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 Quantum logic gates represent certain quantum operations to perform quantum 
computations. Of those quantum gates, there is a category of classical behavior gates called 
quantum permutation gates. As a quantum algorithm, quantum permutation pad or QPP 
consists of multiple quantum permutation gates to be implemented both in a quantum 
computing system as a quantum circuit operating on n-qubits’ states for transformations 
and in a classical computing system represented by a pad of n-bit permutation matrices. 
Since first time proposed in 2020, QPP has been recently applied to create a quantum safe 
lightweight block cipher by replacing SubBytes and AddRoundKey with QPP in AES called 
AES-QPP. In AES-QPP, QPP consists of 16 selected 8-bit permutation matrices based on 
the shared classical key materials. For quantum safe, the key length can be any size from 
256 bits to 4 KB. That means, this QPP holds up to 4 KB of Shannon information entropy. 
Its code size is less than 2 KB with 4 KB of RAM memory. In this paper, we propose to 
apply QPP for a streaming cipher and carry out its encryption performance and the 
randomness analysis of this streaming cipher. The proposed QPP streaming cipher 
demonstrates not only good randomness in its ciphertexts but also huge performance 
improvement: 13x faster than AES-256, with an overall runtime space (6.8 KB).   
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1. Introduction 

Since the U.S. National Institute of Standards and Technology 
(NIST) announced the standardization of Advanced Encryption 
Standard or AES in 2001 [1], AES has been widely accepted as 
secure data encryption for data in transit or at rest. As a standard 
block cipher, AES accepts a fixed block size of 128 bits for three 
key lengths: 128, 192, and 256 bits with 10, 12, and 14 rounds 
respectively. Each AES round includes four steps: SubBytes, 
ShiftRows, MixColumns, and AddRoundKey. Over the past 
decade, the internet of things or IoT has captured the great 
attentions cross the world due to its potential to transform our 
daily lives through varieties of aspects such as smart home, smart 
city, autonomous vehicles, connected devices, etc. IoT devices are 
generally considered as resource constrained systems. They are 
often battery-powered, low computing power, and limited 
storages. These limitations put certain pressures on the standard 
AES to run in IoT devices, especially with high security 
requirements. The authors published their NIST report on 
lightweight cryptography [2], covering lightweight bloch ciphers, 
lightweight hash functions, lightweight message authentication 

codes, and lightweight streaming ciphers. In [3], the authors 
proposed their implementation of modified lightweight AES in 
FPGA, with a parallel manner for achieving better latency. 

On the other hand, varieties of symmetric lightweight 
cryptographic algorithms have been proposed. In 2018 [4], the 
author have reviewed those algorithms to benchmark them on 
executing time, RAM memory and binary code sizes. those 
algorithms support the block sizes from 64 bits to 128 bits with 
key lengths from 80 bits to 128 bits.  

AES generally faces three types of attacks: differential, linear, 
and integral [5]-[8].  The single static S-box representing 
substitutions or non-linear-transformations enables the 
differential analysis attacks due to some characteristic of XOR 
differences between input blocks and output blocks, especially 
impossible differences found at round 4, also called impossible 
differential attacks [6,7]. The differential analysis attack can be 
further improved with sets or multisets of input and output XOR  
results to create a new integral attack [8].  AddRoundKey at the 
end of each round contributes the linear analysis attack due to the 
linear transformation between rounds. 
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In 1994, Shor proposed an algorithm to use quantum systems 
or qubits to perform computations called quantum computing [9]. 
Shor’s algorithm enables a new natural parallel computing 
mechanism arising from the fundamental characteristic of their 
superpositions. With quantum computers, the classical exponential 
difficulty of prime factorizations becomes polynomial time, 
shaking the foundation of classical public key cryptography. The 
recent advancements in quantum computing development speeds 
up the urgency of quantum safe cryptography for both asymmetric 
and symmetric. In September 2019, Google announced their 54-
qubit quantum computer called “Sycamore”, marked their 
quantum supremacy [10].  On the other hand, in [11] the author 
made a milestone achievement in prime factorization with  D-
Wave's annealing quantum computer.  

In 1996, Grover proposed his new search algorithm by using 
quantum computing mechanism called Grover’s algorithm [12]. 
Grover’s algorithm can achieve a square root complexity O(√𝑛𝑛)  
in the unstructured search problem of size n, while any classical 
algorithm needs O(n) queries. The squared searching power from 
the Grover’s algorithm requires any symmetric cryptography not 
only to double the key length from 128 bits to 256 bits, but also to 
be true random. For resource constrained IoT devices, standard 
AES cryptography itself is already heavy so the doubled key length 
requires extra four rounds from 10 rounds to 14 rounds. It is 
necessary to explore different lightweight cryptographic 
algorithms in the post-quantum era. In [13], the authors  proposed 
to use quantum cryptography with One-Time-Pad or OTP for 
secure encryption for power grid data. This can be considered as a 
hybrid quantum secure encryption combining QKD with OTP. In 
[14], the authors proposed a new lightweight symmetric 
cryptographic algorithm called Saturnin by introducing two 
representations of AES 256-bit internal states: the 2-dimensional 
and 3-dimensional notations. In its 2-dimensional representation, 
a 256-bit state can be expressed by sixteen 16-bit registers; but in 
its 3-dimensional representation, it is expressed by a 4x4x4 cube 
of nibbles. Through those major changes, Saturnin established a 
new quantum resistant lightweight cryptography for 128-bit and 
256-bit block ciphers and a 256-bit hash function.    

Quantum mechanics allow us to have two implementations of 
quantum gates: physically for quantum computing power and 
digitally for quantum security.  In [15], the authors first attempted 
to present classical information quantum mechanically with a state 
denoted by a Dirac ket over a quantum computational basis. The 
well-known symmetric group Sn containing entire group actions 
over a set of n items has its matrix representations or permutation 
matrices over the corresponding quantum computational basis. 
The extremely large size of the quantum permutation group, 28! 
(factorial), for an 8-qubit quantum computational basis holds huge 
equivalent Shannon information entropy, desirable for information 
security. For an 8-bit system, the permutation group is S256. Kuang 
and Bettenburg [15] extend the Shannon perfect secrecy of the 
classical one-time-pad (OTP)  over GF(2n) [16], to their proposed 
quantum permutation pad (QPP)  over a  quantum computational 
basis. In contrast to the one-time-use nature of  OTP, QPP retains 
the Shannon perfect secrecy  over multiple uses, thanks to the 
general non-commutativity properties of the symmetric group.  

In [17], the authors have applied QPP for a lightweight block 
cipher called AES-QPP, with 16 permutation matrices selected by 

using the shared classical random key to replace both SubBytes 
and AddRoundKey. AES-QPP has a footprint below 2KB and 
RAM memory 4KB, with performance improvement about 3x. In 
this paper, we extend the work [17] further for a quantum safe 
lightweight streaming cipher.  

This paper is organized as follows: Section 2 is for the 
summary of lightweight block cipher AES-QPP. Then Section 3 
describes the proposed streaming cipher. The randomness and 
performance of the proposed streaming cipher is presented in 
Section 4. We will draw a conclusion at the end. 

2. Quantum safe Lightweight Block Cipher AES-QPP   

2.1. Quantum Permutation Pad  

QPP is a pad of quantum permutation matrices randomly 
selected from the n-bit permutation group [15, 17] as shown in 
Fig. 1 for AES with 16 8-bit permutation matrices. They are all 
28x28 square matrices and they are unitary and reversable so their 
reverse transformations are their transposes. This characteristic is 
great for lightweight cryptography, especially for resource 
constrained IoT devices. At the encryption side, we can use the 
selected QPP and then at receiving side we use their transposes or 
QPPT. Therefore, transformations are exactly symmetric with the 
same computational performance for encryption and decryption. 
The QPP selection is a process to map classical key materials into 
a QPP pad over the 8-bit computational basis. There are several 
algorithms to be used such as RC4 key scheduling algorithm or 
Fisher-Yates random shuffling algorithm. We use the Fisher-
Yates algorithm to map classical key into a QPP pad as shown in 

Algorithm 1. 

Algorithm 1: Pseudo code of mapping a key to 
permutation matrix 

Result: Permutation matrix P[256][256] 
Input: 256 bytes of random key k[256] 
Initialization: set S[256] and P[256][256] to 0 
for i = 0 to 255 
      S[i] = i; 
end for 
i = 255  
while i-- > 1 do 
   j = k[i]; 

  swap S[j] and S[i]; 
  

end   
for i = 0 to 255   
       P[i][S[i]] = 1;   
end for   

 

For each permutation matrix, we need 256 bytes of random 
numbers as shown in the pseudo-code. For a QPP pad with 16 

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

��
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�       ………      �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� 

         P1                      P2                     Pi                      P16 

Figure 1: QPP is illustrated. 
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permutation matrices, we would need to supply total 4 KB of 
random numbers. That means, the selected QPP holds total 4 KB 
of entropy. It is up to the desired security level to choose a right 
key length from 256 bits to 32,768 bits. To support this variable 
key length, a key scheduling is required to extend a variable key 
length to 4 KB.  

2.2. AES-QPP 

SubBytes in AES performs a substitution with a static S-box 
which is a 16x16 matrix. S-box can be converted to a 256x256 
permutation matrix. The substitution can be considered as the 
permutation matrix multiplication with an 8-bit state vector over 
the 8-bit computational basis.  AddRoundKey step performs byte-
by-byte XOR operations between the output block from 
MixColumns step and a round key. XOR operation is a special 
case of permutation transformations. In our early block cipher, we 
use the QPP to replace both SubBytes and AddRoundKey in an 
AES round with the ShiftRows and MixColumns steps as follows:    

1. 16 8-bit QPP;  
2. ShiftRows; 
3. MixColumns; 
4. the same QPP as in the step 1. 

We illustrate AES-QPP in Figure 2. In standard AES, each byte 
in a16-byte block is supplied to the single static S-box, but in AES-
QPP, each byte in a block is supplied to its corresponding 
permutation matrix. The last step is performed in the same way as 
in the first step, unlike the standard AES in the AddRoundKey step 
with each byte from MixColumns to be XORed with the 
corresponding byte in a round key. This design of AES-QPP 
enables us to use variable key length without change the 
implementation of the cryptography.  

 The decryption is the same process as in the encryption with 
transposed QPPT.  

2.3. AES-QPP Rounds  

In comparison with AES rounds, QPP increases the diffusion 
capability at least 16x with 16 permutation matrices. This extra 
strengthened diffusion ability helps to reduce the number of 
rounds. AES-256 needs 14 rounds to achieve good randomness in 
ciphertexts. In our early report, the number of rounds in AES-QPP 
was reduced to 5 rounds. The ciphertext still demonstrates 
excellent randomness from NIST and ENT random testing suites.  

2.4. Cipher Randomness with Shannon Entropy Distribution 

Cipher randomness is a good measure for a cryptosystem to 
avoid statistical analysis attacks. We have demonstrated 
randomness analysis with NIST random test suite, especially with 
ENT testing tool to identify any byte level and bit level biases.  
AES-QPP shows excellent randomness in its ciphertexts. In NIST 
testing suites, AES-QPP ciphers with 5 rounds pass all 15 testing 
cases. In the sensitive testing suite ENT, the AES-QPP ciphers not 
only pass 6 testing cases but also demonstrate excellent Chi 
Square value, arithmetic means, Monte Carlo 𝝅𝝅, as well as serial 
correlation.  Here we want to add analysis for Shannon entropy 
distribution for AES-QPP in comparison with the standard AES. 
Shannon entropy distribution performs analysis of each 16-bit, 
entropy per 16-bit random data, as well as how close to the 
Gaussian distribution. 

Figure 3 plots the Shannon entropy distribution for AES-QPP 
with 5 rounds, using a 16 bits Shannon Entropy calculator [18]. .  
The entropy is 15.999072 per 16 bits of ciphertexts, very close to 
the ideal entropy 16 bits. The left side of the graph displays the 
frequency of each 16-bit integer. The graph displays a nice 
symmetric behavior around an average count. The analysis shows 
that the median counts are 781, minimum count 656, and 
maximum count 896 for 100 MB files. The right-hand side of Fig. 
3 shows a good Gaussian distribution with a nice symmetric shape 
around the median count, indicating a good randomness in AES-
QPP-5 ciphertexts.  

Figure 4 plots the Shannon entropy distribution for AES-256. 
The same size of AES-256 ciphertext file as AES-QPP-5 is used. 
It demonstrates a very close relationship to Figure 5 with median 
counts 781, minimum counts 655 comparing with 656 in AES-
QPP, and maximum counts 907, slightly better symmetry than 
AES-QPP. The Shannon entropy of AES-256 is 15.999087 per 16 
bits of ciphertexts, extremely close to AES-QPP-5.  

3. Quantum Safe Lightweight Streaming Cipher with QPP 
In the last section, we discussed the block cipher 

implementation with QPP. We can also implement it in a 
streaming cipher with a pre-randomized dispatcher as shown in 
Figure 5. 
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Figure 2: The proposed AES-QPP is illustrated 

Figure 3: Shannon entropy distribution is plotted for AES-QPP-5. 
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Seed is an input classical key material, Init box is the 
scheduling to map the classical key material into a QPP pad as 
shown in Algorithm 1. PRNG box is a pseudo random number 
generator used to pre-randomize input plaintexts with a directly 
XOR operation before dispatching them to QPP. Dispatcher box 
also takes a PRNG byte and performing a 4-bit right shift as an 
index to the permutation matrix inside the QPP pad. A ket |m⟩ 
represents a plaintext byte. The ciphertext denoted by a ket |c⟩ 
can be created byte-by-byte in the same way as input 
plaintexts. At the receiving side, the same shared classical key 
material is used to establish the same QPP pad in a transposed 
mode because permutation matrix is unitary and reversable. 
The decryption is straightforward. 

QPP streaming cipher implementation eliminates the repeated 
rounds for better randomness ciphers, replacing with a pre-
randomized process under a consideration of bijective quantum 
permutation transformations. We can roughly estimate the 
executing time for the encryption at the level of a single round 
AES encryption. This would dramatically improve its 
performance for latency and battery consumptions. 

The footprint of QPP streaming cipher is about 2.5 KB, In 
comparison with 1.1 KB in AES-QPP because of the pre-
randomization process in QPP streaming. RAM memory is the 
same as AES-QPP at 4KB because we still use a QPP pad with 16 
permutation matrices.   

4. Discussions of QPP Streaming Cipher 

For the proposed QPP streaming cipher shown in Figure 5, we 
create a plaintext file of 120 MB by a paragraph of English 
sentences. Then QPP streaming encrypts the plaintext file and 
stores the ciphertexts into ciphertext file. The ciphertext file is 
passed all NIST 15 randomness test cases. We should be very 
interesting to see the ENT testing reports listed in Table 1, 
together with the results for the input plaintext file. The plaintext 
file comes with 4.49 bits of entropy per 8-bits, huge Chi Square 
value, totally wrong arithmetical mean, as well as a wrong Monte 
Carlo 𝝅𝝅 value. All those results show that the input plaintext 
file is totally biased. The ciphertext file produced from our 
proposed QPP streaming cipher demonstrates excellent 

randomness: 8 bits of entropy per 8 bits of ciphertexts, Chi 
Square value 237.64 with a p-value 0.775, arithmetical mean 
127.49 compared to 127.50, very nice Monte Carlo 𝝅𝝅 value 
3.141771788 compared to 3.14159265, and serial correlation 
value 8.2x10-5. The overall ENT testing results from QPP 
streaming cipher is very similar to AES-QPP-5 [17].  

Table 1: ENT randomness testing reports for QPP streaming cipher and plaintext 
files of size 120 MB 

ENT Plaintext  QPP Streaming 
Entropy (bits) 4.491422 7.999999 

Chi Square 1736817422.90 237.64 
p-Value 0.0001 0.775 

Arith. Mean 95.7060 127.49 
Monte Carlo 𝝅𝝅 4.000000000 3.141771788 

Serial Corr. 0.047905 0.000082 
Figure 6 plots the Shannon Entropy distribution with 120 MB 

ciphertext file from a streaming encryption implementation of 16 
permutation matrices. The Shannon entropy is 15.999244 bits per 
16 bits of ciphertexts. The distribution demonstrates a nice 
Gaussian type with a med 957, minimum 826 and a maximum 
1085, slightly better symmetry than AES-QPP-5 [17]. 

Table 2 illustrates performance comparisons among AES-256, 
AES-QPP-5, and QPP streaming cipher. For AES-256, we take 
the open-source implementation or Tiny-AES. AES-256 
demonstrates a fastest key scheduling with 0.01 ms, then AES-
QPP-5 with 0.120 ms, and QPP streaming with 0.235 ms, 
respectively. It is understandable that QPP initialization takes 
longer time because it processes 4KB key materials to select 16 
permutation matrices, unlike in AES where key is only 32 bytes 
long. Also, in QPP streaming cipher, we take a special handling 
to increase confusion capability. This special handling would help 
to produce totally different QPP pad even with a single bit change 
in the supplied key materials. 

Table 2: Performance comparisons are tabulated for key scheduling and 
encryptions for AES-256, AES-QPP-5, and QPP streaming cipher. Encryption 
speeds are tested with 16 bytes blocks in the same computer: MacBook Pro, 2.6 
GHz 6-Core Intel Core i7. 

 AES-256 AES-QPP-5 QPP Streaming 
Key Schedule 0.01 ms 0.120 ms 0.235 ms 
Encryption MB/s 51.3 115.1 672.3 
Ratio 1.0 2.24 13.1 
Code Footprint 11.5 KB 1.39 KB 2.5 KB 
Run Time Space 12.0 KB 5.39 KB 6.5 KB 
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Figure 5: A streaming cipher is illustrated 
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It can also be seen from Table 2 that AES-256 is the slowest 
among three ciphers with an encryption speed 51.3 MB/s for 16 
bytes blocks, then AES-QPP is faster than AES-256 with 115.1 
MB/s, finally QPP streaming cipher is the fastest cipher with 
672.3 MB/s. AES-QPP is 2.24x faster than AES-256, slightly 
slower than  what we expected 2.8x, that may be the fact that 
overall permutation transformations with 16 permutation matrices 
take longer than each step of SubBytes and AddRoundKey in AES. 
However, the discrepancy is very acceptable. QPP streaming 
cipher is 13x faster than AES-256, indicating that pre-
randomization with randomly dispatching together is almost 
equivalent to a single round in AES. In comparison with AES-
QPP-5, QPP streaming cipher is 5x faster than AES-QPP-5.  

In comparison with code sizes, compiled footprints are 11.5 
KB, 1.39 KB, and 2.5 KB for AES-256, AES-QPP, and QPP 
streaming respectively, and runtime memory spaces are 0.47 KB 
for AES-256, 4 KB for both AES-QPP and QPP streaming cipher. 
As for overall runtime space, AES-QPP takes the least runtime 
space at 5.39 KB, then QPP streaming cipher at 6.5 KB, after then 
AES-256 needs the most runtime space at 12 KB. 

5. Conclusion 

We have applied quantum permutation pad or QPP to establish 
both lightweight quantum safe block cipher and streaming cipher. 
In a block cipher implementation, QPP replaces both SubBytes 
and AddRoundKey in a standard AES or called AES-QPP. In 
addition to cipher randomness analysis in [17], we perform the 
Shannon entropy distribution for a more complete randomness 
analysis of this quantum safe block cipher. 

In this paper We explored the QPP algorithm for a streaming 
cipher with a straightforward pre-randomization and random 
distribution process. The randomness analysis of the QPP 
streaming cipher demonstrates very good randomness, especially 
with ENT randomness testing tool. The very promising 
encryption speed plus overall memory space makes QPP 
streaming be a good candidate for quantum safe lightweight 
streaming cipher and AES-QPP for quantum safe lightweight 
block cipher. 

In the future, we may extend the exploration both ciphers for 
4-bit permutation matrix pad to further reduce their runtime 
memory spaces. 
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