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 The objective of this research is to propose the estimator of the population mean for 
incomplete data by using information of simple linear relationship model in the data set. In 
addition, the factorization of the likelihood function is created to derive the maximum 
likelihood estimator for the population mean. The simulation study was conducted for 630 
situations to compare the efficiency of the proposed estimator with the two population mean 
estimators, namely pairwise deletion and Anderson estimators. In this study, two criteria—
bias and mean square error—of the performances for estimators are examined. It is found 
that all percentage levels of missing data, the mean square error of the proposed estimator 
tends to be lower than those of pairwise deletion and Anderson estimators for the large 
correlation levels between two variables in the data set whatever the sample sizes will be, 
especially for the large percentage level of missing data. However, for the small correlation 
between two variables in the data set, the three estimators tend to have the same 
performances in terms of both two criteria for all sample sizes and all percentage levels of 
missing data. 
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1. Introduction 

Missing data are frequently found in many fields of research 
[1,2]. For example, some individuals may refuse to express any 
attitude for some sensitive questions in an opinion survey. In an 
experimental research, the experimental units may be leave or die 
before the experiment is completed. In longitudinal study, the 
monotone missing data pattern usually occurs. These missing data 
problems lead to increase an inaccuracy of the inference about the 
parameters in the population if the researchers ignore about the 
missing value in the data set. In estimation of the population mean 
for incomplete data set, imputation technique [3,4] is one of the 
familiar methods that researchers used it to replace the missing 
values with substituted values before estimate the population mean 
by using standard methods. However, the variance of estimator for 
this technique is underestimated and lead to the wrong inference 
about the population mean [5–7].  Available cases analysis is 
another technique that sample mean is used for estimation about 
the population mean and sometimes this is called pairwise deletion 
method. Moreover, this method will not suitable for the large 
amount of missing values because it will give the biased estimator 

and its standard error will increase [5, 8]. Ignoring missing values 
from the data set for inferential statistical analysis will affect the 
reliability of the conclusion about parameter in the population as 
the studied of [9–13]. Therefore, there are several researchers 
proposed about the estimators of the population mean for 
incomplete data set by considering only available cases analysis as 
follows: the maximum likelihood estimators of parameters for a 
bivariate normal distribution and case of some observations are 
missing for one variable were studied by [14]. That is, the 
factorization of likelihood function approach that proposed by [14] 
has been mostly used to derive the estimators of parameters for 
incomplete data set such as  the studied of [15] and the research of 
[16]. Furthermore, these studies were found that the estimators 
derived by using likelihood function approach have a good 
performance, especially for a small sample size. Therefore, the 
proposed estimator of the population mean for incomplete dataset 
was derived based on a factorization of the likelihood function and 
using information of a simple linear relationship model in the data 
set. Moreover, a simulation study was conducted 630 situations to 
compare the efficiency of the proposed estimator with the two 
estimators, namely pairwise deletion estimator and Anderson 
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estimator. In this study, the efficiency comparison criteria are bias 
and mean square error (MSE).  

2. Materials and Methods 

In this paper, the estimation methods of a population mean 
for incomplete data set are studied for efficiency comparison as 
follows: 

2.1. Anderson Estimator 

In 1957, the maximum likelihood estimators of the parameters 
of a bivariate normal distribution for incomplete data set with one 
variable was proposed by [14]. Suppose random variables 1Y  and 

2Y  have the bivariate normal distribution with mean vector 

1 2( , )µ µ and covariance matrix
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. Suppose r 

observations of 1Y  and 2Y  are bivariate normally distributed with 

mean vector 1 2( , )µ µ and covariance matrix 
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. In 

addition, n− r observations of 1Y  are normally distributed with 

mean 1µ  and variance 2
1σ . The data are shown in Figure 1. 

11 1r 1,r+1 1n

21 2r

, ... , , , ... , 
, ... , 
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Figure 1: Missing data pattern of the bivariate normal distribution 

From data pattern in Figure 1, the likelihood function of vector 
parameter * 2 2

1 2 1 2 12θ = ( , , , , )µ µ σ σ σ  can be written in the 
formula of equation (1). 
 

* 2 2
Obs 1j 1 1 | 2j 0 1 1j 2|11 2 1

j 1 j 1
L(θ |Y ) = f ( | , ) f ( | , )µ σ β β σ

= =

+∏ ∏
n r

Y Y Yy y y     (1)      

where 0 2 1 1= β µ β µ− ,   2
1

1
 = σ

β ρ
σ

   and  2 2 2
2|1 2 =  (1 )σ ρ σ− . 

The maximum likelihood estimators of 2 2
1 1 2|1 1, , ,µ σ σ β  and 0β  

are as follows: 

1 1 1j
j=1

1ˆ   =    =  ,µ ∑
n

y y
n

 2 2
1 1j 1

j=1

1ˆ   =  ( ) ,σ −∑
n

y y
n

 
2

2 2 12
2|1 2 2

1

sˆ  =  s  
s

σ
′

′ −
′

, 

 

1j 1 2j 2
j=1

1
2

1j 1
j=1

( )( )
ˆ   =  

( )
β

′ ′− −

′−

∑

∑

r

r

y y y y

y y
  and  0 2 1 1

ˆ ˆ =    β β′ ′−y y     

where, 2 2
1 1j 1

j=1

1s  =  ( )′ ′−∑
r

y y
r

, 2 2j
j=1

1 =  ′ ∑
r

y y
r

, 1 1j
j=1

1 =  ′ ∑
r

y y
r

   

2 2
2 2j 2

j=1

1s  =  ( )′ ′−∑
r

y y
r

  and  12 1j 1 2j 2
j=1

1s  =  ( )( )′ ′ ′− −∑
r

y y y y
r

. 

Moreover, the maximum likelihood estimators of 2µ  and 2
2σ  are 

given by 2 2 1 1 1
ˆˆ = ( )µ β′ ′− −y y y  and 2 2 2 2 1

2 2|1 1 1 1
2

ˆˆ ˆˆ ˆ ˆ = =
ˆ
σ

σ σ β σ β
σ

+ , 

respectively.  

2.2. Pairwise Deletion Estimator 

In this study, pairwise deletion estimator is the estimation of 
the population mean for incomplete data set based on complete 
data or available-cases analysis [5], even if the values for the same 
individual on other variables are missing. Suppose three variables 

1 2,Y Y  and 3Y  are trivariate normally distributed in the population 
and n observations of 1Y  are completely observed for all 
individuals, but 2Y  and 3Y  are not completely observed for all 
individuals or they have missing data occurrence. That is, r 
observations of 2Y  are observed whereas n− r observations of 3Y  
are observed. Available cases analysis for the population means 

1 2, µ µ  and 3µ  can be written in the forms of equation (2).  

1 1j
j=1

1ˆ  = µ ∑
n

y
n

, 2 2j
j=1

1ˆ  = µ ∑
r

y
r

 and 3 3j
j = r+1

1ˆ  =µ
− ∑

n
y

n r
             (2) 

Under MCAR [5] of the missing data mechanism, pairwise 
deletion method will yield consistent and unbiased estimators in a 
large sample size [5]. 

2.3. The Proposed Estimator of the Population Mean for 
Incomplete Data Set 

In this section, the estimator of the population mean for 
incomplete data set is proposed. This proposed estimator is derived 
using the factorization of the likelihood function [5,14] and a 
procedure of finding the usual maximum likelihood estimator is 
applied. Suppose dependent variable 1Y  is assumed to have the 
linear relationship with independent variable 1X  and its 
relationship model is given by equation (3).  

1j 0 1 1j 1jy xδ δ ε= + + ,
  

  1, 2, ...,j n=          (3)
 

where 0δ    and are random 1jε and  , are unknown parameters 1δ   

errors that have the normal distribution with mean 0 and variance 
2
1σ . Then the mean and variance of 1Y  can be written as 

( )1 0 1 1 1E Y Xδ δ µ= + =  and ( ) 2
1 1V Y σ= , respectively. Further, 

1jε  can be written in the form of equation (4).    

1j 1j 0 1 1jy xε δ δ= − − ,
  

  1, 2, ...,j n=          (4) 

Let 2Y

2µ  and variance 2
2σ . In addition, r observations of 1Y  and 2Y
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( )0 1 1 2,Xµ δ δ µ= +  and covariance matrix 
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. 

The n− r observations of 1Y  are normally distributed with mean 

0 1 1Xδ δ+  and variance 2
1σ . The study data pattern is shown in 

Figure 2.     
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Figure 2: Missing data pattern of the proposed study 

Let 1E  be a random variable that have the relationship of 1Y  and 

1X  in the form of 1 1 0 1 1E Y Xδ δ= − − . Then two random 
variables 1E  and 2Y  are bivariate normally distributed with mean 

vector ( )20,µ µ=  and covariance matrix 
2
1 12

2
12 2

.
σ σ

σ σ

 
∑ =  

  
 

Additionally, the missing data pattern of 1E  and 2Y  are shown in 
Figure 3.     
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Figure 3: Random error and missing data pattern of 2Y  

Lemma 1 Let 1 1 0 1 1E Y Xδ δ= − − , 1Y  and 2Y  be the random 
variables where 0 1,δ δ  are unknown parameters and 1X  be 
independent variable. Suppose 1E  and 2Y  are bivariate normally 

distributed with mean vector ( )20,µ µ=  and covariance matrix
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
.  Then, 2 1 1Y E ε=  is normally distributed with 

mean 2|1 2 12 1µ µ τ ε= +  and variance 2 2 2
2|1 2(1 )σ ρ σ= −  where

1 1 0 1 1y xε δ δ= − − ,. 2
2|1 0 1 2|1 12( , , , )θ δ δ σ τ= and  2

12
1

ρσ
τ

σ
=    

Proof Let 1 1 0 1 1E Y Xδ δ= − −  and 2Y  be bivariate normally 

distributed with mean vector ( )20,µ µ=  and covariance matrix
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. Then, the joint probability density function of 

1E  and 2Y  is given by equation (5). 

12 1 2 12
2 21 1 1 2 2 2 222 1 1 2 22(1 )

2 2 2
1 2

( , y ; )

1 (5)
2 (1 )

y y

f

e

ε ε µ µ
ρ

σ σ σ σρ

ε θ

π ρ σ σ

       − − − − +       
      −   

=

−

where 1ε−∞ < < ∞ , 2y−∞ < < ∞  and 2
2|1 0 1 2|1 12( , , , )θ δ δ σ τ= . 

Moreover, the probability density function of 1E  is given by 
equation (6). 

21 1
2 1

1 1 1 2
1

1( ; )
2

f e
ε
σε θ

πσ

 
−  

 =       (6)  

where 1ε−∞ < < ∞  and 2
1 0 1 1( , , )θ δ δ σ= .    

Hence, a conditional probability density function of 2Y  given 

1 1E ε=  can be written as follows:    

12 1 2 12
2|1 2 1 2|1

1 1 1

( , y ; )(y | ; )
( ; )

ff
f
ε θ

ε θ
ε θ

=  

2
1 2 2 1

2 2 12(1 )
2 2

2

1

2 (1 )

y

e

µ ε
ρ

σ σρ

π ρ σ

    − − −    
    −  =

−
 

21 22 2 12 2 12(1 ) 2
2 2

2

1

2 (1 )

y

e

ρσ
µ ε

σρ σ

π ρ σ

  − − − 
  −

=
−

 

{ }1 2
2 2 12 12 22(1 ) 2

2 2
2

1

2 (1 )

y

e
µ τ ε

ρ σ

π ρ σ

− − −
−

=
−

; 2
12

1

ρσ
τ

σ
=               

{ }21
2 2|122 2|1

2
2|1

1

2

y

e
µ

σ

πσ

− −

=     (7) 

where 2|1 2 12 1µ µ τ ε= +  and 2 2 2
2|1 2(1 )σ ρ σ= −   .          

From Equation (7), this is the probability density function of a 
normal distribution with mean 2|1 2 12 1µ µ τ ε= +  and variance

2 2 2
2|1 2(1 )σ ρ σ= − . Therefore, a random variable 2 1 1Y E ε=  is 

normally distributed with mean 2|1 2 12 1µ µ τ ε= +  and variance 

2 2 2
2|1 2(1 )σ ρ σ= −  where 1 1 0 1 1y xε δ δ= − −  and 2

12
1

.ρσ
τ

σ
=     
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Lemma 2 For 1, 2, ..., ,j r= the two random variables 1jE  and 2jY  
are assumed to have the bivariate normal distribution with a mean 

vector ( )20,µ µ=  and covariance matrix
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. For 

1, 2, ..., ,j r r n= + +  the random variable 1jE  is assumed to have 

a normal distribution with a mean 0 and variance 2
1σ where

1j 1j 0 1 1jE Y Xδ δ= − − ; 0δ  and 1δ are unknown parameters and 

1jX be independent variable. Let [ ]11 12 1n 21 22 2r... ...W E E E Y Y Y ′=  
be a random vector. Then, the likelihood function of parameter 
vector 2 2

0 1 1 2|1 12( , , , , )θ δ δ σ σ τ=  is denoted by equation (8). 

( ) ( )
( )211 2 2j 2|121j2 22 12 21 2|112 2

1 2|1

( | )

2 2 ( )8

rn
yn r

ji

L w

e e
µε

σσ

θ

πσ πσ
− −−

− − ==

=

   ∑∑   
  
      

where 2 2 2
2|1 2(1 )σ ρ σ= −  and 2

12
1

ρσ
τ

σ
= ,  1j 1j 0 1 1jy xε δ δ= − −    

Proof  For 1, 2, ..., ,j r= the two random variables 1jE  and 2jY  are 
assumed to have a bivariate normal distribution with mean vector 

( )20,µ µ=  and covariance matrix
2
1 12

2
12 2

.
σ σ

σ σ

 
∑ =  

  
 For 

1, 2, ..., ,j r r n= + +  the random variable 1jE  is assumed to have 

a normal distribution with a  mean 0 and variance 2
1σ . 

Let [ ]11 12 1 21 22 2... ...n rw y y yε ε ε ′=  be a vector of value for the 

random vector [ ]11 12 1n 21 22 2r... ... .′=W E E E Y Y Y  Then, the 

likelihood function of 2 2
0 1 1 2|1 12( , , , , )θ δ δ σ σ τ=  can be written 

as follows: 

12 1j 2j 12 1 1j 1
1 1

( | ) ( , ; ) ( ; )
r n

j j r
L w f y fθ ε θ ε θ

= = +

= ∏ ∏   

1 1j 1 2|1 2j 1 2|1 1 1j 1
1 1

( ; ) ( | ; ) ( ; )
r n

j
j j r

f f y fε θ ε θ ε θ
= = +

  
= ×    
  
∏ ∏

1 1j 1 2|1 2j 1j 2|1
1 1

( ; ) ( | ; )
n r

j j
f f yε θ ε θ

= =

= ∏ ∏    (9) 

From Lemma 1, the likelihood function ( | )L wθ  in equation (9) 
can be written as 

{ }2 211 1j 2j 2|1222 2|11
2 21 11 2|1

( | )

1 1

2 2

y
n r

j j

L w

e e

ε µ
σσ

θ

πσ πσ

  − −−   
 

= =

  
  

=   
      

∏ ∏
 

  ( ) ( )
( )211 2 2j 2|121j2 22 12 21 2|112 2

1 2|12 2

rn
yn r

jje e
µε

σσπσ πσ
− −−

− − ==

   ∑∑   
 =  
      

       

Theorem 1 For 1, 2, ..., ,j r= the two random variables 1jE  and 

2jY  are assumed to have a bivariate normal distribution with mean 

vector ( )20,µ µ=  and covariance matrix
2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
. For 

1, 2, ..., ,j r r n= + +  the random variable 1jE  is assumed to have 

a normal distribution with mean 0 and variance 2
1σ where

1j 1j 0 1 1jE Y Xδ δ= − − ; 0δ  and 1δ are unknown parameters and 

1jX be independent variable. Let [ ]11 12 1n 21 22 2r... ...W E E E Y Y Y ′=  
be a random vector. Then, the factorization maximum likelihood 
estimator of 2µ  is given in equation (10). 

2 2 12 1Proposed
ˆ ˆ  =     µ τ ′′ −y e                                            (10) 

where
1j 1j 1 1

j=1
1

2 2
11j

j=1

ˆ

( )
δ

−

=
−

∑

∑

n

n

x y nx y

x n x
    ,, 1 1j

j=1

1= ∑
n

y y
n

, 1 1j
j=1

1=
n

x x
n∑   

   1j 1j 0 1 1j
ˆ ˆe y xδ δ= − − , 0 1 1 1

ˆ ˆδ δ= −y x for, 1, 2, ...,j r=     

1j 2j 1 2
j=1

12
2 2

11j
j=1

ˆ  = 
( )

τ

′ ′−

′−

∑

∑

r

r

e y re y

e r e
, 2 2j

j=1

1 = ′ ∑
r

y y
r

 and 1 1j
j=1

1= ′ ∑
r

e e
r

 .       

Proof  Let [ ]11 12 1n 21 22 2r... ...W E E E Y Y Y ′=  be a random vector. 
From Lemma 2, we known that the likelihood function of 

2 2
0 1 1 2|1 12( , , , , )θ δ δ σ σ τ=  is denoted by equation (8). Then, the 

log-likelihood function can be written in the form of equation 
(11).                        

( ) ( )

( ) ( )

2 2 2
1 1j 2|12

11

2
2j 2|12

12|1

1l

1

n ( | ) ln 2 ln 2
2 2

1

2

1
2

θ πσ ε πσ
σ

µ
σ

=

=

= − − −

− −

∑

∑

n

j

r

j

n rL w

y
 

From Lemma 1, the random variable 2 1 1Y E ε= is normally 
distributed with mean 2|1 2 12 1µ µ τ ε= +  and variance 

2 2 2
2|1 2(1 )σ ρ σ= −  where 1 1 0 1 1y xε δ δ= − −  and 2

12
1

.ρσ
τ

σ
=   

Then, the log-likelihood function as shown in equation (11) need 
to maximize and achieve the maximum likelihood estimators of 

2µ , 0δ , 1δ    and are as follows: 12τ    
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2
1j2

0 0 11

1ln ( | ) 0
2

θ ε
δ δ σ =

 ∂ ∂
= − = 

∂ ∂   
∑

n

j
L w     

           ( )20 1 1j2 1j
0 11

1
2

δ δ
δ σ =

 ∂
= − − − 
∂   

∑
n

j
y x 0=   

          1j 0 1 1j
1 1

δ δ
= =

= − −∑ ∑
n n

j j
y n x   0=      (12) 

2
1j2

1 1 11

1ln ( | ) 0
2

θ ε
δ δ σ =

 ∂ ∂
= − = 

∂ ∂   
∑

n

j
L w    

          ( )21j 0 1 1j2
1 11

1
2

δ δ
δ σ =

 ∂
= − − − 
∂   

∑
n

j
y x  0=  

         2
1j 1j 0 11j 1j1 1 1

δ δ
= = =

= − −∑ ∑ ∑
n n n

j j j
x y x x  0=      (13) 

Equation (12) is multiplied by 1j
1=
∑

n

j
x , then it will give the form 

in equation (14). 
2

0 1 1j1j 1j 1j
1 1 1 1

δ δ
= = = =

 
− −   

 
∑ ∑ ∑ ∑

n n n n

j j j j
x y n x x 0=               (14) 

Equation (13) is multiplied by n, then it will give the form in 
equation (15).   

2
1j 0 1j 11j 1j

1 1 1
δ δ

= = =
− −∑ ∑ ∑

n n n

j j j
n x y n x n x 0=              (15) 

Subtraction equation (14) from equation (15), then it will give the 
form in equation (16).      

2
2

1j 1 1j 11j 1j 1j 1j
1 1 1 1 1

δ δ
= = = = =

 
− − +   
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n n n n n

j j j j j
n x y n x x y x 0=           (16)  

That is, 0=

2
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11j 1j 1j 1j 1j1j1 1 1 1 1
δ

= = = = =

   − − −      
∑ ∑ ∑ ∑ ∑

n n n n n

j j j j j
n x y x y n x x   

Additionally, the value of 1δ  that maximize the log-likelihood 
function is denoted by 

1j 1j1j 1j
1 1 1

1 2
2

1j1j1 1

δ = = =

= =

−

=
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∑ ∑ ∑
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n n n
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n x x
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11j

1
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δ =

=

−

=
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j
n

j

x y nx y

x n x
   

Therefore, the maximum likelihood estimator of 1δ  is given by  

1j 1j 1 1
j=1

1
2 2

11j
j=1

y y
ˆ

( )

n

n

x nx

x n x
δ

−

=
−

∑

∑
 for 1 1j

j=1

1 =  
n

x x
n∑  and 1 1j

j=1

1y  =  y .
n

n∑     

From equation (12), the form of this equation can be written as 

0 1 1j1j
1 1

δ δ
= =

= −∑ ∑
n n

j j
n y x  or Then, the maximum  . 0 1 1 1yδ δ= − x     

likelihood estimator of 0δ  is given by 0 1 1 1
ˆ ˆy xδ δ= − . 

From Lemma 1, we know that 2|1 2 12 1µ µ τ ε= +  then the 
maximum likelihood estimator of parameter 12τ  can be derived 
as follows:   

( )22 2|12
12 12 12|1

1ln ( | ) 0
2
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 ∂
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Equation (18) is multiplied by 1
1

r

j
j
ε

=
∑ , then it will give the form 

in equation (19).  
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Equation (17) is multiplied by r, then it will give the form in 
equation (20).    

2
1 2 2 1 12 1
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r r r

j j j j
j j j

r y r rε µ ε τ ε
= = =

− −∑ ∑ ∑ 0=                  (20)  

Subtraction equation (19) from equation (20), then it will give the 
form in equation (21).    

2
2

1 2 12 1 2 12 11
1 1 1 1 1

r r r r r

j j j j jj
j j j j j

r y r yε τ ε ε τ ε
= = = = =

 
− − +   

 
∑ ∑ ∑ ∑ ∑ 0=    (21) 

Furthermore, the value of 12τ  that maximize the log-likelihood 
function is denoted by 
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Therefore, the maximum likelihood estimator of 12τ  is given by   
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, the Therefore 2 2 12 1 .µ τ ε ′′= −y or 2 2 12 1
1 1

r r

j j
j j

r yµ τ ε
= =

= −∑ ∑
maximum likelihood estimator of parameter 2µ  is given by

2 2 12 1Proposed
ˆ ˆ  =     µ τ ′′ −y e . 

 
Figure 4: Biases of the three estimators for percentage of missing data equals 

10 of each sample size 

3. Results of a Simulation Study 

The efficiency investigation of the proposed estimator and 
comparison of its efficiency with the two estimators—Anderson 

and pairwise deletion estimators—are studied via the simulation 
data. Moreover, these data are generated 630 situations and 
repeated 50,000 times for each situation. In this section, the criteria 
in terms of bias and mean square error are used for efficiency 
comparison. The population data of random variables 1Y  and 2Y  
are generated in the form of bivariate normal distribution with 
mean vector ( )0 1 1 2,µ δ δ µ= − X and covariance matrix

2
1 12

2
12 2

σ σ

σ σ

 
∑ =  

  
.  

 
Figure 5: Biases of the three estimators for percentage of missing data equals 

20 of each sample size 
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Figure 6: Biases of the three estimators for percentage of missing data equals 
30 of each sample size 

In this study, the values of parameters are defined as follows: 
2

0 1 2 22, 3, 5, 9δ δ µ σ= = = = and the correlations between 1Y  
and 2Y  are given by 1.0, 0.9, ...,0, ...,0.9, 1.0ρ = − − . Then, the 
samples of size n = 10, 20, 30, ..., 100 are randomly taken from 
these populations. Missing data mechanism in the form of MCAR 
[5] for three levels—10%, 20% and 30%—are constructed from 
each sample. The simulation results are shown in Figure 4 to 
Figure 9. Figure 4 to Figure 6 show that when percentages of 
missing data equal 10, 20 and 30 of each sample size, bias of the 

proposed estimator tends to be no difference from those of pairwise 
deletion and Anderson estimators for almost all sample sizes and 
all levels of the correlation between two variables in the data set. 
Moreover, some situations (e.g., n = 20, 30 and percentage of 
missing data in the data set equals 30) and negative high 
correlation between two variables, its bias tends to be smaller than 
the bias of pairwise deletion and Anderson estimators. 

 

Figure 7: Mean square errors of the three estimators for percentage of missing 
data equals 10 of each sample size 
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Figure 8: Mean square errors of the three estimators for percentage of missing 
data equals 20 of each sample size 

When considering the performance of the proposed estimator 
in term of mean square error in Figure 7, it is found that the mean 
square error of the proposed estimator tends to be lower than those 
of pairwise deletion and Anderson estimators for the large 
correlation levels between two variables in the data set and all 
sample sizes when the data have 10 % of missing data.   

 

Figure 9: Mean square errors of the three estimators for percentage of missing 
data equals 30 of each sample size 

For higher percentages of missing data of each sample sizes as 
show in Figure 8 and Figure 9, the performance of the proposed 
estimator in term of mean square error are similar to the case of the 
small percentages of missing data as mention above. Additionally, 
the mean square error of the proposed estimator tends to be 
obviously lower than those of pairwise deletion and Anderson 
estimators for the large correlation levels between two variables in 
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the data set whatever the sample sizes will be. However, for the 
small correlation levels between two variables in the data set, the 
three estimators tend to have the same performances in terms of 
both two criteria—bias and mean square error—for all sample 
sizes and all percentage levels of missing data. This simulation 
study is found that the mean square errors of three estimators tend 
to be decrease when the sample size increases for all levels of the 
correlations between two variables in the data set and all levels of 
the percentages of missing data. In addition, the mean square error 
of the proposed estimator tends to be lower than those of the two 
estimators—pairwise deletion and Anderson estimators—for the 
small sample sizes (e.g., n = 10, 20, 30) and high correlations (e.g., 
ρ = -0.1, -0.9, -0.8, 0.8, 0.9, 1.0) between two variables in the data 
set, especially the percentage of missing data is equal to 30. 
However, the mean square errors of three estimators tend to have 
a similar performances for the low correlations between two 
variables in the data set and all levels of the percentages of missing 
data.    

4. Discussion 

In this study, the simulation results show that pairwise deletion 
estimator tends to be a biased estimator for the small sample sizes 
as mention by [5,9]. Moreover, the maximum likelihood estimator 
of the population average for incomplete data set is derived by 
using factorization of the likelihood function approach [14] tends 
to have a good performance for the large correlation levels between 
two variables in the data set and small sample sizes. This conforms 
to the studies of [14,16]. In addition, the maximum likelihood 
estimation of the population mean for incomplete data set tends to 
have a good efficiency for small sample sizes as the study of [7]. 
This discovery of the proposed estimator will benefit for some 
applications in the real life data, especially nowadays it is the era 
of big data analysis which has the large number of variables in data 
set. Therefore, we should find the relationships of some attributes 
in data set before estimating the average of the interested variables 
for incomplete data analysis. Further, this proposed estimator will 
lead to correct estimate as possible. 
5. Conclusion 

The proposed estimator of the population mean for incomplete 
dataset was derived by using the linear relationship between some 
variables in the data set and the factorization of likelihood 
function [14] was created to derive the proposed maximum 
likelihood estimator. Additionally, the investigation of this 
proposed estimator was studied via the simulation data for 630 
situations to compare the efficiency in terms of bias and mean 
square error with two estimators, namely pairwise deletion and 
Anderson estimators. It is found that the efficiency of the 
proposed estimator tends to be better than those of two above 
mention estimators, especially for case of the high percentages of 
missing data and the strong linear correlation between two 
variables (e.g., the  degree of ρ  close to -1 or 1) whatever the 
sample size will be. However, for the small correlation between 
two variables (e.g., the degree of ρ close to zero), the three 
estimators tend to have the similar efficiencies for all sample sizes 
and all percentage levels of missing data.     
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