
Advances in Science, Technology and Engineering Systems Journal
Vol. 6, No. 4, 21-28 (2021)

www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

ASTES Journal
ISSN: 2415-6698

Graph-based Clustering Algorithms – A Review on Novel Approaches
Mark Hloch*,1, Mario Kubek2, Herwig Unger3

1Faculty of Electrical Engineering and Computer Science, University of Applied Sciences, Krefeld, 47805, Germany
2Central department I, FernUniversität Hagen, 58097, Germany
3Chair of Computer Engineering, FernUniversität Hagen, 58097, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 22 April, 2021
Accepted: 27 June, 2021
Online: 10 July, 2021

Keywords:
Graph-based clustering
Co-occurrence graph
SeqClu
DCSG

Classical clustering algorithms often require an a-priori number of expected clusters and the
presence of all documents beforehand. From practical point of view, the use of these algorithms
especially in more dynamic environments dealing with growing or shrinking corpora therefore
is not applicable. Within the last years, graph-based representations of knowledge such as
co-occurrence graphs of document corpora have gained attention from the scientific community.
Accordingly, novel unsupervised and graph-based algorithms have been recently developed in
order to group similar topics, represented by documents or terms, in clusters. The conducted
work compares classical and novel graph-based algorithms, showing that classical clustering
algorithms in general perform faster than graph-based clustering algorithms. Thus, the authors’
focus is to show that the graph-based algorithms provide similar clustering results without
requiring an hyperparamter k to be determined a-priori. It can be observed that the identified
clusters exhibit an associative relationship reflecting the topical and sub-topical orientation.
In addition, it is shown in a more in-depth investigation that the Seqclu (sequential clustering
algorithm) can be optimized performance-wise without loss of clustering quality.

1 Introduction
Clustering is the process of grouping the most similar objects, e.g.
images or text documents, in the same cluster in an unsupervised
manner. In contrast to supervised classification, where the algorithm
has been trained how to map its input to an according output, cluster-
ing only uses the provided input data and tries to find the best group-
ing of objects based on that information. Due to the sheer amount
different data-types and according use-cases, dozens of architectural
concepts, such as hierarchical, partitioning or graph-based cluster-
ing have been developed over the last decades[1]. Many of the
classical, typically vector-based algorithms, such as the k-means[2],
k-means++[3] or k-NN[4] algorithm come with the requirement
of choosing the hyperparameter k, as the suggested number of ex-
pected clusters, a priori. This forces the user to estimate beforehand
what number of result clusters are expected. This approach there-
fore softens the idea of an unsupervised algorithm providing the
best possible result fully automatically, without user intervention.
In addition, actual standard algorithms mentioned above, but also
newer graph-based algorithms, e.g. Chinese Whispers[5] expose
another weakness: they typically require a full set of documents
beforehand and are not designed to adapt a growing or shrinking

set of input data over time. In use-cases like building a web-engine
clustering is known to improve the usability for the user: instead of
having a long list of search results on a user’s query the knowledge,
that lies within the available document corpus, can be presented
much more easily[6]. With the work of [7], [8] it is shown that the
use of co-occurrence graphs is very useful for graph-based concepts
on which novel clustering techniques can be built on. Recent work
on graph-based clustering algorithms[9], [10] provide novel ap-
proaches in the field of clustering. This paper gives a comparison of
these graph-based algorithms and shows their benefits over classical
approaches, as well as requirements for further optimization.

2 Materials and methods

2.1 Classical clustering algorithms

2.1.1 K-means, K-means++, Mini Batch

Due to its simplicity the k-means algorithm and its variants are
the most prominent representatives of vector based clustering algo-
rithms used. As k-means assigns each input data point to exactly
one cluster it is considered as a classical hard-clustering algorithm.

*Corresponding Author: M. Hloch, Reinarzstr. 49, 47805 Krefeld - Germany, mark.hloch@hs-niederrhein.de

www.astesj.com
https://dx.doi.org/10.25046/aj060403

21

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj060403

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

The computational complexity, which is linearly proportional to the
size of datasets, makes the k-means algorithm efficiently applica-
ble even to larger datasets. Because each data point is represented
numerically, the application field for k-means is wide: It can be
used from document clustering up to other use cases, e.g. customer
segmentation [11] or cyber-profiling criminals [12].

The general idea of the algorithm is partitioning the given data
into k distinct clusters by iteratively updating the cluster centers and
cluster associated data points. The k-means algorithm mainly per-
forms two steps: Firstly, the user has to define manually the value k,
which determines how many clusters should be a result of k-means.
Secondly, a loop of two repeating steps of assigning the data set
points to one of the clusters with lowest distance to the cluster’s
centroid and the calculation of a new centroid for each cluster is
performed. Mathematically it can be said that the k-means is an
optimization problem where the objective function that is employed
is the Sum of Squared Errors (SSE). During the assignment and up-
date steps the k-means algorithm tries to minimize the SSE score for
the set of clusters. A more detailed overview on the mathematical
implications and technical origins can be found at [13].

Due to its impact on the clustering result the distance measure
has to be chosen carefully. In general, the most popular choice
for estimating the closest centroid to each of the datapoints is the
Euclidean distance. Other distance measures, such as the Manhattan
distance or cosine similarity can also be used [13]. The k-means
algorithm comes with two major disadvantages:

1. choosing the initial cluster centers

2. estimating the k-value.

The clustering result of k-means highly depends on the initial-
ization of the cluster centers [14]. In order to optimize the results
provided by k-means especially the initialization of the cluster cen-
ters has been subject of research over the years and lead to several
approaches [15]–[16]. In contrast to the classical k-means algorithm
as described in [2], the k-means++ more carefully determines the
initial cluster centers and subsequently uses a weighted probability
score to improve the finding of cluster centers over time.

Estimating the k-value and therefore the number of output
clusters k a priori also is a big disadvantage in contrast to fully
unsupervised clustering algorithms. From the practical point of
view this would require the user to estimate a good k value before
actual clustering can be performed. Especially in cases where the
input data are very large or growing over time the manual selection
of k is therefore not applicable.

Several approaches such as the Silhouette Coefficient [17] or
Calinski–Harabasz Index [18] can be used to suggest the k-value
automatically. In addition to the above-mentioned improvements,
other algorithms like the Mini-batch k-means or fast k-means [19],
[20] aim to improve the scalability and performance of k-means for
large datasets such as web applications. In case of the mini-batch
k-means algorithm small random batches of data are chosen and
assign each of the sample points to a centroid. In a second step the
cluster centroid is then updated based on the streaming average of
all of the previous samples assigned to that centroid.

2.1.2 Chinese Whispers

The Chinese Whispers (CW) algorithm [5] is a randomized graph-
based hard-clustering algorithm. Due to its simplicity and linear
time properties, it performs very fast even for larger datasets. As it
does not require a preliminary k-value it can be considered as an
unsupervised clustering algorithm. The type of graph on which the
CW algorithm is applied can be weighted, unweighted, undirected
or directed. The CW is there-fore applicable to a wide range of use
cases in natural language processing such as language separation or
word sense disambiguation. The CW algorithm works in a bottom-
up manner by first setting a random class label for each node of the
graph and then merging class labels with those local neighborhood
classes with the biggest sum of edge weights. In case of multiple
winning classes, one is chosen randomly. Over time regions of the
same class will stabilize and grow till they connect to another class
region.

As shown in [5], CW scales are very well even for large datasets
in linear time. It is also shown that the clustering quality is compara-
ble to standard algorithms using the vector space model. As the CW
algorithm has randomized properties its output changes on each run
of the algorithm. This makes it hard for practical applications where
the data change over time or in cases where the clustering process
has to be repeated for the same data. Another disadvantage of the
CW algorithm is its tendency of forming a large amount of often
very small clusters. In order to extract the dominant clusters, e.g.
to obtain an overview of related topics for each cluster, filtering is
required which may result in unwanted information loss.

2.2 Novel graph-based clustering algorithms

2.2.1 Dynamic clustering for segregation of co-occurrence graphs
(DCSG)

The DCSG [10] algorithm is a novel clustering algorithm inspired
by the human’s brain learning process. As the human brain devel-
ops from child to adulthood it continuously learns new words and
categorizes them forming the entire knowledge of the human being.
Transferring this method to the concept of co-occurrence graphs,
clustering can be applied in order to identify topical related regions
(clusters) formed by the terms within the graph. DCSG imitates
the learning process by reading each document on sentence base
while building up the co-occurrence graph. The nodes represent
the terms, edges the relation of the words. While adding each term
to the co-occurrence graph clustering is applied by measuring the
distance between each new term and its distance to the existing clus-
ter centers. The distance between two terms is determined by the
inverse of the DICE-coefficient [21], [22]. The cluster center itself
is represented by its centroid term as defined in [23], [24]. A cluster
center is formed by the node with the shortest average distance ∆d
to every other node in the co-occurrence graph. In addition, the
standard deviation µ is determined. Based on this information the
cluster range rclusteri is defined as

rclusteri = ∆d + 3µ (1)

and is used to determine which term belongs to which cluster. While
processing new terms two major steps are performed

www.astesj.com 22

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

1. Insertion of terms

New terms will be added to the graph as nodes and edges to
the according co-occurrent terms. If a term is already existing
the related connections will be updated.

2. Clustering

Each term tnew will be merged into existing clusters if the
distance tnew ≤ ∆d + 3µ. In case that tnew > ∆d + 3µ a new
cluster will be created. In addition, the algorithm will check if
due to the insertion any relations may have changed in order
to update the cluster centers correctly.

Adding a new term that already exists in the graph will result in a
change of the relation weights and cluster centers may change. In
this case ∆d+3µwill also change. The membership of the according
terms with that cluster therefore needs to be re-evaluated in case
of exceeding the distance threshold might be moved to different
clusters.

DCSG is a novel brain inspired algorithm that works in contrast
to the classical approaches like k-means on dynamic data growing
over time. As presented in the results on clustering text data show
that this knowledge can be represented very well. Due to the high
amount of recalculation steps, especially when the cluster centers
move frequently, having a large amount of initial input data the
DCSG algorithm will perform very slow. If the data is growing
over time, just similar to the human brain’s learning process, this
disadvantage will be compensated as the graph will converge over
time and recalculations will decrease.

2.2.2 Sequential Clustering using Centroid Terms (SeqClu)

The SeqClu-algorithm [9] is a co-occurrence graph-based hard-
clustering algorithm that is capable of clustering documents in a
sequential manner using the concept of centroid terms as described
in [22]–[24].

In contrast to many of the standard clustering algorithms it does
not require an a-priori definition of the number of clusters. As the
algorithm works sequentially a set of feature vectors F of documents
is processed incrementally at once or just as they appear over time.
SeqClu is therefore applicable in cases where the input vector might
change over time such as in a Web-Engine, where documents appear
or disappear over time.

The general idea of the algorithm is to compare each new feature
vector f (a document) against an existing set of clusters containing
previously clustered documents. For each existing cluster the algo-
rithm considers the membership of a new document by a distance
determination process. If a closest cluster can be found without
exceeding a certain threshold the document will join the accord-
ing cluster. If not, a new cluster will be formed by the document
extending the cluster model.

There are mainly three crucial parts that influence the behaviour
of the algorithm:

• initialization,

• cluster membership value and

• threshold of membership (winning cluster determination).

The initialization can be performed in various ways and influ-
ences the quality of clustering result. If a set of one or more clusters
are predefined it will be used as a reference for all further arriving
documents to be clustered. The simplest initialization would be
using a single cluster having a randomly chosen document as the
first cluster. In combination with an inaccurately chosen member-
ship threshold this approach most likely will tend to merge new
documents, especially a low number of documents, into the initial
cluster and imprecise the overall clustering result. Instead, it is
suggested to form at least two initial clusters formed by the most
distant documents (antipodean documents) existing. This requires
an additional preprocessing step as for each of the initially existing
documents the distance between each of the documents centroid
must be determined. It is known that the co-occurrence graph will
converge at about 100 documents and the process of distance deter-
mination can be very time consuming as the conducted experiments
show. It is therefore suggested to consider only 2 to 100 randomly
chosen documents and is also suspect of the experiments in this
publication.

In order to determine a document’s cluster membership each
newly arriving document needs to be matched against the existing
clusters. For this purpose, the average distance between the new
documents centroid and all existing documents in each of the clus-
ters is determined by using Dijkstra’s shortest path algorithm. In
order to speed-up the calculation process all previous path calcu-
lations are cached having a linear time complexly for reoccurring
path determinations.

Regarding the judgement whether a document shall be merged
into an existing or form a novel cluster, a threshold is required. As
the threshold determination process directly influences the cluster-
ing result it must be chosen very carefully. To avoid having the
user to choose this threshold manually, it is chosen dynamically
for each of the clusters using the local connections between the
cluster’s centroid and its nearest neighbors. In order to reduce the
amount of computation time, only neighbors within a certain radius
are considered using a breadth-first search with limited depth.

As first experiments have shown the SeqClu-Algorithm is able
to cluster documents unsupervised in a sequential manner providing
good results without performing any optimization regarding the pro-
cess of threshold determination. The initial step of finding the two
initial clusters, especially having a large initial set of documents,
is very time consuming. On the other hand, the calculation results
of the initialization phase can be reused for the clustering process
itself having a lookup table. In this case the disadvantage of slow
initialization becomes an advantage for the clustering process itself
and will speed-up this phase of the algorithm, which will be shown
in the experiments conducted in this publication.

2.3 Conceptual differences of tested algorithms

Table 1 provides an overview over the six tested algorithms from
conceptual point of view. All algorithms work with different re-
quirements for initialization and are applicable to different use cases.
In general, the classical algorithms are flexible regarding the type
of input data, which can be numerical or textual data. From the user
point of view the biggest disadvantage is the requirement to provide
the number of output clusters (k-value) a-priori. Therefore, user

www.astesj.com 23

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

intervention is required in order to update the suggested number of
output clusters or the use of additional algorithms that determine
the k-value automatically. The classical algorithms are therefore
especially inflexible in cases, where the corpus size changes over
time. In contrast, the graph-based algorithms fully run unsupervised
and therefore do not require any further change in initialization
even if the corpus grows or shrinks. From clustering point of view
the algorithm will adapt and provide automatically an according
number of output clusters.

Table 1: Conceptual differences of tested algorithms

Algorithm Type Supervised/

unsupervised
A-priori no.
of clusters

Growing
corpora

K-means vector-based supervised k-value no
K-means++ vector-based supervised k-value no
Minibatch vector-based supervised k-value no
CW graph-based unsupervised none no
SeqClu graph-based unsupervised none yes
DCSG graph-based unsupervised none yes

3 Results and discussion

3.1 Setup of experiments

For the conducted experiments, natural language preprocessing in
form of sentence extraction, stop word removal and baseform reduc-
tion has been applied to all of the used documents. The according
output was used as standardized input for all algorithms tested. In
addition, the co-occurrence graph G has been built on sentence-
based co-occurrences measuring the distance between terms by the
reciprocal significance value. The significance value itself is deter-
mined using the DICE-coefficient. All small sub-graphs from the
original co-occurrence graph have been removed finding the largest
connected sub-graph within G in order to obtain a consistent single
graph G. The graph is stored in an embedded graph database using
Neo4j [25] where each node represents a term and the edges are an-
notated with their significance and respective distance value. As the
vector-based algorithms don’t use a co-occurrence graph the TF-IDF
[26] matrix was created based on the documents term-vector, which
was extracted during natural preprocessing. The implementation
of k-means, k-means++ and mini-batch were realized by using the
python-based machine learning programming library scikit-learn
version 0.23. The Chinese Whispers algorithm was taken from the
ASV Toolbox [27] from the university of Leipzig and is written
in Java. SeqClu and DCSG algorithms were both implemented
using the Java programming language. All experiments have been
performed on ten workstations with identical hardware specs.: Intel
Core i7-7700K CPU @ 4.20GHz and 16 GB Memory

3.2 Used corpora and parametrizations

The conducted experiments were performed over corpora consisting
of 40,60,. . . ,260,280 documents and for each corpus the tested algo-
rithms did run 100 times in order to obtain statistical relevant results.
The corpora each contained a random number of equally distributed
documents of the categories politics, cars, money and sports of the
German newspaper ”Der Spiegel”. The documents themselves were

each tagged by the author with their respective text category and
therefore can be used as a gold standard in order to evaluate whether
a document has been clustered correctly or not. Table 2 shows the
parametrizations that were used for the individual algorithms.

Table 2: Parametrization of used algorithms

Algorithm Parametrization

K-means, K-means++ Number of output clusters (k-value): 4
Initial cluster center: random
Number of iterations: 100

Minibatch Identical to K-means
Batchsize: 100
Number of samples (init): (3 ∗ batchsize)

CW Number of iterations: 100
Mutation rate: 0.0

DCSG No initialisation required

SecClu Initialisation: antipodean documents
Dynamic threshold

3.3 Clustering Quality

Evaluating different clustering algorithms is difficult. Commonly
used external evaluation measures, e.g. the f-measure or rand index,
penalize false positive and false negative decisions. If the number
of output clusters exceeds the number of classes it will result in a
quality trade-off. Especially the tested graph-based clustering algo-
rithms don’t require a pre-defined k-value and break this condition
by exceeding the number of output clusters. In order to limit the ef-
fect of quality trade-off the purity is preferred over other evaluation
measures as it does not penalize if the number of output clusters is
bigger than the number of class labels. The purity was calculated
for each of the tested corpora and algorithms by

purity(C,M) =
1
N

∑
k

max
j
|ck ∩ m j| (2)

with N as the total number of documents, the set of clusters
C = {c1, c2, · · · , ck} and M = {m1,m2, · · · ,m j} as the set of classes.
For each cluster ck we determined the class m j with the most mem-
bers nk, j in ck and then subsequently nk, j is summed up and divided
by N.

Figure 1 shows the total average purity of all algorithms. The
classical algorithms like k-means reside within a range of 0.7 to
0.8 exhibiting a good purity value. The graph-based algorithms,
even with lower purity values, still are close having average values
between 0.6 to 0.7.

It can be observed from Table 3 that for the standard algorithms
the purity in average is almost constant and independent of the
number of clustered documents.

The graph-based algorithms SeqClu and DCSG show, that their
purity values increase in quality at about 100 to 160 documents per
corpus. For SeqClu this behavior reflects that the co-occurrence
graph converges at about 100 documents. Each additionally added
document causes lesser changes to the co-occurrence graph resulting
in lesser changing centroid terms, that are used by this clustering

www.astesj.com 24

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

algorithm for cluster determination. The DCSG also shows this
tendency as the knowledge of the graph that is used for clustering
also improves over time and stabilizes.

Figure 1: Comparison of average purity for different corpora sizes

Table 3: Average purity for each of the tested algorithms

of doc. K-Means K-Means++ Minibatch CW SeqClu DCSG
40 0.75 0.81 0.71 0.84 0.69 0.65
60 0.74 0.80 0.72 0.79 0.64 0.67
80 0.74 0.79 0.73 0.79 0.66 0.67
100 0.74 0.79 0.73 0.77 0.69 0.65
120 0.75 0.81 0.74 0.78 0.70 0.71
140 0.76 0.82 0.77 0.77 0.72 0.70
160 0.78 0.82 0.75 0.76 0.73 0.72
180 0.81 0.83 0.77 0.74 0.75 0.75
200 0.81 0.85 0.79 0.76 0.74 0.71
220 0.83 0.86 0.79 0.74 0.75 0.73
240 0.85 0.87 0.80 0.75 0.75 0.77
260 0.85 0.88 0.80 0.72 0.74 0.71
280 0.87 0.88 0.79 0.75 0.75 0.74

Avg. total 0.79 0.83 0.76 0.77 0.72 0.71

3.4 Cluster-sizes and number of clusters

As the purity can be influenced by having a large number of clusters
- in worst case one cluster per document - it is required to take a
closer look at the number of clusters and documents per cluster.
This effect mainly has an effect to the graph-based algorithms as
they expose in contrast to the standard algorithm (k = 4) a larger
number of output clusters. As the SeqClu algorithm is in the authors
focus of research the investigations were focused on this algorithm
and resulted in the following two main observations:

1. The average cluster size in average is almost constant between
4 and 5 documents per cluster and

2. the number of clusters is slowly increasing from 20 to 50 for
the tested cluster sizes from 40 to 280 documents.

In general, it can be concluded that the knowledge growth at this
point seems to be not converged or the parametrization needs to be
finer grained, as all the tests were using standard parametrization.
In order to reveal possible indicators and starting-points for further
optimization, the tested corpora were manually examined regarding
the clustering result and the individual correctness of the clusters,

even if the gold standard suggested number of output clusters is
exceeded.

After examination the following commonly occurring observa-
tions have been made for the major number of tested corpora:

1. Homogenous Clusters
Homogenous Clusters are found 4 to 5 times in average, hav-
ing 10-20 documents with 100 percent accuracy and reflect an
actual topic the documents focus on. Those clusters contain
exactly one category and in addition, the topical relatedness
within that category is identifiable. For example, a cluster of
category “sports” can be clearly related to the topic formula 1
racing by the document centroids (number of occurrences in
brackets): Season (3), Schumacher (8), Race (5)

2. Heterogeneous Clusters
Heterogeneous Clusters occur in 1 to 2 clusters at a size of
10-20 documents of mainly two mixed topics. It could be
observed that in some cases the centroid term that mainly
influences the categorization of a document is generic. For
example, terms like Euro, Zahl or Percent are very hard to
map to a certain category. The according document could be
related to Money, Politics or even Sports. In general, it seems
difficult to identify the main scope of a cluster automatically
for heterogeneous but also homogenous clusters. An accord-
ing algorithm must be able to identify the topic and in case
of having a heterogeneous cluster, differentiate between the
mixed topics, which could occur on term level, which is focus
on further research.

3. Border Clusters
Border clusters occur at a varying number of times, depend-
ing on the topics within the corpus. These cluster types have
an average size of 5-6 documents dominated by exactly one
topic, but also having a single document of a different topic
within. For example, the cluster may contain the centroid
terms {War(2), Irak(2), USA(1)} of category politics, but one
document with centroid {Beginning}. The politic topic (War,
Irak, USA) can be clearly identified as the main topic for this
cluster. In this example the document with the centroid Be-
ginning cannot be accurately assigned to a single topic. The
actual document refers to the beginning of a voting process
regarding enrolment fees at the beginning of the semester. As
the term {Beginning} also makes sense if related to the begin-
ning of war between US and Irak the cluster has its border
to a different topic marked by this term. Border clusters are
interesting due to the fact that they mark the border between
somehow topical related areas in the graph. This might be
used e.g. within a search engine to lead the searching user to
adjacent fields of knowledge.

4. Single document clusters
Single document clusters are clusters formed by single doc-
uments that could not be assigned to any other cluster by
exceeding the dynamic threshold used in SeqClu. In very
early steps there might be not as many clusters with clearly
defined topics that could lead into the creation of these new

www.astesj.com 25

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

clusters. As SeqClu is a single linkage algorithm it is prone
to outliers. Further research in order to mitigate this problem
has to be done in future work, e.g. by merging the single
document cluster with a larger cluster within a short distance.

Putting things together it can be concluded that the graph-based
clustering algorithm performs very well regarding purity. As the
number of output clusters is greater than the gold standard suggests,
the differentiation of different topics is much closer to real world
applications. In contrast, the standard algorithms gain a high pu-
rity. But when manually evaluating the clustering results topical
differences are not detected.

3.5 Pure clustering performance

Figure 2 shows the pure execution time of clustering different corpus
sizes for all standard and graph-based clustering algorithms, except
DCSG.

Figure 2: Pure execution time for clustering

In general, it can be concluded that the Minibatch algorithm
performance is outstanding in comparison to the other algorithms
even for larger corpora. As the Minibatch algorithm is designed
especially for larger datasets, it is not surprising that it performs that
well and faster than k-means and k-means++.

The graph-based SeqClu algorithm shows a linear increasing
execution time for the pure clustering. It is also very fast in compari-
son of the other algorithms as it benefits from a caching mechanism
of shortest path calculations that is used during the initial cluster
initialization.

Figure 3 shows the overall execution time including all prelimi-
nary initializations for DCSG and SeqClu. In case of SeqClu and
DCSG require, due to their focus on non-real-time applications
and their heavy use of graph-based distance calculations, additional
computations while clustering or during initialization. In case of
the DCSG algorithm, that works on a sentence-based manner, a
huge amount of distance determinations has to be performed which
results in a high computation time of up to approx. 17 hours on
280 documents. As the scope of DCSG is not to be tremendously
fast but trying to find an accurate representation of knowledge this
performance drawback is not essential for the entire quality of the

algorithm. Further investigations are beyond scope of the authors
work and therefore not subject of this paper. SecClu’s execution time
in comparison to DCSG is about 2 hours in case of 280 documents.
It is mainly influenced by the calculation of the nearest neighbors
and number of documents used during the determination of initial
clusters (antipodean documents). Especially the determination of
antipodean documents leaves space for improvements.

Figure 3: Execution time SeqClu and DCSG (initialization and clustering)

Figure 4: Execution times for initialization of SeqClu and SeqClu-100

The conducted experiments therefore have been performed by
comparing the execution time for SeqClu using all available docu-
ments during initialization versus SeqClu-100, using only the first
up to 100 randomly chosen available documents instead. It can be
concluded (see Figure 4) that depending on the corpus size up to
approx. 70 minutes of computational time could be saved for the
tested corpora using SeqClu-100.

It is expected that co-occurrence graph converges at about 100
documents and can be considered as stable. When using 100 ini-
tial documents – even if randomly – chosen, the graph therefore
is considered as stable and side-effects, e.g. on clustering quality
should be negligible. Therefore, the purity has been also determined
(Figure 5) concluding that there is no overall negative impact of
using only 100 random documents for finding the two initial clusters
on clustering quality.

www.astesj.com 26

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

Figure 5: Comparison of purity for SeqClu and SeqClu-100

Further experiments also showed that the average cluster-sizes
and number of output clusters do not change significantly and limit-
ing the initialization of SeqClu to 100 documents is a performance
enhancement which is reflected by having a better overall perfor-
mance.

4 Conclusions

The provided work compares novel graph-based clustering algo-
rithms against well-known vector-based algorithms. All algorithms
were investigated regarding their clustering quality and general
performance. The results show that the vector-based algorithms gen-
erally perform at a higher speed in contrast to the examined graph-
based clustering algorithms. In contrast, the classical approaches
such as the k-means algorithm forces the user’s intervention a-priori,
which limits the use cases where the user is able to investigate into
the input data before actually clustering is applied. In contrast, the
graph-based clustering algorithms show that a good categorization
without the preliminary of a k-value requirement is possible. In
addition, it can be concluded that graph-based clustering provides
the property of having an associative representation - similar to
the human brain – of the clustered data. A topical differentiation
between individual topics subtopic is therefore much closer to the
actual way of thinking of the user in contrast to classical approaches.
The in-depth investigation into SeqClu’s clustering structure and
relations between the result clusters gained in further starting-points
for optimization. Additionally, it was shown by limiting the number
of documents during initialization that the performance of SeqClu
can be significantly improved without negative impact on the overall
clustering quality.

References
[1] V. Estivill-Castro, “Why So Many Clustering Algorithms: A Position Paper,”

SIGKDD Explor. Newsl., 4(1), 65–75, 2002, doi:10.1145/568574.568575.

[2] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, Volume 1: Statistics, 281–297, University of
California Press, Berkeley, Calif., 1967.

[3] D. Arthur, S. Vassilvitskii, “K-means++: The Advantages of Careful Seeding,”
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’07, 1027–1035, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2007.

[4] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonpara-
metric Regression,” The American Statistician, 46(3), 175–185, 1992, doi:
10.1080/00031305.1992.10475879.

[5] C. Biemann, “Chinese Whispers: An Efficient Graph Clustering Algorithm and
Its Application to Natural Language Processing Problems,” in Proceedings of
the First Workshop on Graph Based Methods for Natural Language Processing,
TextGraphs-1, 73–80, Association for Computational Linguistics, Stroudsburg,
PA, USA, 2006.

[6] M. Christen, et al., YaCy: Dezentrale Websuche, Online Documentation on
http://yacy.de/de/Philosophie.html, 2017.

[7] M. Kubek, Dezentrale, kontextbasierte Steuerung der Suche im Internet, Ph.D.
thesis, Hagen, 2012.

[8] M. Kubek, Concepts and Methods for a Libarian of the Web, FernUniversität
in Hagen, 2018.

[9] M. Hloch, M. Kubek, “Sequential Clustering using Centroid Terms,” in Au-
tonomous Systems 2019: An Almanac, 72–88, VDI, 2019.

[10] S. Simcharoen, H. Unger, “Dynamic Clustering for Segregation of Co-
Occurrence graphs,” in Autonomous Systems 2019: An Almanac, 53–71,
VDI, 2019.

[11] M. Bacila, R. Adrian, M. Ioan, “Prepaid Telecom Customer Segmentation
Using the K-Mean Algorithm,” Analele Universitatii din Oradea, XXI, 1112–
1118, 2012.

[12] M. Zulfadhilah, Y. Prayudi, I. Riadi, “Cyber Profiling using Log Analysis
and K-Means Clustering A Case Study Higher Education in Indonesia,” Inter-
national Journal of Advanced Computer Science and Applications, 7, 2016,
doi:10.14569/IJACSA.2016.070759.

[13] C. Aggarwal, C. Reddy, DATA CLUSTERING Algorithms and Applications,
2013.

[14] J. Pena, J. Lozano, P. Larranaga, “An Empirical Comparison of Four Initializa-
tion Methods for the K-Means Algorithm,” 1999.

[15] E. Forgy, “Cluster Analysis of Multivariate Data: Efficiency versus Inter-
pretability of Classification,” Biometrics, 21(3), 768–769, 1965.

[16] S. Khan, A. Ahmad, “Cluster center initialization algorithm for K-means clus-
tering,” Pattern Recognition Letters, 25, 1293–1302, 2004, doi:10.1016/j.patrec.
2004.04.007.

[17] L. Kaufman, P. Rousseeuw, “Finding Groups in Data: An Introduction to
Cluster Analysis,” 1990.

[18] T. Caliński, H. JA, “A Dendrite Method for Cluster Analysis,” Communi-
cations in Statistics - Theory and Methods, 3, 1–27, 1974, doi:10.1080/

03610927408827101.

[19] D. Sculley, “Web-Scale k-Means Clustering,” in Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, 1177–1178,
Association for Computing Machinery, New York, NY, USA, 2010, doi:
10.1145/1772690.1772862.

[20] A. Feizollah, N. Anuar, R. Salleh, F. Amalina, “Comparative Study of K-means
and Mini Batch K- means Clustering Algorithms in Android Malware Detection
Using Network Traffic Analysis,” 2014, doi:10.1109/ISBAST.2014.7013120.

[21] L. R. Dice, “Measures of the Amount of Ecologic Association Between
Species,” Ecology, 26(3), 297–302, 1945, doi:10.2307/1932409.

[22] M. Kubek, T. Böhme, H. Unger, “Empiric Experiments with Text Represent-
ing Centroids,” in 6th International Conference on Software and Information
Engineering (ICSIE 2017), 2017.

www.astesj.com 27

http://www.astesj.com

M. Hloch et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 21-28 (2021)

[23] M. Kubek, H. Unger, “Centroid Terms and their Use in Natural Language
Processing,” in Autonomous Systems 2016, VDI-Verlag Düsseldorf, 2016.

[24] M. Kubek, H. Unger, “Centroid Terms As Text Representatives,” in Proceed-
ings of the 2016 ACM Symposium on Document Engineering, DocEng ’16,
99–102, ACM, New York, NY, USA, 2016, doi:10.1145/2960811.2967150.

[25] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j in Action, Man-
ning, 2015.

[26] G. Salton, A. Wong, C. S. Yang, “A Vector Space Model for Automatic Index-
ing,” Commun. ACM, 18(11), 613–620, 1975, doi:10.1145/361219.361220.

[27] C. Biemann, U. Quasthoff, G. Heyer, F. Holz, “ASV Toolbox: a Modular
Collection of Language Exploration Tools,” in Proceedings of the Sixth In-
ternational Conference on Language Resources and Evaluation (LREC’08),
European Language Resources Association (ELRA), Marrakech, Morocco,
2008.

www.astesj.com 28

http://www.astesj.com

	 Introduction
	Materials and methods
	Classical clustering algorithms
	K-means, K-means++, Mini Batch
	Chinese Whispers

	Novel graph-based clustering algorithms
	Dynamic clustering for segregation of co-occurrence graphs (DCSG)
	Sequential Clustering using Centroid Terms (SeqClu)

	Conceptual differences of tested algorithms

	Results and discussion
	Setup of experiments
	Used corpora and parametrizations
	Clustering Quality
	Cluster-sizes and number of clusters
	Pure clustering performance

	Conclusions

