

www.astesj.com 385

A Scheduling Algorithm with RTiK+ for MIL-STD-1553B Based on Windows for Real-Time Operation
System

Jong-Jin Kim, Sang-Gil Lee, Cheol-Hoon Lee*

Department of Computer Engineering, Chungnam National University, Daejeon, 305764, Korea

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 July, 2021
Accepted: 09 August, 2021
Online: 26 August, 2021

 In devices using Windows operating system based on x86 system, the real-time performance
is not guaranteed by Windows. It is because Windows is not a real-time operating system.
Users who develop applications in such a Windows environment generally use commercial
solutions such as the RTX or the INtime to provide real-time performance to the system.
However, when using functions and API for simple real-time processing, an issue of high
development cost occurs in terms of cost-effectiveness.
In this paper, the RTiK+ was implemented in the type of a device driver by controlling the
MSR_FSB_FREQ register to generate a timer interrupt independent of Windows in the
Windows 8 and providing a real-time functionality to the user mode by re-setting the local
APIC count register. And the operating frequency of the CPU is changed to minimize power
consumption for battery life in a mobile device such as a Tablet PC.
In particular, the weapon system uses highly reliable MIL-STD-1553B communication and
performs BC and RT functions of MIL-STD-1553B to transmit and/or receive data in
communication between component and component. It is significantly importance to
guarantee integrity of data without loss data during communication. For this purpose, it is
proposed to implant the Scheduling algorithm with the RTiK+ for MIL-STD-1553B
communication for Windows 8 to support a real-time processing in the Windows operating
system on the embedded system, and to use the periods of 2ms (max), 5ms and 10ms
provided by the RTiK+ for real-time processing when performing the BC and RT functions
of MIL-STD-1553B communication. In this paper, the method of the scheduling algorithm
with RTiK+ for MIL-STD-1553B to provide real-time processing is proposed for the
Windows based on x86 system.

Keywords:
RTX
RTiK+
APIC
Tablet PC
Inspection Equipment
Real-Time Operating System
Windows
MIL-STD-1553B
RM Scheduling Algorithm

1. Introduction

1.1. Research Background

Recently, with the development of hardware and embedded
systems, various mobile devices such as Tablet PC and smart
phone used in daily life are being used instead of dedicated
equipment for special purposes according to the user environment.
Therefore, it is necessary to support an accurate real-time
processing function in order to transmit/receive accurate
commands or data to a mobile device without data loss of
information from the target equipment. And this paper is an
extension of work originally presented in Real-time Processing
Method for Windows OS Using MSR_FSB_FREQ Control [1-5].

In general, a real-time system should be predictable in any
situation, which means that time deterministic should be
guaranteed. In this paper, to ensure time determinism, the
MSR_FSB_FREQ register, which determines the operating
frequency of the CPU to provide real-time processing performance
in the Windows 8 environment, is controlled and the local APIC
timer count register value is reset to operate a window independent
timer. A study was conducted to guarantee the periodicity set by
the user. Also, when checking the function and performance of a
guided weapon system using a window-based inspection
equipment in a guided weapon that uses fast MIL-STD-1553B
communication such as 2ms between components, The RTiK+ is
first installed to provide real-time performance to the Windows 8,
and then it use the period provided by RTiK+ for scheduling
algorithm to meet deadline in MIL-STD-1553B communication in
guided weapons system, and also a study for miss rates to

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Prof. Cheol-Hoon Lee, Department of Computer
Engineering, Chungnam National University, Korea, Email: clee@cnu.ac.kr

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj060443

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060443

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 386

guarantee data integrity without loss is conducted through
experimental tests to be proofed.

1.2. Research Purpose

In the case of a tablet PC, The Windows as operating software
is mainly used as an operating system to provide compatibility
with libraries that have been developed and operated, dependency
on the device's operating system, and extensibility for various
applications. To support a real-time processing function in the
tablet PC, a commercial solution that is installed in addition to the
Windows operating system installed in the tablet PC and provides
a real-time functionality must be used. Such products include
IntervalZero's RTX, which is currently widely used. The purchase
price is very high, and when installed in equipment for mass
production, royalty and maintenance costs are high, which causes
a high development cost burden on developers. To improve this
matter, The RTiK+ was designed to provide a real-time
performance in Windows 8 based on x86 system.

In addition, the Windows operating system used for inspection
equipment prioritizes compatibility, stability and reliability due to
the characteristics of the weapon system, so older versions such as
Windows 7 and Windows 8 are used rather than the latest versions
such as Windows 10 [6]. For example, the flight body inspection
equipment that recently developed an unmanned aerial vehicle
developed in 2017 uses the Windows 7 released in 2009 [7].

In this paper, the RTiK+ is designed as a method by controlling
the MSR_FSB_FREQ register to generate a window-independent
timer interrupt in Windows 8 and providing a real-time period to
the user mode by resetting the counter register of the local APIC,
and the CPU operating frequency. A study how to provide a real-
time performance by accessing the MSR_PKG_CST_CONFIG_
CONTROL register that determines the C-States so that the
frequency controlling the C-States does not change.

A MIL-STD-1553B communication with high reliability is
used mainly in the precision guided weapon system [8], and the
proposed RTiK+ to provide a real-time processing function in the
Windows operating system of the equipment is implanted in
Windows 8, and it supports the BC and RT function of the MIL-
STD-1553B to provide a real-time processing. The scheduling
algorithm with RTiK+ supports a real-time period to the BC and
RT function when performing communication.

Finally, an evaluation for experiment results is conducted to
proof the miss rate that complies with the deadline in the set period
in the MIL-STD-1553B communication which RTiK+ for a real-
time processing is applied. The RTiK+ to provide a real-time
processing is implanted in the Windows 8 based on x86 system,
and the scheduling algorithm is applied to perform the MIL-STD-
1553B communication. The integrity is verified using the RDTSC
for measurement of the period of a real-time function and PASS
3200 for data monitoring of the MIL-STD-1553B, and the miss
rate of the scheduling algorithm for the MIL-STD-1553B is
analyzed. And to see if the RTiK+ can be used as a replacement
item for the RTX, a real-time performance is measured and
analyzed using the same experimental configuration for measuring
performance of the RTX, showing that the RTiK+ can be used as
a substitute for a third party.

The paper consists of chapters 1 to 6. Chapter 2 studies RTX,
window scheduling, RM algorithm, and MIL-STD-1553B.
Chapter 3 describes the real-time processing in the tablet PC
proposed in this paper, and the real-time performance
implementation using the MIL-STD-1553B communication
scheduling algorithm. Chapter 4 describes the experimental
environment, composition, and results. Chapter 5 analyzes the
algorithm and results, Chapter 6 concludes by describing the
summary of this paper and future research.

2. Related Research

2.1. RTX

IntervalZero released the RTX operating in kernel mode (ring
0) based on x86 computers in 1995. The RTX is software that
provides a real-time performance to support a real-time function in
Windows XP or Windows 7 but there is no solution for Windows
8 currently. The RTX provides a development environment that is
easy to access and familiar to developers who use Windows based
on a real-time operating systems, which are the advantages of
Windows [9].

2.2. Local APIC

An APIC is an interrupt controller provided by the x86
architecture. It implements the function of delivering a hardware
interrupt to the interrupt descriptor table with the address of the
interrupt handler. A local APIC is an interrupt controller provided
by the x86 architecture as an extension of the programmable
interrupt controller [10-13].

2.3. Scheduling of Process and Thread in Windows

The Windows operating systems based on x86 system have
processes and threads to process specific tasks. In general, the
threads are divided into user-level threads and kernel-level threads.
A kernel-level thread is used in Windows, and in Windows, a
thread is assigned in a processor by a kernel scheduler and
implements a scheduling. It is a scheduling algorithm that is
scheduled according to the priority of all threads created in the
operating system regardless of the priority of the process. The
Windows scheduler uses a round-robin scheduling method. A
process has six priorities, and a thread has seven priorities, and
consists of a total of thirty-one priorities from 0 to 31 [14].

2.4. RM Scheduling Algorithm

The RM Scheduling, The RM means Rate-Monotonic, for a
real-time system is a scheduling algorithm that gives the highest
priority to the shortest period. The operating system to which this
algorithm is applied is generally called preemptive and has a
decisive characteristic for response time [15]. When there are n
processes, the upper limit of total utilization on the system can
calculate using the equation (1) [16]. If the total system utilization
is less than or equal to the utilization URM calculated by the
equation (1), it proves that scheduling is possible with the RM
scheduling algorithm.

URM (n) = n (2
1
𝑛𝑛 − 1) (1)

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 387

The RM scheduling algorithm is a method of fixed priority
scheduling in which a fixed priority is given to each task, and when
a task having a higher priority arrives, the currently executing task
is preempted. The RM algorithm determines the priority based on
the period of the task, and it is an algorithm that gives a high
priority to a task with a short execution period [17-19].

2.5. C-States

It can command the CPU to enter a low-power mode to save
battery when the CPU is idle. Each CPU has multiple power
modes, collectively known as the C-States. In general, in the case
of a mobile device such as tablet PC in the x86 architecture, the
low-power technique provides five states of the CPU called the C-
States as shown in Table 1 [20].

Table 1: C-States mode in Intel’s CPU

Mode Status of CPU
C0 Processor state: Full On
C1 Processor state: Auto-Halt
C1E Processor state: Auto-Halt
C3 Processor state: Deep Sleep
C6 Processor state: Deep Power Down

2.6. MIL-STD-1553B

The MIL-STD-1553B, which is mainly applied to aircraft
weapon systems and guided weapon systems, has a maximum
transmission speed of 1Mbps, and it is a half-duplex and a serial
communication method.

Figure 1: Interface Diagram of MIL-STD-1553B bus

Also, there is a restriction that the length of data that can
transmit or receive data at a time is limited to a maximum of 32
words by a protocol. As shown in Figure 1, a bus controller (BC),
a remote terminal (RT) and a monitoring (MT) are interfaced to
the MIL-STD-1553B bus. The main function of the BC is to
control the transmission and reception of all RTs on the bus. The
RT has a function of transmitting or receiving data by responding
to commands from the BC, and the MT has a function of
monitoring all data moving on the bus [21, 22].

3. Methodology

3.1. Overview

In Windows 8, the initial count register (FFF0 0380h), as a
local APIC timer register, is initialized to 0 after the operating
system is booted. Therefore, since it is impossible to utilize a timer
interrupt independent of the Window, there is a matter in providing
a real-time processing function corresponding to the computer's

system clock. In addition, The C-States are used to increase battery
operation time by reducing power consumption of mobile device.
The C-States function has the problem that the system clock is
changed frequently flexibly, and an accurate period calculation for
guarantying a real-time is not allowed [23, 24].

In this paper, in order to solve this issue, The RTiK+ is
designed as shown in Figure 2, which uses a timer interrupt
independent of the Windows to provide a real-time processing
functions in the Windows 8 to support real-time performance for
threads in the user mode. And the scheduling algorithm to support
a real-time performance for MIL-STD-1553B communication is
implemented based on RTiK+.

Figure 2: Architecture of RTiK+ for Real-Time Operating System

3.2. Local APIC Timer Control

As shown in Figure 2, The RTiK+ supplies a timer interrupt
independent of the window through Kernel Resources access. And
as shown in Figure 3, The RTiK+ is implemented to provide a real-
time functionality in the Windows using the local APIC and kernel
resources of the application processor [25, 26].

Figure 3: A Real-Time Processing Operating Process of the RTiK+

Before the timer interrupt is occurred, the initial counter
register (FEE0 0380h) of the local APIC of the application
processor sets the initial counter register value according to the
value set in the MSR_FSB_FREQ register (0CDh) to generate a
timer interrupt independent of the Windows. For such interrupt
processing, a real-time task is created by registering an interrupt
object in the interrupt descriptor table (IDT). In addition, The
RTiK+ guarantees the periodicity of the real-time thread by using
the MSR_PKG_CST_CONFIG_CONTROL register and
minimizes the period error tolerance of the set task by controlling
the C-States operation mode of the CPU to ensure the periodicity
of the interrupt for thread processing [27-29].

3.3. Time Interrupt Control through FSB

As shown in Figure 4, x86-based system has two chipsets
called the Northbridge and the Southbridge, the Northbridge is

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 388

between memory controller hub and the memory/graphic card
slots, and the Southbridge is between I/O controller hub and PCI
slots.

Figure 4: A Block Diagram of Chipset based on x86 Architecture [30]

A FSB also provides the ability to use a clock multiplier to
determine the operating speed of the CPU and it provides
synchronization by affecting the memory clock speed. The chipset
block diagram of the x86 architecture is as shown in Figure 4, and
the frequency generated by the clock generator is connected to the
FSB and provided by the CPU and set as the initial counter register
(FFF0 0360h) value of the timer register of the local APIC and then
involves in determining the generation period of the timer
interrupt. And in the case of the Windows 8, the operating
frequency of the FSB according to the CPU workloads is provided
through the lower three bits of D2:D0 of the MSR_FSB_FREQ
register (0CDh), which is a hardware resource.

Figure 5: A MSR_FSB_FREQ Register

Therefore, as shown in Figure 5, to set the timer interrupt
generation period of the local APIC to a fixed value, check the
operating frequency of the currently executing FSB in the
MSR_FSB_FREQ register, and set the local APIC timer to the
value of the initial counter to generate an independent timer
interrupt [31].

3.4. Time Deterministic through controlling C-States

Unlike the existing Windows 7, The Windows 8 provides a
power saving function that reduces power consumption in real time
by turning off power to some devices by adjusting the CPU clock
low through access to the C-States for low-power control of the
CPU. The following equation (2) is applied as the equation used to
determine the CPU clock in Windows 8 [24, 32].

CPU clock = FSB frequency × Clock multiplier (2)

The FSB can control the power consumption by controlling the
value of the clock multiplier by the Windows according to the
hardware specifications. However, the method of adjusting the
value of the clock multiplier to lower the clock of the CPU has a
matter in that it is difficult to guarantee the time determinism of
the timer interrupt of the local APIC. In addition, a problem occurs
in that the aforementioned time determinism cannot be guaranteed

because a delay time occurs due to the time when the CPU is
activated from the idle state or sleep state.

In this paper, The C-States are controlled through the
MSR_PKG_CST_CONFIG_CONTROL register (0E2h) provided
by x86 system to guarantee the periodicity of the RTiK+. And each
speed of the core clock according to the setting of the C-States is
seemed as shown in Table 2. When the C-States are enabled, the
clock is automatically adjusted based on the utilization rate the
CPU is processing tasks. Also, when the C-States are disabled, the
clock is kept at its maximum value regardless of the CPU
utilization [33].

Table 2: A CPU Clock Status depending on the C-States

Type of CPU C-States Enable C-States Disable

Core 1 Standard 3199.86 MHz 3199.86 MHz
Current 3199.86 MHz 3199.86 MHz

Core 2 Standard 1599.93 MHz 3199.86 MHz
Current 1599.93 MHz 3199.86 MHz

3.5. Process in User Mode of the RTiK+

A study on the real-time processing function of the user mode
provided in the existing Windows such as the Windows XP and
the Windows 7 before the Windows 8 has a matter that the
periodicity, data accuracy, and data integrity are not guaranteed
because event signals are lost in an environment of multi-core
processor. To solve this problem, the RTiK+ provides a real-time
processing function in the user mode as shown in Figure 6.

Figure 6: An Operation Process of the RTiK+ for a Real-Time Processing

The algorithm coded in the RTiK+ to set the priority of the
process to the highest to guarantee data accuracy and data integrity
is shown in Figure 7 [34]. It is implemented to call the
Process_Affinity() function inside the real-time thread, and the
real-time thread inside Process_Affinity(), by calling the
SetProcessAffinityMask() function, an API provided by the
Windows, the CPU is specially designated so that the real-time
thread operates only on the core where RTiK+ operates.

Figure 7: An Algorithm to set for Priority of Process

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 389

In addition, by calling the SetPriorityClass() function to set the
priority of the real-time thread and process of RTiK+, the current
real-time thread is designated as the highest level as a
REALTIME_PRIORITY_CLASS, so that the CPU is not
preempted by other Window’s threads [35].

When the RTiK+ process is created, the process must be
created by setting it to the REALTIME_PRIORITY_CLASS
priority level, which is the highest priority. Figure 8 is the
algorithm coded to provide a real-time processing function in the
user mode of the RTiK+.

Figure 8: An Algorithm to set for Priority of Thread

3.6. Priority-based Scheduling Algorithm

In the priority-based scheduling algorithm, a scheduling is
implemented online, and when an event such as the creation or
termination of a task occurs, the scheduling is performed first in
the high-priority task. For this reason, the scheduling is performed
while tasks are being performed, and there is an advantage of being
able to respond more flexibly according to the state of the system,
but on the other hand, it sometimes causes overhead in the
operating system [36].

In this paper, the RM scheduling algorithm, a fixed-priority
scheduling algorithm proposed by Liu and Layland, is applied to
the RTiK+. The RM is an algorithm of giving a high priority to a
task with a short period when all tasks are periodic tasks, the
deadline coincides with the period, and the tasks are independent
from each other. In this paper, the total utilization rate of the RM
scheduling algorithm is URM (n) = n (2^(1/n)-1). If tasks are
maximum 100, URM (100) = 0.69555. And no matter how many
tasks are, the total utilization URM is within 0.69314.

3.7. A Process in User Mode of RTiK+
3.7.1. The BC Algorithm for a Real-Time Performance

In the MIL-STD-1553B, the BC function controls the direction
of data when transmitting data through the bus, and transmits data
to the RT by sending transmitter (Tx) and receiver (Rx) commands
from the BC of the MIL-STD-1553B communication. In order to
guarantee a real-time processing function of MIL-STD-1553B
communication, it is implemented to operate the Tx and Rx
commands in the real-time thread provided by the RTiK+. Figure
9 is the BC algorithm of MIL-STD-1553B communication that
implements the Tx and Rx commands in the periodic thread of the
RTiK+.

In this algorithm, Tx command releases the Rx link with the
m1553_delete_link() function, connects the Tx link with the
m1553_add_link_to_chain() function, sends the Tx command
from the BC with the m1553_delete_link() function, and checks
the data transmitted from the RT with m1553_read_link_data()
function. And the Rx command releases the Tx Link with the

m1553_delete_link() function, connects the RX Link with the
m1553_load_chain() function, and transmits data to the RT with
the m1553_load_chain() function.

Figure 9: BC Algorithm for MIL-STD-1553B based on Real-Time Processing

3.7.2. The RT Algorithm for a Real-Time Performance

In the MIL-STD-1553B, the RT function transmits or receives
data through the bus according to the BC commands. In order to
check a real-time performance of the RTiK+, it is designed to store
data in the buffer at the same period as the period set in the BC of
the inspection equipment by the RTiK+ to send 32 words of the
value increased by one (1) from the previous data. However, the
matter of data loss due to the gap time for enabling the RTiK+
implanted in the BC and the RT function also occurs in the RT
same as the BC. In order to solve this matter, a double buffer was
used in the same way as the BC. Figure 10 shows the RT algorithm
of the MIL-STD-1553B communication using double buffer.

Figure 10: RT Algorithm for MIL-STD-1553B based on Real-Time Processing

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 390

3.7.3. Scheduling Algorithm of MIL-STD-1553B for a Real-Time
Performance

When performing the MIL-STD-1553B communication, it
takes time to activate the RTiK+ each time to utilize the RTiK+. A
period error occurs in communication. Also, when a data
transmission occurs in the BC due to the application of polling
method applied in the paper and a data is received at the RT. In a
state in which all data transmitted from the BC are not correctly
received, the next data to be transmitted updates the buffer,
resulting in a matter that correct data cannot be received at the RT.
Therefore, in order to improve this problem, it is necessary to set
the period of the RTiK+ for MIL-STD-1553B communication by
considering the time it takes to transmit a data with the MIL-STD-
1553B’s BC command and the time it takes to receive data with
the RT command. And a scheduling with RTiK+ for MIL-STD-
1553B is required. Also, in the MIL-STD-1553 communication
proposed in this paper, there is a problem in that it does not
guarantee the periodic operation of data transmission from the BC
to the RT because the Rx command is immediately sent after the
Tx command is finished. In addition, since the RTiK+ operates at
the period initially set, the period of the Tx command and the Rx
command cannot be set respectively, so there can be a difference
in the operating period of the RT and data loss can occur in this
case. To solve this matter, when the Rx function is finished, the Rx
Link is released, and the Tx Link is connected immediately to
execute Tx function. The scheduling algorithm using the RTiK+ to
guarantee a real-time processing performance when transmitting
and receiving data in the MIL-STD-1553B communication was
proposed.

This scheduling algorithm applied when performing the MIL-
STD-1553B communication between the host PC and the target
PC is assumed as follows.

• The RTiK+ uses the RM algorithm and preempts the CPU.

• The MIL-STD-1553B communication occurs periodically.

• Task period (Period, pi) and deadline (Deadline, Di) are the
same. (pi = Di)

• The task start time (Release Time, Øi) is 0.

• The RTiK+ is implanted to both the host PC and target PC,
and is activated only when the RTiK+ is utilized.

• The BC and the RT function are for MIL-STD-1553B, and
interrupt cannot be used in an asynchronous method.

• The Tx and Rx command occur alternately. The data received
by the Tx command is read from the buffer and transferred to
the Rx command as it is.

• Transmits up to 32 words of data as in the Tx and Rx
commands, and the transmission time is up to 0.80ms for all
tasks [37].

• The Tx and Rx command cannot occur within a half of a
period, therefore disconnect and create each time Tx to Rx
transitions. Thus Tx(ei) > Rx(ei) or Tx(ei) < Rx(ei).

• The BC function and the RT function each use a double buffer.

Figure 11 shows the scheduling algorithm for the MIL-STD-
1553B communication. The MIL-STD-1553B occurs when the Tx

and Rx commands are alternated between the host PC and the
target PC, and each task Ti (T0, T1, T2, T3, ..., Tn) has a maximum
of 32 words of data. When transmitted, the execution time ei of
each task is 0.80ms. At this time, since the deadline is the same as
the period, it is scheduled so that transmission or reception of data
within the period is normally completed without overhead. Also,
when the MIL-STD-1553B communication is performed,
RTiK+(pi), Tx(pi), Rx(pi), Buffer1(pi) and Buffer2(pi) are
operated with an independent period each to match the period
provided by the RTiK+.

Figure 11: The Scheduling Algorithm with RTiK+ for MIL-STD-1553B

And if the task for the MIL-STD-1553B communication
scheduling algorithm is as shown in Table 3, there are three Ti =
(Øi, pi, ei, Di) tasks in the Tx and Rx commands linked to the
RTiK+ pi period, verified if scheduling is possible through
simulation that when the same 32 words of data transmission is
occurred in the MIL-STD-1553B communication. That is, it was
assumes that when this simulation is satisfied, all other
communication conditions are also satisfied. At this time, when the
Tx and Rx commands are executed, each task needs a maximum
execution time of 0.80ms to transmit 32 words.

Table 3: A related Tasks of Tx/Rx for the MIL-STD-1553B Scheduling

Tasks Release
time (Øi)

Period
(pi)

Execution
time (ei)

Deadline
(Di)

RTiK+ pi 0ms 2ms 0.01ms 2ms
Tx pi 0ms 2ms 0.80ms 2ms
Rx pi 0ms 2ms 0.80ms 2ms
T1 0ms 2ms 0.80ms 2ms
T2 0ms 2ms 0.80ms 2ms
T3 0ms 2ms 0.80ms 2ms

Using this method of the scheduling algorithm, each T1, T2,
T3, …, Tn while Tx and Rx commands are being executed. It
shows that the BC function of the MIL-STD-1553B can be
implemented without data loss within the period set in the RTiK+
by the tasks. If the equation (3) is applied to calculate the system
utilization rate for Tx(pi) and Rx(pi), the system utilization rate is
0.80/2 + 0.08/2 = 0.80, and the total utilization rate URM is 0.82 by
applying the equation (1). It can be seen theoretically that the MIL-
STD-1553B scheduling algorithm using the RM algorithm

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 391

operates normally with the system utilization rate (0.80) < URM
(0.82).

Therefore, in the scheduling algorithm proposed in this paper,
even if a Tx command executes in the MIL-STD-1553B
communication and an Rx command executes immediately, the
MIL-STD-1553B communication in real time meets the deadline
without data loss within the period set in the RTiK+.

4. Results

4.1. Experimental Environment

To verify the real-time performance of the scheduling
algorithm with the RTiK+ for MIL-STD-1553B communication,
the experimental specifications for the host PC and the target PC
is shown in Table 4.

Table 4: An Experimental Environment between host PC and target PC

Item Host PC Target PC

CPU Intel Pentium Dual-Core
2117U @1.80 GHz

Intel Core i5-2500 @3.30
GHz

OS Windows 8 Windows 7

4.2. Experimental Method

A verification is a measurement method that calculates the
period by storing data using the RDTSC command to get a
timestamp value to proof a real-time processing performance of
the RTiK+. The algorithm coded in RDTSC for this experiment is
shown in Figure 12.

The current timestamp stored in 64-bit values of EAX and
EDX is read, store the timestamp value in the
timearray[i].QuadPart array at i index, and calculate the difference
between adjacent index values in the array. The f file is designed
to be saved. In this way, a timer interrupt set with a period of 2ms
occurs in the RTiK+, and whenever a real-time thread is executed
in the user mode, the value of the timestamp is stored in the array.

Figure 12: An Algorithm with RDTSC for Period Measurement of the RTiK+

4.3. Measurement and Results
4.3.1. A Measurement for MIL-STD-1553B Communication

To verify a real-time performance support of the RTiK+ in the
MIL-STD-1553B communication, the experimental environment

was configured as shown in Figure 13. The RTiK+ is implanted to
the host PC equipped with the MIL-STD-1553B communication,
and the Period of the MIL-STD-1553B communication is set to
2ms with the RTiK+. The experimental data were measured with
the RDTSC command as previously explained.

Figure 13: A Configuration to measure Period of MIL-STD-1553B

And to check the integrity of the data that there is no loss of
transmitted and received data when performing the MIL-STD-
1553B communication, The SBS Technologies' PASS 3200, a
special-purpose MIL-STD-1553B monitoring equipment, is as
shown in Figure 13, it connects between the host PC operating with
the MIL-STD-1553B BC function and the target PC operating with
the MIL-STD-1553B RT function to operate the MIL-STD-1553B
MT function.

4.3.2. Result of Measuring Period during MIL-STD-1553B

In this paper, the maximum experiment period of 2ms was
measured by RDTSC command during the MIL-STD-1553B
communication. In addition, in order to compare a real-time
performance for the MIL-STD-1553B between RTiK+ and RTX,
the Period of the MIL-STD-1553B communication was measured
as shown in Table 5 by applying the same experimental
environment and experimental method.
Table 5: Comparison with Period of MIL-STD-1553B between RTiK+ and RTX

Period Period of RTiK+ Period of RTX
Min. Max. Tolerance Min. Max. Tolerance

2ms 1.993 2.031 1.57% 1.901 2.015 4.91%
5ms 4.955 5.003 0.90% 4.998 5.252 5.04%
10ms 9.993 10.005 0.06% 9.996 10.003 0.04%

4.3.3. A Result of Monitoring Data during MIL-STD-1553B

During the MIL-STD-1553B communication, in order to check
the accuracy and integrity of the transmitted data, all data passing
through the MIL-STD-1553B communication bus is stored with
the PASS 3200 using the MIL-STD-1553B MT function as Figure
13. As shown in Figure 14, the first data transmitted by performing
Tx command from the MIL-STD-1553B communication BC
function to RT function is 32 words, all of which are 0xC912, and
32 words received by Rx command from RT function are all
0xC912. It seems that there is no loss or wrong data.

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 392

Figure 14: A Result of the MIL-STD-1553B monitoring by PASS 3200

5. Discussion

5.1. Process in User Mode of RTiK+

If the scheduling algorithm for the MIL-STD-1553B is
analyzed based on the experimental results for period of the MIL-
STD-1553B communication, Figure 15 and 16 is shown. As can
be seen from this result, there was no case of overload the deadline
in the 2ms period of the MIL-STD-1553B communication to
which the scheduling algorithm with RTiK+ was applied, and it
was proofed that the MIL-STD-1553B communication operates
normally using the 2ms period of the RTiK+. As shown in Table
5, when the tolerance of the RTiK+ used in the MIL-STD-1553B
communication is 1.57%, it is ±0.03ms from 2ms, but when the
period for each task of Tx(pi) and Rx(pi) transmits 32 words, the
maximum transmission time is 0.80ms, which is less than the half
period of 2ms. The system utilization rate is 0.32 from the equation
(3), and URM is calculated as 0.82 from the equation (1). It means
that the scheduling algorithm for the MIL-STD-1553B operates
normally without any communication errors.

Figure 15: An Operation Diagram of Tx and Rx command for MIL-STD-1553B

Scheduling Algorithm

In addition, this is the result of proving that the miss rate is 0 in
the 2ms period provided by the RTiK+ for real-time processing
function in the MIL-STD-1553B communication.

Figure 16: An Analysis Diagram for MIL-STD-1553B Scheduling Algorithm

5.2. Evaluation for Real-Time Performance of RTiK+

In order to evaluate a real-time performance of the MIL-STD-
1553B communication with the result of Table 5, the 2ms period
is schematically shown in Figure 17. In Figure 17(b), it can be seen
that all the periods occurring in the scheduling algorithm with a
period of 2ms of the RTiK+ for the MIL-STD-1553B are between
1.993ms and 2.031ms.

Figure 17: A Performance of 2ms Period for MIL-STD-1553B

For a performance measurement of a real-time system, 32
words of data are transmitted according to the period provided by
the scheduling algorithm with the RTiK+ in Windows for the MIL-
STD-1553B communication, and the miss rate is applied to verify
the jobs performed after the deadline. The figure 18 is shown for
miss rate during the MIL-STD-1553B communication to decide
success or failure in real-time system.

Figure 18: A Miss Rate of the MIL-STD-1553B Communication

The system based on x86 with Windows 8 applied in this paper
is a hard-real-time system that must meet a deadline. Therefore, if
all deadlines are met, the MIL-STD-1553B communication is a
success, otherwise it is a failure.

Margin of MIL-STD-1553B = (pi-ei)-Tolerance (%) (5)

Substituting the measured result into Equation (5), actually the
margin of the MIL-STD-1553B is 0.39ms that (2ms-1.60ms) -
(2ms-1.9938ms). And the miss rate of the MIL-STD-1553B is
defined as in equation (6).

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 393

Miss rate of MIL-STD-1553B = Number of Error / Number
of Communications (6)

The MIL-STD-1553B using PASS 3200 analyzed all data as
shown in Figure 14 in the period of 2ms, there was no
communication error and all data were normal during the MIL-
STD-1553B.
Table 6: Performance of Scheduling Algorithm by RTiK+ for MIL-STD-1553B

Period Min Max Miss Rate
2ms 1.997ms 2.006ms 0%
5ms 4.961ms 5.038ms 0%
10ms 9.995ms 10.007ms 0%

If the MIL-STD-1553B communication period is 1ms and the
algorithm proposed in this paper is applied, the maximum
transmitted data is Tx(ei) = Rx(ei)) = 0.80ms. This is 0.60ms from
the 1ms period of MIL-STD-1553B communication, so even if a
double buffer is used, overhead may occur. RTiK+ itself can
provide a period within 3% error when there are no workloads on
the CPU in a 1ms period.

Figure 19: An Analysis Result of 1ms Period for Scheduling Algorithm

It is predicted that MIL-STD-1553B communication will not
operate normally due to miss rate because of failure to comply with
the deadline due to the lengthy duration as shown in Figure 19.

6. Conclusion

In recent year, with the development of high-speed
communication technology and computer technology, the scope of
a real-time information sharing has been expanded, and the
performance of electronic equipment has been improved
remarkably. The accuracy of data collection and real-time data
communication are required in industry and defense system.

The RTiK+ presented in this paper controls the
MSR_FSB_FREQ register to support a real-time performance on
Windows in an environment where x86-based Windows 8 is
installed, and calculates the CPU clock tick value required for the
operation of the local APIC timer to be a Windows independent
timer interrupt was made to occur, and in this way, the matter that
local APIC is initialized after booting in Windows 8 is solved.

The experimental verification was checked by measuring the
period by calculating a timestamp in the PC’s internal memory
using RDTSC, and measuring a real-time processing performance
of the RTiK+.

And to support a real-time performance in the MIL-STD-
1553B communication, The RTiK+ was implanted in the
Windows based on x86 system, and a real-time processing

functions were added to the BC and RT functions. Here, the real-
time performance was provided when BC and RT function of the
MIL-STD-1553B communication are implemented, and by
applying the scheduling algorithm with RTiK+ for a high-speed
MIL-STD-1553B communication such as 2ms of period is
implemented to prevent data loss due to error of the period. To
proof this scheduling algorithm experimentally, The RTiK+ was
implanted in the Window 8 and the MIL-STD-1553B
communication of the period of 2ms, 5ms, and 10ms was set to
verify whether a real-time processing function of the RTiK+
normally while MIL-STD-1553B communication is performing.

In addition, in order to compare a real-time performance
between the RTiK+ and the RTX as a third party for the MIL-STD-
1553B communication, the experiment result for the period of the
MIL-STD-1553B by applying the experimental environment and
experimental method is from 1.993ms to 2.031ms in the period of
2ms. The RTiK+ had a tolerance of 1.5%, and the results of this
experiment proved that RTiK+ can be applied to systems by
replacing third party such as RTX. Finally, a real-time processing
performance of the scheduling algorithm with RTiK+ proposed in
this paper for MIL-STD-1553B implemented has a miss rate of 0
during the MIL-STD-1553B communication with a period of 2ms
for system that requires high reliability. It also proved that the real-
time performance and data integrity for scheduling algorithm with
RTiK+ are guaranteed.

In the future research, the methods proposed in this paper is
needed in the RS-232C, RS-422 and Ethernet used mainly in
industry and defense system, and the research for the Windows 10
based on x86 system is needed as well.

Acknowledgment

I would like to thank my dissertation advisor Professor Lee Cheol-
Hoon from CNU for his supervise and expert advice, as well as
Mr. Muammar Abdulla Abushehab for extraordinary support.

References

[1] C.M. Krishna, Gang G. Shin, Real-Time Systems, McGrow-Hill, 1997.
[2] C. Koo et al, “Distributed Simulator design by using of SimNetwork to

overcome speed limit on GenSim”, Recent Advances in Space Technologies
(RAST), Proceedings of 5th International Conference on RAST 2011, 430-
435, 2011, doi: 10.1109/RAST.2011.5966872.

[3] H. Kim et al., “The Design and Performance Verification of Real-Time
Inspection Equipment Software based on WindowsOperating System”,
Journal of the Korea Contents Association, 17(10), 1-8, 2018, doi:
10.5392/JKCA.2017.17.10.001.

[4] S. Koh et al., “The method of development for enhancing reliability of
missile assembly test set”, The Journel of The Korea Academia-Industrial
Cooperation Society, 19(8), 37-43, 2018, doi: 10.5762/KAIS.2018.19.8.37.

[5] J. Kim et al., “Real-time Processing Method for Windows OS Using
MSR_FSB_FREQ Control”, Journal of Korea Multimedia Society, 24(1),
95-105, 2021, doi: 10.9717/KMMS.2020.24.1.095.

[6] J. Lee et al., “Timer Implementation and Performance Measurement for
Providing Real-time Performance to Windows 10”, Journal of the Korea
Contents Association, 20(10), 14-24, 2020, doi:
10.5392/JKCA.2020.20.10.014.

[7] S. Kwon , “Design and Implementation of Air Vehicle Test Equipment for
Unmanned Aerial Vehicle”, The Journal of Advanced Navigation
Technology”, 24(5), 251-260, 2020, doi: 10.12673/JANT.2020.24.4.251.

[8] J. Jung et al., “Analysis for Next-generation High-Speed MIL-STD-1553B
Bus Technology”, Journal of Aerospace Ssytem Engineering, 11(6), 76-83,
2017, doi: 10.20910/JASE.2017.11.6.76.

[9] http://www.intervalzero.com
[10] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, 2

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 385-394 (2021)

www.astesj.com 394

(2A, 2B, 2C & 2D), Volume 3A and Volume 3B, Intel, 2016.
[11] Intel, Intel® 64 Architectures x2APIC Specifiation, Intel, 2010.
[12] Intel, Intel Core i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series

2010.
[13] A. Jo, “Integrated Middleware for Real-Time Device Driver on Windows”,

Journal of Korea Contents Association, 13(3), 22-31, 2013, doi:
10.5392/JKCA.2013.13.03.022.

[14] H. Lihua, Analysis of Fuel Cell Generation System Application, Ph. D Thesis,
Chongqing University, 2005.

[15] https://en.wikipedia.org/Rate-monotonic_scheduling
[16] J. Liu, “Real-Time Systems”, Prentice Hall, 2000.
[17] M. Gong et al., “Dynamic Voltage Scaling for Scheduling Mixed Real-Time

Tasks”, Proceeding ICESS 2007 Third International Conference, 488-497,
doi: 10.1007/978-3-540-72685-2.

[18] M. Lee, C. Lee, “Low Power EccEDF Algorithm for Real-Time Operating
Systems”, The Journal of the Korea Contents Association, 15(1), 31-43,
2015, uci: 1410-ECN-0101-2016-004-001099668.

[19] M. Jung et al., “Optimal RM scheduling for simply periodic tasks on uniform
multiprocessors”, Proceedings of the 2009 International Conference on
Hybrid Information Technology, 383-389, 2009, doi:
10.1145/1644993.1645064.

[20] M.E. Russinovich, “Windows Internals, Part 2 (6th Edition)”, Microsoft,
2012.

[21] https://en.wikipedia.org/wiki/MIL-STD-1553
[22] ILC DDC, MIL-STD-1553 Designer's Guide (5th Edition), ILC Data Device

Corporation, 1998.
[23] J. Kim et al., “Real-Time Supports on Tablet PC Platforms”, Proceeding

IEEE 2020 15th International Conference for Internet Technology and
Secured Transactions(ICITST), 111-117, 2021, doi:
10.23919/ICITST51030.2020.935.1322.

[24] J. Kim, “Real-time Processing Method for Windows OS Using
MSR_FSB_FREQ Control”, Journal of Korea Multimedia Society, 24(1),
95-105, 2021.

[25] D.A. Solomon, “Inside Microsoft Windows 2000, Third Edition”, Microsoft,
2000.

[26] http://msdn.microsoft.com/en-us/library/ms810029.aspx
[27] D.A. Godse, A.P. Godse, Microprocessors, Technical Publications Pune,

432-472, 2007.
[28] O. Bailey, Embedded systems: desktop integration, Wordware Publishing

Inc, 34-56, 2005.
[29] Intel, “MultiProcessor Specification (Version 1.4)”, Intel, 1997.
[30] J. Choi, “A Study on Developing the Missile System Test Set Software with

DDS”, Proceeding of Korea Institute of Communication Sciences
Conference, 2018(11), 614-615, 2018, uci: 1410-ECN-0101-2019-567-
000045708.

[31] https://en.wikipedia.org/wiki/Front-side_bus
[32] https://en.wikipedia.org/wiki/CPU_multiplier
[33] https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-

wdm-mmmapiospace
[34] https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-

priorities
[35] http://msdn.microsoft.com/en-us/library/ms685100 (VS.85).aspx
[36] C. Lee, Real-Time Systems, CNU, 2012.
[37] K. Kim et al., “An Indirect Data Transfer Technique based on MIL-STD-

1553B for the Software Upgrade of Embedded Equipments on a Missile
Assembly with Booster”, Journal of the Korea Institute of Military Science
and Technology, 19(1), 43-49, 2016, doi: 10.9766/KIMST.2016.19.1.043.

http://www.astesj.com/

	1.1. Research Background
	1.2. Research Purpose
	2.1. RTX
	2.2. Local APIC
	2.3. Scheduling of Process and Thread in Windows
	2.4. RM Scheduling Algorithm
	2.5. C-States
	2.6. MIL-STD-1553B
	3.1. Overview
	3.2. Local APIC Timer Control
	3.3. Time Interrupt Control through FSB
	3.4. Time Deterministic through controlling C-States
	3.5. Process in User Mode of the RTiK+
	3.6. Priority-based Scheduling Algorithm
	3.7. A Process in User Mode of RTiK+
	3.7.1. The BC Algorithm for a Real-Time Performance
	3.7.2. The RT Algorithm for a Real-Time Performance
	3.7.3. Scheduling Algorithm of MIL-STD-1553B for a Real-Time Performance
	4.1. Experimental Environment
	4.2. Experimental Method
	4.3. Measurement and Results
	4.3.1. A Measurement for MIL-STD-1553B Communication
	4.3.2. Result of Measuring Period during MIL-STD-1553B
	4.3.3. A Result of Monitoring Data during MIL-STD-1553B
	5.1. Process in User Mode of RTiK+
	5.2. Evaluation for Real-Time Performance of RTiK+
	Acknowledgment

	References

