based on these
indices. In order to have a comparable result for different size of
labeled data, we fix the seed number of the random function so that
the runs with different size of labeled data would obtain a same
shuffle result. Therefore, the run with 20 labeled data contains the
10 labeled data from the run with 10 labeled data, and also another
10 new labeled data. Similarly, the run with 30 labeled data contains
the 20 labeled data from the run with 20 labeled data. With this set-
ting, we can directly estimate the effect of adding additional labeled
data and compare the performance directly. We continue the process
for other source domains. Finally, we construct 5 datasets having
10 to 50 labeled data for each target domain (there are 40 to 200
labeled data in total as there are 4 source domains). The unlabeled
dataset includes all unlabeled data from all domains (including the
target domain). All labeled data from the target domain is served as
the testing data. We run every single run for 10 times and present
the average accuracy with standard deviation in order to obtain a
reliable result for model comparison.

4.2 Implementation Details

4.2.1 Domain-Aware Topic Model

The Dirichlet prior is set to 0.01. The minimum of inferred prior is
set to 0.00001. We set the number of domain-specific and domain-
shared topics to 20 and 40 respectively. We divide the domain-
shared aspect topics into 5 groups. The domain-aware topic model
is trained for 100 warm-up epochs, and stopped after 10 epochs of
no improvement.

4.2.2 Topic-Attention Network

We use word2vec2 embedding [44] to represent each word. We
do not further train them to prevent overfitting. The batch size is

2It is a distributed representations of words in vector space. It helps various natural language processing task by putting similar words in a closer location.
3It is an optimization algorithm with adaptive learning rate. It considers the momentum of the gradient by using the moving average of the gradient. It also uses the

moving average of the squared gradient to scale the learning rate of each individual parameter.
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Figure 3: Figure showing the experimental results. Graph (a) to (e) shows the performance of Book, DVD, Electronics, Kitchen and Video domain as target domain
respectively. Graph (f) shows the average accuracy of all domains.
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set to the number of available labeled data. The topic-attention
network is trained for 20 epochs. We use Adam3 optimizer [45] for
back-propagation for both models.

4.3 Evaluation Metric

We use accuracy to measure the evaluate the performance of various
models. The target is a binary class. Therefore, correct cases involve
the true positive (TP) and true negative (TN). Incorrect cases involve
the false positive (FP) and the false negative (FN). The accuracy is
calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(20)

The average accuracy is calculated by taking the average of accuracy
scores of multiple runs.

4.4 Main Results

Models used for performance comparison are as follows:

• BERT [1]: This is the Bidirectional Encoder Representations
from Transformers model, which is the popular pre-trained
model designed to handle various text mining tasks. We use
the BERT-Large model with fine tuning using the labeled data
to obtain the prediction.

• BO [46]: This model employs Bayesian optimization for
selecting data from source domains and transfer the learnt
knowledge to conduct prediction on the target domain.

• MoE [19]: This is the mixture of expert model. It measures
the similarity between single test data to every source domain
for deciding the contribution of the expert models.

• EM [22]: This is the ensemble model. It uses various base
learners with different focuses on the training data to capture
a diverse sentiment knowledge.

• ASM: This is the proposed framework exploiting the domain-
aware aspect similarity measure for obtaining a more accurate
measure to adjust the contribution of various aspect models
focusing on different aspect sentiment knowledge.

Results are presented in Figure 3 and Table 1. We use the clas-
sification accuracy as the metric to measure the performance. The
proposed framework achieves the best average accuracy among
all crosses. Its average performance is 71.73%, 78.75%, 80.49%,
81.43%, and 82.02% for 10, 20, 30, 40 and 50 labeled data cases
respectively, or 40, 80, 120, 160 and 200 labeled data cases in total
respectively.

4.5 Discussions

Our proposed framework performs substantially better than the com-
parison models. The proposed framework has an average of 4%,
7%, 6%, 6% and 6% absolute improvement over the second best
result for 10, 20, 30, 40 and 50 labeled data cases respectively, or 40,
80, 120, 160 and 200 labeled data cases in total respectively. The

variance of the proposed model is comparable to or better than the
second best models. The result proves that our proposed framework
is very effective for conducting multi-source cross-domain senti-
ment classification under the constraint of little labeled data. The
model can capture transferable sentiment knowledge for predicting
the sentiment polarity of the target reviews.

We also do comparative analysis to test the effectiveness of the
proposed fine-grained domain-aware aspect similarity measure. It
is based on the discovered aspect topics and also the aspect topic
proportion for adjusting the contribution of various aspect models.
We try to remove these two components to test the performance of
the variants. The results are presented in Table 2. The first variant
is rand. select data + avg. pred., which means using the unlabeled
data selected in a random way instead of using the aspect-based
training dataset constructed by the domain-aware topic model, and
combining the predictions of various aspect models by averaging
them. In other words, the first variant removes both components.
The second variant is avg. pred.. It keeps the first component (train
the aspect models using the aspect-based training dataset) and only
removes the second component. Therefore, it assumes equal contri-
bution from various aspect models, just like the first variant. The
last one is the proposed framework equipped with both components.
Results show that the proposed fine-grained domain-aware aspect
similarity measure improves the performance in general except the
case having very few labeled data. We think the reason is that the as-
pect model could not locate the correct aspect sentiment knowledge
from the limited data. Thus, the simply averaging the prediction of
these biased aspect models would be better than relying on some
models. Although the second variant (avg. pred.) has a better
performance than the full framework in 10 labeled data case, the dif-
ference is very small (around 0.18%). Therefore, this comparative
analysis could show that the proposed fine-grained domain-aware
aspect similarity measure is effective for adjusting the contribution
from different discovered aspects.

When comparing with the EM model [22] with similar network
architecture but having an equal contribution for the source do-
mains, the result shows that varying the contribution based on the
domain-aware aspect similarity leads to a better performance.

We observe that our proposed framework has a small perfor-
mance gain when giving more labeled training data, besides the
case from 10 to 20. The EM model also has similar problem as
mentioned in [22]. However, the BERT model [1] has an opposite
behavior, which has a steady performance gain. We believe that
the reason is due to the compact architecture of the topic-attention
network which prevents overfitting the limited labeled data in order
to have a better domain adaptation. Increasing the learning capabil-
ity of the model and at the same time handling domain adaptation
could be a future research direction.

5 Limitations and Future Works

The proposed framework involves two separate models handling
their own jobs. These models do not share any learning parameters.
Many works report that the single model handling various tasks
would have a better generalization and thus leads to a better perfor-
mance. One possible future work might consider integrating both
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Table 1: Sentiment classification accuracy of different models

# Labeled Data Model Book DVD Electronics Kitchen Video Average

10 (40)

BERT 51.17 ± 1.25 50.86 ± 1.06 50.91 ± 1.52 51.09 ± 2.54 51.35 ± 2.21 51.07
BO 59.90 ± 1.88 58.70 ± 3.66 64.40 ± 2.30 63.77 ± 2.14 61.52 ± 3.28 61.66

MoE 55.35 ± 3.65 56.12 ± 3.94 58.15 ± 4.87 57.37 ± 4.32 56.45 ± 3.82 56.69
EM 67.16 ± 5.03 67.68 ± 4.55 67.01 ± 5.29 66.47 ± 5.40 67.08 ± 3.67 67.08

ASM 71.48 ± 4.70 72.56 ± 5.97 70.56 ± 4.44 71.83 ± 3.97 72.21 ± 4.27 71.73

20 (80)

BERT 56.14 ± 6.14 54.22 ± 5.73 54.10 ± 4.70 54.70 ± 5.27 54.27 ± 5.60 54.69
BO 59.97 ± 1.85 61.34 ± 2.65 65.28 ± 3.40 66.55 ± 2.54 63.47 ± 3.03 63.32

MoE 59.65 ± 4.99 60.09 ± 5.66 61.07 ± 5.38 61.65 ± 5.09 60.94 ± 5.24 60.68
EM 72.27 ± 2.67 71.37 ± 3.97 72.16 ± 2.74 71.84 ± 2.60 70.52 ± 1.38 71.63

ASM 76.85 ± 2.41 79.91 ± 1.85 77.73 ± 3.51 80.24 ± 1.58 79.03 ± 1.85 78.75

30 (120)

BERT 57.40 ± 5.87 56.94 ± 6.88 53.77 ± 5.40 52.96 ± 2.05 59.48 ± 7.99 56.11
BO 61.26 ± 2.03 62.78 ± 2.32 67.29 ± 2.89 66.17 ± 3.11 64.39 ± 2.51 64.38

MoE 61.71 ± 5.47 63.13 ± 5.68 63.30 ± 6.43 64.20 ± 6.06 63.36 ± 5.92 63.14
EM 74.61 ± 2.54 74.70 ± 1.35 74.81 ± 2.03 74.31 ± 1.10 73.25 ± 1.97 74.34

ASM 78.91 ± 2.13 81.42 ± 1.07 80.11 ± 1.58 81.51 ± 1.06 80.51 ± 1.75 80.49

40 (160)

BERT 68.90 ± 8.55 65.70 ± 9.25 66.38 ± 8.45 69.19 ± 8.69 65.19 ± 9.77 67.07
BO 62.23 ± 1.25 63.63 ± 2.45 69.57 ± 2.07 70.04 ± 2.22 66.05 ± 1.75 66.30

MoE 64.82 ± 4.47 67.12 ± 5.22 67.78 ± 6.05 68.00 ± 5.89 66.46 ± 5.36 66.84
EM 74.78 ± 1.06 75.34 ± 2.24 74.75 ± 1.89 76.38 ± 1.16 75.13 ± 1.77 75.27

ASM 80.41 ± 1.13 82.16 ± 0.86 81.07 ± 1.38 82.23 ± 1.02 81.26 ± 1.71 81.43

50 (200)

BERT 79.38 ± 4.79 76.36 ± 8.25 76.56 ± 7.01 78.30 ± 8.08 74.79 ± 9.68 77.08
BO 63.13 ± 2.63 63.76 ± 2.14 70.32 ± 1.93 69.57 ± 2.56 66.24 ± 1.67 66.60

MoE 67.80 ± 2.24 70.06 ± 2.59 70.99 ± 2.59 70.87 ± 2.68 70.34 ± 2.76 70.01
EM 75.04 ± 1.85 75.79 ± 1.96 75.38 ± 2.34 75.73 ± 2.27 74.74 ± 1.42 75.33

ASM 81.20 ± 0.86 82.56 ± 0.88 81.13 ± 1.30 83.02 ± 0.87 82.18 ± 1.01 82.02

Table 2: Comparative analysis of the proposed framework.

# Labeled Data Model Avg. Accuracy

10 (40)
rand. select data + avg. pred. 70.98

avg. 71.91
ASM 71.73

20 (80)
rand. select data + avg. pred. 76.47

avg. 78.18
ASM 78.75

30 (120)
rand. select data + avg. pred. 78.03

avg. 79.75
ASM 80.49

40 (160)
rand. select data + avg. pred. 79.25

avg. 80.72
ASM 81.43

50 (200)
rand. select data + avg. pred. 79.63

avg. 81.08
ASM 82.02
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models together forming an unified model to take the advantage of
multi-task learning. This might further improve the performance for
the sentiment classification task.

6 Conclusion
We study the task of multi-source cross-domain sentiment clas-
sification under the constraint of little labeled data. We propose
a novel framework exploiting domain-aware aspect similarity to
identify the contribution of discovered fine-grained aspect topics.
This fine-grained similarity measure aims at addressing the negative
effect of domain-specific aspects appearing in the existing coarse-
grained domain similarity measure, and also the limitation caused
by the constraint of little labeled data. Aspect topics are extracted
by the proposed domain-aware topic model in an unsupervised way.
The topic-attention network then learns the transferable sentiment
knowledge based on the selected data related to discovered aspects.
The framework finally makes predictions according to the aspect
proportion of the testing data for adjusting the contribution of vari-
ous aspect models. Extensive experiments show that our proposed
framework achieves the state-of-the-art performance. The frame-
work achieves a good performance, i.e. around 71%, even though
there are only 40 labeled data. The performance reaches around
82% when there are 200 labeled data. This shows that our pro-
posed fine-grained domain-aware aspect similarity measure is very
effective under the constraint of little labeled data.
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