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In control systems, several optimization problems have been overcome using Multi-Agent Sys-
tems (MAS). Interactions of agents and the complexity of the system can be understood by using
MAS. As a result, functional models are generated, which are closer to reality. Nevertheless,
the use of models with permanent availability of information between agents is assumed in
these systems. In this sense, some strategies have been developed to deal with scenarios of
information limitations. Game theory emerges as a convenient framework that employs concepts
of strategy to understand interactions between agents and maximize their outcomes. This paper
proposes a learning method of distributed control that uses concepts from game theory and
reinforcement learning (RL) to regulate the behavior of agents in MAS. Specifically, Q-learning
is used in the dynamics found to incorporate the exploration concept in the classic equation
of Replicator Dynamics (RD). Afterward, through the use of the Boltzmann distribution and
concepts of biological evolution from Evolutionary Game Theory (EGT), the Boltzmann-Based
Distributed Replicator Dynamics are introduced as an instrument to control the behavior of
agents. Numerous engineering applications can use this approach, especially those with limita-
tions in communications between agents. The performance of the method developed is validated
in cases of optimization problems, classic games, and with a smart grid application. Despite
the information limitations in the system, results obtained evidence that tuning some parameters
of the distributed method allows obtaining an analogous behavior to that of the conventional
centralized schemes

1 Introduction
This original research paper is an extension of the work initially
presented in the Congreso Internacional de Innovación y Tendencias
en Ingenierı́a (CONIITI) 2020 [1]. In this version, readers can find
a full view of the proposed learning distributed method, which uses
concepts from Game Theory (GT) to control complex systems. This
paper also presents an evaluation of the method from an evolution-
ary perspective of the obtained equations. This work also simulates
a modified version of the case study presented in the conference,
which includes different communication constraints and attributes
of the generators employed in the power grid. Moreover, some
additional cases in the context of classic games and maximization
problems are introduced to make clearer the incidence of some
control parameters in the behavior of agents.

The idea to model and control complex systems has increased
over time. In this context, Engineering applications have received
special interest due to their affinity with the use of mathematical
techniques to prove new models and concepts on applications closer
to reality [2]. In recent decades, research has been focused on the
study of distributed systems with large-scale control. Numerous
models and techniques have been developed to overcome issues
such as the expensive computational requirements, the structure of
the communication, and the calculation of the data required to com-
plete a task in large-scale systems. These issues can be managed by
using Multi-Agent Systems (MAS) and concepts from game theory
[3]. In this sense, the interactions of agents have been thoroughly
studied, as some strategies can help agents maximize their outcomes.
For example, [4] establishes relations among games, learning, and
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optimization in networks. Other studies have focused on games
and learning [5] or on algorithms for distributed computation in
topologies of dynamic networks [6]. Authors in [7] studied the
main applications of power control in the frameworks of distributed
and centralized game theory. Regarding smart grid control applica-
tions, please refer to [8]. Other research has concentrated on cases
with issues in coordination and negotiation that guide the study of
the interactions of agents[9]. For further studies on applications of
power control using game theory, please refer to [10]. Research
on game theory considers three types of games. First, continuous
games consider the way an agent can have a pure strategy looking
for maximum profit. Second, in matrix games, agents are regarded
as individuals and can take only one shot to play simultaneously.
Finally, dynamic games suppose that players can learn in some
way about the environment, that is, their actions and states. This
assumption means agents can learn and correct their behavior based
on the outcomes of their actions [11]. Dynamic games must deal
with the following challenges: modeling the environment for agents
interaction, modeling the agents goals, the prioritization of the
agents actions, and the estimation of the amount of information
owned by a player [12].

The study of dynamics of agents changing over time is a concept
of dynamic games introduced by Evolutionary game theory (EGT)
[13]. The concept of the evolutionary stable strategy popularized
EGT thanks to the analogy with biology concepts and the compari-
son with natural behaviors [14]. Some real-life control applications
have employed EGT, whose understanding serves as a basis for the
replicator dynamics (RD) approach. The revision protocols describe
the way agents choose and modify their strategies, while population
games determine the agents’ interactions. The combination of both
revision protocols and population games produces the concept of
evolutionary game dynamics [14]. This perspective of evolution is
often used to model large-scale systems because its mathematical
background helps to describe this process with differential equations
[13]. Many areas of Engineering have applied EGT, for example,
optimization problems, control of communication access, systems
of microgrids, etc. [11]. The use of EGT to model engineering prob-
lems has revealed the following benefits: ease to relate a game to an
engineering problem, where payoff functions can be defined with the
objective function and the strategies, and the relationship between
the optimization concept and Nash Equilibrium, which is enabled
under particular conditions that met the conditions of the first-order
optimization of the Karush–Kuhn–Tucker. Last but not least, EGT
uses local information to achieve solutions. In this sense, distributed
approaches emerge to tackle engineering problems, which is useful
when considering the implementation cost of centralized schemes
and their complexity [11]. Distributed schemes of population dy-
namics have outstanding features over techniques like the method of
dual decomposition, which requires a centralized coordinator [15].
This characteristic reduces the associated cost with the structure
of communication. Additionally, in comparison with distributed
learning algorithms in normal-form-games, there are no failures in
distributed population dynamics when all the variables involved in
decision-making have limitations[16]. This makes Distributed Pop-
ulation Dynamics suitable for solving issues regarding allocation of
resources like in a smart city design [17]. For these purposes, the
distributed power generation needs to be integrated so that electric

grids be more reliable, robust, efficient, and flexible. Nevertheless,
modeling a grid using a distributed approach instead of the classic
centralized, is an option to consider due to its realism and flexibil-
ity, according to microgrids constraints [18]. In this sense, control
operations are considered individually in microgrids, as they make
a distinction among the power generation, the secondary frequency,
and the economic dispatch [19]. Static optimization concepts are
employed to manage the economic dispatch [20] or even methods
like the offline direct search [21]. The analysis may be more com-
plicated if it includes loads, the generator, and power line losses
in the distributed model. Other approaches cannot consider the dy-
namic conditions like the economic dispatch time dependence [22].
Some approaches have been developed to face these challenges.
For instance, [23] presents a management system for a microgrid
with centralized energy and stand-alone mode to study its static
behavior. Other research employs a distributed control strategy con-
sidering power line signaling for energy storage systems [24]. The
employment of the MAS framework in economic problems using
a distributed approach was gathered in [25], taking into account
the delays in the communication system. Microgrid architectures
have also been proposed considering distributed systems like the
microgrid hierarchical control [26].

This paper presents an approach to overcome some of the is-
sues identified in the literature review. The aim is to show how to
develop a control method of learning to study the influence of the
exploration concept in MAS, that is, interaction between agents.
RD was developed from simple learning models [27], so this re-
search seeks to bring the exploration concept into the traditional
exploration-less expression of RD, using the Q-learning dynamics.
As a result, the combination of these frameworks opens up a path
to tackle dynamics in a scenario where the feedback of each agent
is determined by the agent itself and by other agents, and where
interaction between them is limited. For the analysis, the Boltzmann
distribution includes a distributed perspective of the Replicator Dy-
namics as a way to regulate the agents’ behavior in a determined
scenario. The developed method employs a temperature parameter
and the presence of entropy terms, to modify the learning agents’
behavior and link the selection-mutation process from EGT and the
exploration-exploitation concept from RL. This attribute complies
with the traditional positive condition of EGT techniques (modeling
agents’ interaction). Nevertheless, In the control area, the employ-
ment of these techniques has to be understood more on the normative
side of things. To explain these features, this approach employs
theory of RL, EGT, and decision-making to solve some cases in
the context of classic games and maximization problems using a
novel distributed model of learning. It also uses experimental data to
tackle an economic dispatch problem, which is a common problem
in smart grids. The results obtained by the proposed approach are
contrasted with the classical centralized framework of RD.

The remainder of this paper is organized as follows. Section 2
presents, a short synopsis of game theory and reinforcement learn-
ing, as well as the relationship between EGT and Q-learning using
the Boltzmann distribution. Section 3 explains a distributed neigh-
boring concept used for the Boltzmann control method, considering
the behavior of replicator dynamics. Section 4 introduces important
concepts from the previous Section, related to evolutionary game
theory and reinforcement learning. In Section 5, the employment of
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the learning method on traditional cases of GT and maximization
problems presents the background to analyze the application of the
Boltzmann model behavior on a smart grid real-life case. Finally,
the main conclusions of the study are summarized in Section 6.

2 Preliminaries
Game theory includes a group of equations and concepts to study
the background in decentralized control issues. Most of the time, a
game comprises a group of players (agents) with similar population
behavior that choose the best way to execute actions. The strategy
of a player can decrease rewards after performing a wrong action
or increase rewards when the action was correct [28]. The theory
of learning is used to understand this behavior. In this sense, the
scheme of RL explains the relationship among the environment,
signals, states, and actions. In the interaction, at each step, each
player gets a notification with the current state of the environment
and a reinforcement signal, then, the player chooses a strategy. Each
player of the game aims to find the policy that produces the best
rewards after recognizing the consequence of its actions, that is,
reward or punishment. A structure of estimated value functions is
characteristic of traditional RL methods [29]. The total reward that
a player can obtain is usually a pair state-action or a state value.
This means that the optimal value function is needed to find the
policy that correctly fulfills payoffs. The Markov decision process
and value iteration algorithm can be employed for this purpose [30]
when the scenario is familiar. In other cases, Q-learning can be used
as an adaptable method of value iteration where the model of the
scenario does not require to be specific. Equation (1) depicts the
Q-learning interaction process [31]:

Qt+1(s, a)← (1 − α)Qt(s, a) + α(Γ + γmaxa′Qt(s′, a′)) (1)

The whole process begins at time Qt+1 with an initial pair of
action-state (s, a), then, after performing action a achieves the
Qt(s′, a′), where (s′, a′) represents the newest values of s and a,
respectively. maxa′ obtains the uppermost value of Q from s′ by
selecting the action that increases its value. α represents the general
step size parameter, Γ is the instant reinforcement, and γ is a de-
duction parameter. When players have complete access to the game
information and there are no communication limitations, the theory
of learning and games are valuable instruments to deal with control
applications that use a centralized approach. Nevertheless, these
models aim to provide a close description of optimal circumstances,
but they have some drawbacks when dealing with more realistic
conditions, communication constraints, and the individuals ratio-
nality. In this vein, EGT tries to loosen the idea of rationality, by
substituting it with biological notions like evolution, mutation, and
natural selection [32, 33]. In EGT, there is a genetic encoding of the
strategies of the players, which are called genotypes and represent
the conduct of every player employed to calculate its outcomes. The
quantity of other types of agents in the scenario determines the pay-
off of the genotype of each player genotype. In EGT, the population
strategies begin to evolve employing a dynamic process that allows
finding the expected value of this process through the use of the
Replicator dynamics equation. An evolutionary system often returns
to two concepts: mutation and selection. On the one hand, mutation

provides variety to the population. On the other hand, selection
provides priority to some varieties where every genotype is a pure
strategy Q j(n), where the RD offspring expresses this behavior. The
general equation of RD [27] is presented in Equation (2).

dxi

dt
= [(Ax)i − x · Ax]xi (2)

where xi is the portion of a population that plays the i-th strategy.
The payoff matrix is written as A and it owns diverse payoff val-
ues that each replicator obtains from other agents. The vector of
probability x = (x1, x2, ..., xJ) often defines the population state (x),
and evidence the diverse density values of each type of replicator.
Consequently, (Ax)i is the payoff obtained by the i-th player with
x state. Then, the average payoff would be written as x · Ax. Simi-
larly, dxi

dt symbolizes the growth rate of the population playing the
i-th strategy, which is calculated using the obtained payoff value
after playing the i-th strategy and its difference with the average
population payoff. [34].

2.1 Relating EGT and Q-Learning

In [35], the frameworks of RD and Q-learning are related in the
context of two-player games, where players have different strategies.
This relationship is conceivable as players can also be considered
Q-learners. For modelling this case, a differential equation is needed
for player R (rows) and another one for player C (columns). When
A = Bt, the standard RD Equation (2) is employed, where xi is sub-
stituted by ri or ci. Thence, A or B, and the change in state (x) for
r or c determine the payoff matrix for a specific player. Therefore,
(Ax)i switches to (Ac)i or (Br)i and is the reward obtained by the
i-th player with a r or c state. Likewise, for players R and C, the
growth rate dxi

dt switches to dri
dt or dci

dt , respectively. This behavior is
explained using the following system of differential equations [27]
below:

dri

dt
= [(Ac)i − r · Ac]ri (3)

dci

dt
= [(Br)i − c · Br]ci (4)

Equations (3) and (4) denote the group of replicator dynamics
equations used to model the behavior of two populations. Each
population has a growth rate determined by the other populations.
For example, A and B denote two payoff matrices that are needed to
estimate the rate of change for two different current players in the
problem using this group of differential equations. To find the rela-
tionship between the Q-learning framework and the RD equations,
Equation (5) is introduced:

xi(δ) =
eτQai (δ)∑n

j=1 eτQa j (δ)
(5)

where the notation xi(δ) means the prospect of using strategy i
at time δ, and τ symbolizes the temperature. Equation (5) is well-
known as the Boltzmann distribution and is used in [35] to obtain
the continuous time model of Q-Learning in the context of a game
played by two players, as shown in Equation (6), where dxi

dt is written
as ẋi.

ẋi

xi
= τ

[dQai

dt
−

n∑
j=1

dQai

dt
x j

]
(6)
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The expression dQai (t)

dt in Equation (6) can be solved by using
Equation (1) to represent the Q-learner update rule. Equation (7)
presents the equation of difference for the function Q.

∆Qai (δ) = α
[
Γai (δ + 1) + γmax Q − Qai (δ)

]
(7)

The term σ expresses the time spent between two repetitions of the
Q-values updates, where 0 < σ ≤ 1, while Qai (δσ) denotes the
Q-values at time kσ. Then, by assuming an infinitesimal scheme of
this expression, Equation (7) converts to Equation (8) after taking
the limit σ→ 0.

ẋi

xi
= τα

[
Γai −

n∑
j=1

x jΓa j +

n∑
j=1

x j(Qa j − Qai )
]

(8)

As x j

xi
comes to

eτ∆Qa j

eτ∆Qai
, the part after the sum in Equation (8) can

be written in logarithm terms:

α
[
τ
∑

j

x j(Qa j − Qai)

]
= α

[ n∑
j=1

x j ln
(

x j

xi

) ]
(9)

The last expression in Equation (8) is reorganized and replaced,
so it converts to Equation (10).

ẋi

xi
= ατ

[
Γai −

n∑
j=1

x jΓa j

]
+ α

[ n∑
j=1

x j ln
(

x j

xi

) ]
(10)

For using payoff matrices in games with two players, Γai as
∑

j ai jy j

can be written, then, the expressions for players 1 and 2 are ex-
pressed as shown in Equations (11) and (12), respectively:

ẋi = xiατ
[
(Ay)i − x · Ay

]
+ xiα

[ n∑
j=1

x j ln
(

x j

xi

) ]
(11)

ẏi = yiατ
[
(Bx)i − y · Bx

]
+ yiα

[ n∑
j=1

y j ln
(

y j

yi

) ]
(12)

These expressions denote the derivation of the continuous-time
model for Q-learning. For the full process of the derivation, see
Annex A. The Equations (11) and (12) can be considered as a cen-
tralized perspective, analogous to the Equations (3) and (4) that
represent the standard RD form to model actions of players R and
C, in a game of 2 players. However, the Boltzmann model produces
the main differences with the introduction of α and τ parameters,
and the emergence of an additional term. This approach has been
applied in some scenarios such as multiple state games, multiple
player games, and in the context of 2 × 2 games [27]. Nevertheless,
research is still needed to use this approach in real-life problems.

The following Section presents our approach, which is a learn-
ing method that uses a distributed population perspective to control
agents’ behaviors. This proposal uses some of the principles stated
in [35] to introduce the Boltzmann-based distributed replicator dy-
namics approach. This paper also uses the concept of population
dynamics but employing constraints in the agents communications
and assuming players should use neighboring strategies, thus, hav-
ing a scenario where players have no full information of the system.

3 The Boltzmann-based distributed repli-
cator dynamics method

In the following paragraphs, we describe the Boltzmann-based dis-
tributed replicator dynamics method. The starting point needed to
perform the development of this method is the Equation (11). This
formalism is useful since it employs the Boltzmann concept and its
first term has the classic form of the RD when modeling games that
use payoff matrices. Considering the idea to have an analogous and
more general form to express the RD expression, Equation (11) can
be written as Equation (13):

ẋi = αxiτ
[
fi(x) − f (x)

]
+ αxi

[ n∑
j=1

x j ln
(

x j

xi

) ]
(13)

In this equation, a fraction of a determined population can aug-
ment or diminish depending on the higher/lower fitness values of
its individuals with respect to the population average. The popu-
lation is represented by the state vector x = (x1, x2, ..., xn)n with
0 ≤ xi ≤ 1,∀i and

∑n
i=1 xi = 1 , which denotes the portions that

belong to each of the n-types. In fi(x), i denotes the fitness type.
Consequently, the fitness average of the population is expressed
by f (x) =

∑
j x j f j(x). Using these assumptions, this expression

becomes:

ẋi = αxiτ
[
fi(x) −

n∑
j=1

x j f j(x)
]

+ αxi

[ n∑
j=1

x j ln
(

x j

xi

) ]
(14)

The first term of Equation (14) is written as the centralized equa-
tion for the RD. We propose to adapt it to a decentralized form, to
compute the local information of the players to tackle limitations in
communication. The decentralized expression of this step is written
in Equation (15):

ẋi = αxiτ
[
fi(x) −

n∑
j=1

x j f j(x)
]

︸                         ︷︷                         ︸
Centralized

= αxiτ
[
fi(x)

n∑
j=1

x j −

n∑
j=1

x j f j(x)
]

︸                                  ︷︷                                  ︸
Decentralized

(15)
where

∑n
j=1 x j is equivalent to the unit, since the term x j of the opera-

tion denotes the probabilities of selecting the jth strategy. Likewise,
when using logarithms rules, the second term in Equation (14) be-
comes:

αxi

[ n∑
j=1

x j ln
(

x j

xi

) ]
︸                  ︷︷                  ︸

centralized

= −αxi

[
lnxi −

n∑
j=1

x jlnx j

]
︸                        ︷︷                        ︸

Decentralized

(16)

Finally, substituting Equations (15) and (16) in Equation (14),
becomes Equation (17), that expresses the Decentralized form of
the Replicator Dynamics equation in connection with Boltzmann
probabilities.

ẋi = αxiτ
[
fi(x)

n∑
j=1

x j −

n∑
j=1

x j f j(x)
]
− αxi

[
lnxi −

n∑
j=1

x jlnx j

]
(17)

This equation is studied in detail in Section 4 considering EGT
with the selection-mutation concept and the exploration-exploitation
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approaches with their influence on MAS. in Equation (17), the first
parenthesis corresponds to alterations in the proportion of players
that are using the i-th strategy and require complete information
about the state of the whole population and the payoff functions.
Consequently, complete information of the system is required so
that population dynamics evolve. However, since this work aims
to control scenarios where agents cannot access the complete infor-
mation of the system, there should not be dependence on complete
information, for example, in scenarios with limitations in communi-
cation infrastructure, big systems, or privacy matters that obstruct
the process of sharing information. Since the population structure
determines the features that explain players behaviors, the popu-
lation structure in the classic approach owns a complete and well-
mixed structure, which means that players can choose any strategy
with the same probability as the others. Figure 1a illustrates this
concept with some players in a game. We use element shapes such
as scissors, paper, or stone to represent the chosen strategies of each
agent.

(a) (b)

Figure 1: (a) Population Structure Without Constrains, (b) Constrained Population
Structure

Considering EGT, each player can equally obtain a revision
opportunity. When receiving this opportunity, players choose ar-
bitrarily one of their neighbors and switch their chosen strategy
to one of their neighbors based on the selected revision protocol.
As players are supposed to have a full and well-mixed structure,
any opponent has the same possibility of selecting and playing any
strategy of the structure (Figure 1a). On the contrary, Figure 1b
shows a case where constraints in the structure limit the capacity of
an agent to select some strategies, which is also an approach closer
to reality. In this case, all agents are equally likely to be given a
revision opportunity, but a neighbor does not have the same proba-
bility to choose and play a particular strategy. For instance, when a
player obtains a revision opportunity with a paper strategy, there is
no opportunity of choosing an opponent with scissors. The reason is
that no papers are close to any scissors. Nevertheless, in this player
case, the prospect of choosing an adversary with a paper or stone
plan is higher than in the scissors situation. The graph G = (T, L,M)
establishes a mathematical way to represent the behavior of agents
and their dynamics. The set T symbolizes the strategies an agent
can choose. Set L is the meeting probability between strategies.
For contextualizing, the notation M = [ai j], ai j = 1 suggests that
strategy j and i can find each other, but ai j = 0 indicates that these
strategies cannot meet. Thence, it is possible to define Ni as the set
of neighbors of agent i. Full and well-mixed and constrained mixed
populations can be represented by two types of graphs. Figure 2a
depicts a complete graph for the full and well-mixed structures,

while Figure 2b illustrates the case with constraints in the structure.
The form of the graph is determined by the particular structure of
the population. In this research, undirected graphs are employed,
which means that the probability that strategies j and i find each
other are the same as in strategies i and j.

(a) (b)

Figure 2: Graphs topology for (a) full and well-mixed structure and (b) constrained
structure.

Now, for regulating agents interactions, the limitation of incom-
plete information dependency in the population structure of Equa-
tion (17) must be overcome. For this purpose, the work proposed by
[2] is considered. Therefore, to incorporate the neighboring concept,
we use the pairwise proportional imitation protocol, as expressed in
Equation (18):

pi j = p j[ f j(pNi) − fi(pNi)]+ (18)

where the calculation of pi only requires knowing the portions of
the population that are playing neighboring strategies. Then, the
following expression is assumed:

Assumption 1 Operations that update behaviors of agents by em-
ploying the pairwise proportional imitation protocol use the neigh-
boring concept, which means that the iterations in the sums and the
payoff function are determined by those neighbors communicating
effectively with the i-th player.

In this vein, Equation (19) denotes the obtained distributed replicator
dynamics that fulfill the limitations of the population structure and
enable agents to regulate the calculation of incomplete information:

ẋi = αxiτ
[
fi(xNi)

n∑
j∈Ni

x j −

n∑
j∈Ni

x j f j(xN j)
]

(19)

where fi/ j(xNi/ j) is the payoff function for the ith or jth player,
estimated by the proportion of population that effectively communi-
cates with neighbors, and

∑n
j∈Ni x j is a sum that just considers those

neighbors who communicate effectively. As our statement about
the neighboring concept was implemented just in the first part of
Equation (17), the second part of the equation (second parenthesis)
including this concept is written as follows:

− αxi

[
lnxi −

n∑
k∈Ni

xklnxk

]
(20)

In this equation, k represents i-th neighbor with an active com-
munication link that employs strategy j. The end of the equation
expresses the way the i-th player behaves regarding the proposed
method using the Boltzmann concept. Equation (21) denotes in
a complete manner the Boltzmann-Based Distributed Replicator
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Dynamics (BBDRD) which includes both concepts: the distributed
and the neighboring.

ẋi = αxiτ
[
fi(xNi)

n∑
j∈Ni

x j −

n∑
j∈Ni

x j f j(xN j)
]

︸                                  ︷︷                                  ︸
Exploitation

−αxi

[
lnxi −

n∑
k∈Ni

xklnxk

]
︸                 ︷︷                 ︸

Exploration

(21)
As stated above, the BBDRD equation evidences the implemen-

tation of the exploration and the exploitation notions of RL, and
the selection-mutation approach of EGT, as explained in the next
section. The implementation of this approach and examples of its
application in the context of classic games, maximization problems,
and for a smart grid control are developed in Section 5.

4 Evolutionary Approximation
This section presents the control method stated in Equation (21)
from the perspective of RL and in an evolutionary approximation,
which is helpful to comprehend the introduction of the notion of
exploration in the classic RD expression.

4.1 Evolutionary Perspective

The traditional structure of RD is represented in the first part of
the dynamics of Equation (21). This allows approximating to the
Q-learner dynamics from EGT, because the mechanism for selection
is contained in it. Then, the mechanism for mutation is found in the
complementary part of the expression, which means:

xiα

 n∑
k∈Ni

xk ln(xk) − ln(xi)

 (22)

In Equation (22), there are two recognizable entropy values: the
distribution of probability x and the value of the strategy xi. The
expressions for entropy can be written as:

Ei = −xi ln(xi) (23)

and

En = −

n∑
k∈Ni

xk ln(xk) (24)

where Ei represents the available information regarding strategy i,
while En is the information of the complete distribution. Conse-
quently, the mutation equation can be expressed now as:

− (αxiEn − αEi) (25)

The following expression is the mutation equation derived, con-
sidering the difference between old and new states of xi.

n∑
k∈Ni

εik xk − xi (26)

In Equation (26), εik expresses the rate of mutation of agents that
employ the i-th strategy and select another strategy from the pool of
the k neighbors, for example, strategy j. When k is higher or equal

to 1, εik becomes bigger than or equal to zero. Considering EGT, in
the framework of Q-Learning dynamics, mutation is directly con-
nected with entropy that expresses the strategy state. However, this
connection already existed, since it has been evidenced that entropy
augments with mutation [36]. This connection is described in [37]
from the perspective of thermodynamics, taking into account the
trend of mutation to augment to increase entropy. Additionally, the
Q-learning dynamics evidence that RD is the basis for the develop-
ment of the selection concept. In RD, the resulting payoff can favor
or be independent of a strategy, and the behavior of its opponent is
strongly related to the resulting payoff. The concept of mutation can
be found too. This fact is estimated by comparing the value of the
entropy strategy with the value of entropy of the entire population.

4.2 Reinforcement Learning Perspective

Reinforcement learning aims to compensate the exploration and
exploitation mechanisms. For gaining the maximum profit, a player
must execute an action. Commonly, the player chooses actions that
paid a high compensation before. Nevertheless, if the player wants
to identify these actions, it must choose actions that were not chosen
before. The notion from RL of exploitation-exploration is under-
stood from a biological perspective by establishing connections
between exploitation/exploration and mutation/selection. For clarity
purposes, the first term of Equation (21) always chooses the best
courses of actions, which matches the exploitation concept. Like-
wise, the exploration term is introduced into the RD expression due
to its direct connection with the terms of entropy in Equation (22).
Note that high values of entropy produce a high level of uncertainty
in choosing one course of action. Therefore, the term of exploration
augments entropy and gives diversity all at once. Consequently,
the exploration and mutation concepts are strongly related, as both
of them give variety, and a feature of heterogeneity to the environ-
ment. Being in control of particular scenarios like heterogeneity and
communication limitations in a system is a demanding task when
addressing real-life cases. In this sense, the compensation of the
exploration-exploitation mechanisms can be quite difficult since a
fine adjustment is often required for the parameters involved in the
learning process. This adjustment must be performed to regulate the
behavior of players in the process of decision-making. This problem
can be solved by using the BBDRD control method as demonstrated
in Equation (21) and explained in the following section.

5 Illustrative cases

5.1 Rock-Paper-Scissors as a classic game

In this part of the document, the concept introduced in Equation
(21) is implemented in one of the classic games for excellence, the
rock-paper-scissors game. For this purpose, a single population
with three strategies has been considered, where x = [x1, x2, x3]>

represent each of them respectively. In the same sense, the expres-
sion F(x) = Ax denotes the fitness function, where A represents the
payoff matrix showed in Equation (27). It is worth noting that the
classic payoff matrix has been modified to guarantee positive values
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of the payoffs in all cases.

A =

2 1 3
3 2 1
1 3 2

 (27)

To start running the simulation, a time of 30 units was considered
with 300 agents and 5000 iterations. Additionally, the following
initial conditions were stated x0 = [0.2, 0.7, 0.1]>. The classic
behavior of the rock-paper-scissors game proposes that every single
strategy has the same probability to be selected, which means the
absence of a dominant strategy. This behavior can be evidenced
using ∆ representation, which is defined as follows:

Definition 1 Let ∆ be the representation of a triangle of n-
dimensions known as a Simplex.

Using a simplex helps in the understanding of the implicit dy-
namics. Since the simplex is composed of three vertices, each of
them represents a strategy e.g. rock, paper, scissors, then, the classic
expected simulation of this situation is depicted as shown in Figure
(3)a. Similarly, Figure (3)b, shows how the evolution of the popula-
tion strategies is completely symmetrical, which means they keep
constant along the time.

(a)

(b)

Figure 3: (a) Classic Rock-Paper-Scissors Behavior in a Simplex. (b) Evolution of
the Population Behavior.

We also consider simulating a general distributed case to further
compare it with the results of the BBDRD method. In both cases,

the same simulation parameters were considered, but communi-
cation between agents was limited in the following way: agents
playing strategy 1 were not allowed to communicate with agents
playing strategy 3 and vice versa. Figure 4a shows the behavior of
the distributed case, where the graphic seems to be an oval. This
means that the interaction between strategies using only the first part
of Equation (21) (general distributed case without entropy) tends to
have a similar behavior to the one found in Figure 3a. Additionally,
results depicted in Figure 4b show the evolution of the population
strategies under the distributed case, where the symmetry is altered
by the constraints in the communication of agents.

(a)

(b)

Figure 4: (a) Distributed Rock-Paper-Scissors Behavior in a Simplex. (b) Evolution
of the Distributed Behavior.

As mentioned previously, to compare these results with those
obtained using the BBDRD method of Equation (21) (Distributed +
Entropy case), Figure 5a shows that using τ= 1 the blue line depicts
just one part of the oval (in contrast to 4a). Additionally, Figures
5c and 5d show the behavior of the model using τ values of 10 and
100 respectively. As evidenced, the bigger the term τ is, the more
similar the behavior is to that obtained in the distributed case i.e.
the contour of the oval seems to be equal to that obtained in Figure
4b), which at the same time is similar to the classic case. Finally,
In Figure 5b, the evolution of the strategies population seems to be
stable in all cases. This can be understood due to the introduction
of the entropy term.
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(a)

(b)

(c)

(d)

Figure 5: (a) Distributed + Entropy Rock-Paper-Scissors Behavior in a Simplex. (b)
Evolution of the Population Behavior. (c) Simulation with τ =10. (d) Simulation
with τ =100.

5.2 Solving maximization Problems

In this part of the document, we propose an application of the pro-
posed method by understanding how it works under single and
multi-population cases to solve maximization problems.

5.2.1 Single Population Case

This case considers a population where each agent can choose one
of the n + 1 strategies. In this case, the first n strategy corresponds
to one variable of the objective function and the n + 1 th strategy
can be seen as a slack variable. Thus, xk is the proportion of agents
that use the kth strategy, and it corresponds to the kth variable, i.e.,
xk = zk. The fitness function of the kth strategy Fk is defined as the
derivative of the objective function with respect to the kth variable,
thus,

Fk(x) ≡
∂

∂xk
f (x)

Note that if f (x) is a concave function, then its gradient is a de-
creasing function. As mentioned previously, users attempt to in-
crease their fitness by adopting the most profitable strategy in the
population, e.g. the kth strategy. This lead to an increase of xk,
which in turns decrease the fitness Fk(x). Furthermore, the equilib-
rium is reached when all agents that belong to the same population
have the same fitness. Thus, at equilibrium Fi(x) = F j(x), where
i, j ∈ {1, . . . , n}. If we define Fn+1(x) = 0, then, at equilibrium
Fi(x) = 0 for every strategy i ∈ {1, . . . , n}. Since the fitness function
decreases with the action of users, it can be concluded that the strat-
egy of the population evolves to make the gradient of the objective
function equal to zero (or as close as possible). This resembles a
gradient method to solve optimization problems. Recall that the
evolution of the strategies lies in the simplex, that is,

∑
i∈S p zi = m,

thence this implementation solves the following optimization prob-
lem:

maximize
z

f (z)

subject to
n∑

i=1

zi ≤ m,
(28)

where m is the total mass of the population.
Figure 6 shows an example of the setting described above for

the function
f (z) = −(z1 − 5)2 − (z2 − 5)2. (29)

Figure 6a shows the classic behavior to solve the maximization
problem using a centralized approach. The simulation is executed
during 0.6 time units. The black line founds the maximum with a
very short deviation. Figure 6b depicts the case using a decentral-
ized maximization approach. Once again, the maximum is reached
but the deviation is bigger than the centralized approach. Finally,
Figures 6c, 6d, 6e and 6f show the behavior of the Boltzmann-
Based Distributed Replicator Dynamics, i.e. communication be-
tween agents is limited (Equation 21). In these cases, values of
τ of 0.1, 0.5, 1, and 10 were used, respectively. Using the ob-
tained model, it can be observed that as τ grows, the behavior of
the simulation tends to be very similar to that of the centralized
approach. Conversely, the shorter the τ value, the farther it is from
the maximization point.
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(a) (b) (c)

(d) (e) (f)

Figure 6: (a) Centralized Maximization Approach. (b) Decentralized Maximization Approach. (c) Distributed Maximization + Entropy Approach for τ =0.1. (d) Distributed
Maximization + Entropy Approach for τ =0.5. (e) Distributed Maximization + Entropy Approach for τ =1. (f) Distributed Maximization + Entropy Approach for τ =10

5.2.2 Multi Population Case

Consider n populations where each agent can choose one out of
two strategies. One population is defined per each variable of the
maximization problem and also n additional strategies that resemble
slack variables. Thus, xp

i is the proportion of agents that use the
ith strategy in the pth population. In this case xk

1 corresponds to
the kth variable, that is, xk

1 = zk, while xk
2 is a slack variable. The

fitness function Fk
1 of the kth population is defined as the derivative

of the objective function with respect to the kth variable, that is,
Fk

1(x) ≡ ∂
∂xk

1
f (x). Additionally, Fk

2(x) = 0. This implementation
solves the following optimization problem:

maximize
z

f (z)

subject to zi ≤ mi, i = {1, . . . , n}.
(30)

Figure 7a shows the way the system gets to the maximum point
using the centralized approach. Using a multi-population, the plot-
ted line is made almost without deviations. Similarly, Figure 7b
depicts the result for the classical distributed approach, where the
multiple populations reach the maximum, but the following form
has some deviations before reaching it. Figures 7c, 7d, 7e and 7f
show the behavior of the Extended Distributed Replicator Dynamics
(see full model of Equation (21)). In these cases, values of τ of
0.1, 0.5, 1, and 10 were used respectively. Results show once again,
that using the Boltzmann-Based Distributed Replicator Dynamics

method evidences that as τ grows, the behavior of the simulation
tends to be very similar to that of the centralized approach (where
full information is assumed within agents). Conversely, the shorter
the ϕ value, the farther and the more deviant it is from the maxi-
mization point.

5.3 Smart Grids Application

This part of the paper presents how the use of the Boltzmann-based
distributed replicator dynamics can be developed in a power grid.
Some of the main issues to solve in these kinds of applications are
cases of the economic dispatch problem (EDP). In these problems,
first, it is necessary to reduce the global value of the power gen-
eration and, second, to maximize the overall effectiveness of the
power generators, thus fulfilling the limitations of generation capac-
ity and power balance simultaneously [38]. In this sense, traditional
approaches to EDP have employed offline direct-search methods
[21, 15], or static optimization algorithms [20]. One of the first
works that introduced a different approach to deal with EDP is [39],
where the authors proposed changing the resource allocation as a
solution to this issue. Our work takes into account this approach
and complements it with the introduction of the Boltzmann-based
distributed replicator dynamics as a way to find the place to execute
the dispatch algorithm at a microgrid, by using distributed popula-
tion dynamics. Our work also assumes that loads, generators, and
other devices in the grid share information in the system and have
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Centralized Maximization Approach. (b) Decentralized Maximization Approach. (c) Distributed Maximization + Entropy Approach for τ =0.1. (d) Distributed
Maximization + Entropy Approach for τ =0.5. (e) Distributed Maximization + Entropy Approach for τ =1. (f) Distributed Maximization + Entropy Approach for τ =10

a cooperative role with other controllable devices in the grid. The
general case of the microgrid is explained in [40], where authors
formulate a grid with two different control levels. At the lowest
level, an inverter attaches loads to a source of voltage comprised
of seven distributed generators (DGs). The output voltage and the
operation frequency are controlled by a drop-gain regulator. Figure
8 depicts the distribution of the microgrid.

The uppermost level employs a strategy that can dynamically
dispatch setpoints of power. The economic limitations, like load
demands and power production costs, come from the inferior level
of control and are directed to the central controller of the microgrid.
Therefore, a classic RD is implemented. The controller obtains
dynamic values of load demands and costs, which means that it
is possible to include renewable energy resources. As a result,
the dispatch is carried out , that is, the uppermost control level.
The expression of the EDP is written as follows:

maximize J(ϕ) =

n∑
i=i

Ji(τi),

subject to
n∑

i=1

ϕi =

n∑
i=1

ψi = ϕD

(31)

In Equation (31), 0 ≤ ϕi ≤ ϕmax i,∀i ∈ Z, n represents the quantity
of distributed generators, ϕi denotes the the i-th DG set-point of
power, ψi simbolizes the loads, ϕD represents the total load that the
grid requires, ϕmax establishes the i-th DG maximum capacity of

generation, and Ji(ϕi) represents the utility function of every DG.
The criterion of the economic dispatch determines the utility func-
tion [38], which in turn settles the performance of all the generation
units with the same marginal utilities stated in Equation (32)

dJ1

dϕ1
=

dJ2

dϕ2
= ... =

dJn

dϕn
= δ, (32)

Consider δ > 0, so that
∑n

i=1 ϕi = ϕD. According to the EDP
criterion expressed in Equation (32), it is possible that the EDP of
Equation (31) obtain a solution by employing utility functions with
quadratic form for every DG [39].

5.3.1 The Economic Dispatch Problem Using a Population Games
Perspective

From the Population Games Perspective, the EDP can be managed
using the Replicator Dynamics approach. For the simulation pur-
poses, we limit the communications constraints among agents at
random, which allows us to have another point of view to compare
results with those obtained in [1]. Using the population games ap-
proach, n represents the quantity of DGs in the grid. Consider the
selection of a DG as the i-th strategy, then, ϕi would be the amount of
power allocated to each DG, which is associated with the number of
players that choose the i-th strategy in S. The term ϕD represents the
sum of every power set-point, which means

∑n
i=1 ϕi = ϕD to obtain

an appropriate steady-state performance. Likewise, to accomplish
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Figure 8: Distribution of a Power Grid. Adapted from [11].

the power balance, f̄ = (1/ϕD)
∑n

i=1 ϕi fi must be implemented
to enable the invariance of set ∆ = [ϕ ε t ≥ 0 :

∑
i ε S ϕi = m] [41].

This equation ensures that in case ϕ(0) ε ∆, then ϕ(t) ε ∆, ∀t ≥ 0,
that is, the strategy of control have to determine set-points to guar-
antee the correct equilibrium between the demanded and generated
power by generators. This behavior makes it possible to perform
a proper control of frequency. To include in the control strategy
economic and technical criteria, the capacity of power generation
and the associated cost are relevant factors for determining the final
power dispatched to every DG. RD seems to be suitable, since its
stationary state is achieved once the average outcome equals all the
outcome functions. This characteristic relates RD to EDP, as it is
the same as the economic dispatch criterion of Equation (32) when
the outcome function is chosen as follows:

fi(ϕi) =
dJi

dϕi
,∀i = 1, 2, ..., n, (33)

It is worth noting that the EDP approach in Equation (32) ensures
an optimal solution of the system if constraints are satisfied. These
kinds of optimization issues may be tackled using marginal utilities
for the outcome functions. This is possible because the outcome
functions are equal to f̄ . The outcome chosen can be modeled as
an expression whose growth/reduction depends on the distance of
the desired set-point from/to the power. In this vein, RD allocate re-
sources to generators according to the average result. The following
function [42] can illustrate this phenomenon:

f ($) = r$
(
1 −

$

k

)
(34)

where k represents the carrying capacity so that the independent
variable $ ε (0,K). Here, parameters such as the carrying capacity
and a cost factor of generation, among other parameters, are used

by the outcome functions. As a result, the outcome function of each
DG can be expressed as:

fi(ϕi) =
dJi

dϕi
=

2
ci

(
1 −

ϕi
ϕmax

)
,∀i = 1, 2, ..., n, (35)

The population game can transform into a potential game by the
addition of marginal utilities to the outcome functions [43]. The out-
come functions in Equation (35) become functions of quadratic util-
ity for every DG in the optimal EDP [39]. This outcome function
has been implemented in other research, e.g. [39, 40, 44].

Ji(ϕi) =
1
ci

(
2ϕi −

ϕi2

ϕmaxi

)
, ∀i = 1, 2, ..., n, (36)

5.4 Simulation Results

The BBDRD control model presented in this paper is validated in
a study case that considered a low voltage smart grid comprising
seven DGs. The system used ϕD = 9 kW as the overall power
demand in the network; DG 4 had the lowest cost and DG 7 the
highest. DGs 1, 3, 5, and 6 had no significant differences in cost,
and DG 2 had their lowest cost. The system employs 60 Hz and
a nominal capacity of 3.6 kW for all generators, except for DGs
2 and 6 that employ 1.5 KW and 4 KW, respectively. Note that
these initial conditions differ from those used in [1], where DG 3
had the lowest cost and the nominal capacity of DGs 2 and DG 6
was 3.6 KW and 2 KW, respectively.

For comparison purposes, first, the classic centralized case was
simulated, taking into account the availability of full information.
Figure 9a shows the results of this step. There is an unexpected
rise in the load of 3 KW and various values for each generator.
The frequency was stable, except for t = 0.8, where there is a varia-
tion of approximately 0.2 Hz produced by an increase in the load,
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however, it returns to stability right after it. Figure 9a also depicts
the quantity of power delivered to each DG. First, generator DG
7 transmits a minimum power when there is low demand, owing
to its costly behavior. On the contrary, DG 3 approximates to its
maximum capacity and remains near this value without affectations
by changes in the load. In case that the demand augments, DG 7
augments its capacity too, intending to counter-weigh the demand.
DG 6 approximated to its maximum capacity just after changes in
the load. DGs 1, 4, 5, and 6 evidence a comparable behavior, since
they present analogous conditions. Finally, DG 2 approximates
to its maximum performance thanks to its low-cost performance.
With the results of the classic centralized case, the BBDRD con-
trol method was employed to contrast its behavior. Figure 9b–d
present the outcomes of this step for different values of τ. For
simulation purposes, we use constraints in the communication of
agents at random. When the τ value augments, the system imitates
the centralized approach. Low values of τ (Figure 9b) produced
the biggest differences, as DGs need more time to achieve their
working level. On the contrary, high values of τ (Figure 9d) allow
DGs to achieve their working levels faster. Concerning the results
obtained in [1], we observe a similar behavior of the microgrid.
Despite using limitations in the communications of the generators
at random, after employing the BBDRD method with high values of
τ, once more the behavior tends to be equal to that of the centralized
approach of the classic RD. The main difference evidenced is the
behavior of DG4 in comparison with the centralized approach, that
is, when the demand augments, it delivers more power as a result
of the communication limitations topology and the effect of the
exploration concept (second term in Equation (21). This effect was
also evidenced in [1] with the behavior of DG5.

6 Conclusions

The Boltzmann-based distributed replicator dynamics shown in
Equation (21) might be defined as a learning method of distributed
control that includes the exploration scheme from RL in the classic
equation of RD. In this sense, exploration can be related to the
mutation concept of EGT, and involves a method for measuring
variety in the system with the entropy approach. The Boltzmann-
based distributed replicator dynamics also employs the scheme of
the Boltzmann distribution to include the τ parameter for control-
ling purposes. An appropriate temperature function can be chosen
using methodological search and reliably set to fulfill an anticipated
convergence distribution. Regarding stability, Section 3 presents a
derivation process that has low or no significant variations in the
presence of multiple agents. This behavior is explained with the
inclusion of the population approach in the BBDRD method. The
neighboring approach provides the missing piece to prevent cen-
tralized schemes from happening and compels players to consider
just the available information of other players before performing an
action. The method was validated in the context of classic games,
maximization problems, and in a smart grid that allowed initializing
parameters beforehand, and providing evidence that behavior using
the BBDRD approach tends to be similar to cases using centralized
schemes.

Engineering problems represent real scenarios whose complex-

ity can be simulated using MAS, through the analysis of the com-
munication between the agents. EGT presents some helpful tools
to tackle communication between players and control them. This
paper evidences the advantages of applying a distributed control
approach of EGT to a real-life smart grid. The BBDRD perfor-
mance is presented using experiments that include limitations in
communication, therefore, it emerges as a helpful tool for develop-
ing more realistic control strategies in Engineering problems with
distributed schemes. This advantage becomes particularly relevant
because it offers the opportunity to deal with complex systems using
local information of the agents, taking into account communication
limitations without the need of a centralized coordinator and evad-
ing expensive implementation costs, as in classic approaches, like
the dual decomposition method. The distributed control concept
proposed to tackle cases of classic games, maximization issues, and
the Economic Dispatch Problem can be further applied to other
real-life situations, including some other problems in the smart grid
context, like as the physical limits of power-flow, the presence of
power losses, and the inconsistency of renewable generation, among
others.

Despite using incomplete information, results demonstrated that
the system can imitate the performance of a centralized approach
when the τ value increases. conversely, when τ takes values
lower than the unit, the behavior was distant from outcomes ob-
tained under the optimal communication scenario of a centralized
approach. The possibility of adjusting the behavior and parameters
of the method using communications limitations between players
proved to be successful. This can also logically be extended to
any number of players or populations. Results also evidenced that
the Boltzmann-based distributed method has adequate performance
for solving some cases of maximization problems, including the
economic dispatch problem in a smart grid. This is possible since
the features of the DGs were coherent with their power capacity and
operation cost.

7 Future Work

For future work, the optimization of wireless sensor networks can
be an option for the building automation field. Various critical issues
may be tackled by implementing the distributed replicator dynamics
approach to solve the EDP in a smart grid scenario, for example,
considering power losses, the limitations of physical power-flow,
or the uncertainty of renewable generation. Open issues should
be considered with respect to the control strategies developed that
must include decentralization, scalability, and robustness. In con-
sequence, novel methods should incorporate economic incentives
and the information necessary to ensure that more elements can
be included in the system without a reconfiguration of the whole
system. The Boltzmann-based distributed concept that tackles EDP
will be expanded to other problems in the context of a smart grid
framework, for example, the inconsistency in renewable generation,
physical limitations of power-flow, and incorporation of power loss.
In summary, distributed techniques used to manage open problems
represent a suitable option for modeling the complexity of these sce-
narios. Innovative approaches are still required to include scalable
solutions and features closer to reality.

www.astesj.com 207

http://www.astesj.com


G.A.C. Pedraza et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 196-211 (2021)

(a)

(b)

(c)

(d)

Figure 9: Results for a microgrid system. (a) Frequency response and active power response of DGs for the classic RD. The analysis of the performance of the
Boltzmann-based distributed replicator dynamics for different values of τ: (b) τ = 0.4 (c) τ = 2.5, (d) τ = 7.
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Annex A
In this part of the document, we reconstruct the full process of
derivation necessary to have a continuous-time limit for the model
of Q-learning, where the Q-values are considered as Boltzmann
probabilities for action-selection mechanisms. For clarity purposes
in the construction of the learning model, this analysis starts consid-
ering an extended version of the equations obtained in [35], where
dynamics for the Q-learners in two-players games were defined.

To find the relationship between the Q-learning framework and
the RD equations, the use of the Equation (1) that describes the
Boltzmann probabilities is done.

xi(δ) =
eτQai (δ)∑n

j=1 eτQa j (δ)
(1)

Here, xi(δ) represents the prospect of selecting the i strategy at
δ step time, and τ symbolizes the temperature. From the Boltzmann
distribution, it is easy to find the expression for xi(δ + 1) as follows:

xi(δ + 1) =
eτQai (δ+1)∑n

j=1 eτQa j (δ+1)

now dividing xi(δ + 1) into xi(δ):

xi(δ + 1)
xi(δ)

=
eτQai (δ+1) ∑n

j=1 eτQa j (δ)

eτQai (δ)
∑n

j=1 eτQa j (δ+1)

after organizing terms it gets to:

xi(δ + 1)
xi(δ)

=
eτQa j (δ+1)e−τQai (δ)∑n

j=1 eτQa j (δ+1) ∑n
j=1 e−τQa j (δ)

Then, using ∆ to denote a small difference between operations it
takes the following form:

xi(δ + 1)
xi(δ)

=
eτ∆Qai (δ)∑n

j=1 eτ∆Qa j (δ)

This result can be rewritten in the following way:

xi(δ + 1) = xi(δ)
eτ∆Qai (δ)∑n

j=1 x je
τ∆Qa j (δ)

Now, considering the difference equation for xi:

xi(δ + 1) − xi(δ) =
xi(δ)eτ∆Qai (δ)∑n

j=1 x j(δ)e
τ∆Qa j (δ)

− xi(δ)

= xi(δ)
[eτ∆Qai (δ) −

∑n
j=1 x j(δ)e

τ∆Qa j (δ)∑n
j=1 x j(δ)e

τ∆Qa j (δ)

]

At this point, to describe the continuous time version, it is as-
sumed that σ, with 0 < σ ≤ 1, describes the time amount spent
between game repetitions. In the case of xi(δσ), it represents the
x-values at time kσ = t. Under these premises, the expression takes
the following form:

xi(δσ + σ) − xi(δσ)
σ

=
[ xi(δσ)

σ
∑n

j=1 x j(δσ)eτ∆Qa j (δσ)

]
∗

[
eτ∆Qa j (δσ)

−

n∑
j=1

x j(δσ)eτ∆Qa j (δσ)
]

Nevertheless, the main interest is finding the limit of xi(δσ), given
σ→ 0, δσ→ t and t ≥ 0, then:

lim
σ→∞

∆xi(δσ)
σ

= lim
σ→0

[( xi(δσ)

σ
∑n

j=1 x j(δσ)eτ∆Qa j (δσ)

)
∗

(
eτ∆Qa j (δσ)

−

n∑
j=1

x j(δσ)eτ∆Qa j (δσ)
)]

This expression can be rewritten as follows:

lim
σ→∞

∆xi(δσ)
σ

= lim
σ→0

[ xi(δσ)∑n
j=1 x j(δσ)eτ∆Qa j (δσ)

]
∗

lim
σ→0

[eτ∆Qa j (δσ)

σ
−

∑n
j=1 x j(δσ)eτ∆Qa j (δσ)

σ

]
In the first limit, the expression eτ∆Qa j (δσ) is equal to 0, and the
summation becomes 1 because it is referred to the sum of all the
probabilities. This means that the first limit becomes xi.

lim
σ→∞

∆xi(δσ)
σ

= xi ∗ lim
σ→0

[eτ∆Qa j (δσ)

σ
−

∑n
j=1 x j(δσ)eτ∆Qa j (δσ)

σ

]
︸                                               ︷︷                                               ︸

L2

In the second limit, an undefined situation is presented; the numera-
tor and denominator become zero, therefore, after using l’hopital
rule, this limit equals (for short L2):

L2 = lim
σ→∞

[τ∆Qa j (δσ)eτ∆Qa j (δσ)

σ

]
−

n∑
j=1

x j(δσ) ∗ lim
σ→∞

[
τ∆Qa j (δσ)

eτ∆Qa j (δσ)

σ

]
Which allow finding the following expression:

L2 = τ
dQai (t)

dt
−

n∑
j=1

x j(t)
dQa j (t)

dt

Now, it is possible to find the total limit, that is, the Q-Learning
continuous time model derived as shown in Equation (2):

dxi
dt

xi
= τ

[dQai

dt
−

n∑
j=1

dQa j

dt
x j

]
(2)
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To solve the expression dQai (t)

dt , the first player takes the following
update rule:

Qai (δ + 1) = Qai (δ) + α
[
Γai (δ + 1) + γmax

ai
Q − Qai (δ)

]
Therefore, the last expression represents the equation of differ-

ence for the Q-function and can be rewritten as follows:

∆Qai (δ) = α
[
Γai (δ + 1) + γmax

ai
Q − Qai (δ)

]
(3)

if Equation (3) takes an infinitesimal scheme, it is supposed that
the amount of time spent performing two update iterations of the
Q-values is given by σ with 0 < σ ≤ 1. Additionally, Qai (δσ)
symbolizes the Q-values at time δσ. Applying these assumptions,
Equation (3) gets to:

∆Qai (δσ) =
[
α(Γai ((δ+ 1)σ) + γmax

ai
Q−Qai (δσ)

]
∗
[
(δ+ 1)σ− δσ

]
which is equal to:

∆Qai (δσ) = ασ
[
Γai ((δ + 1)σ) + γmax

ai
Q − Qai (δσ)

]
Once again, the limit σ→ 0 is the state sought. Taking the limit of
Qai (δσ), it gets to Equation (4):

dQai

dt
= α

[
Γai + γmax

ai
Q − Qai

]
(4)

Now, substituting Equation (4) on Equation (2):

dxi
dt

xi
= τ

[
αΓai + αγmax

ai
Q − αQai −

n∑
j

x jα(Γa j + γmax
ai

Qai − Qa j )
]

= τα
[
Γai −

n∑
j=1

x jΓa j − Qai +

n∑
j=1

Qa j x j

]
Taking into account that

∑n
j x j = 1 and using ẋi to denote dxi

dt , it is
obtained:

ẋi

xi
= τα

[
Γai −

n∑
j=1

x jΓa j − Qai

n∑
j=1

x j +

n∑
j=1

Qa j x j

]
ẋi

xi
= τα

[
Γai −

n∑
j=1

x jΓa j +

n∑
j=1

x j(Qa j − Qai )
]

since x j

xi
equals

eτ∆Qa j

eτ∆Qai
, the second part of the last expression can be

expressed in logarithm terms:

α
[ n∑

j=1

x jln(
x j

xi
)
]

= α
[
τ
∑

j

x j(Qa j − Qai )
]

After reorganizing and substituting, the result is:

ẋi

xi
= ατ

[
Γai −

n∑
j=1

x jΓa j

]
+ α

[ n∑
j=1

x j ln
(

x j

xi

) ]

To bring the concept of the payoff matrices into a 2 x 2 game, it can
be expressed rai as

∑
j ai jy j, thus obtaining the Equation (5) which

represents the behavior for the first player as follows:

ẋi = xiατ
[
(Ay)i − x · Ay

]
+ xiα

[ n∑
j=1

x j ln
(

x j

xi

) ]
(5)

Similarly, for the second player, the expression is:

ẏi = yiατ
[
(Bx)i − y · Bx

]
+ yiα

[ n∑
j=1

y j ln
(

y j

yi

) ]
(6)

Since the approach of the classic RD can be used at this point,
Equation (5) may be stated as shown in the following expression
[27]:

ẋi = αxiτ
[
fi(x) − f (x)

]
+ αxi

[ n∑
j=1

x j ln
(

x j

xi

) ]
It should be noted that depending on the value obtained from

the fitness of a specific type of population, this value may increase
or decrease depending on the average value obtained by the entire
population.
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