

www.astesj.com 401

Quantum Secure Lightweight Cryptography with Quantum Permutation Pad

Randy Kuang*, Dafu Lou, Alex He, Alexandre Conlon

Quantropi Inc., Ottawa, K1Z 8P9, Canada

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 18 June, 2021
Accepted: 17 August, 2021
Online: 28 August, 2021

 Quantum logic gates represent certain quantum operations to perform quantum
computations. Of those quantum gates, there is a category of classical behavior gates called
quantum permutation gates. As a quantum algorithm, quantum permutation pad or QPP
consists of multiple quantum permutation gates to be implemented both in a quantum
computing system as a quantum circuit operating on n-qubits’ states for transformations
and in a classical computing system represented by a pad of n-bit permutation matrices.
Since first time proposed in 2020, QPP has been recently applied to create a quantum safe
lightweight block cipher by replacing SubBytes and AddRoundKey with QPP in AES called
AES-QPP. In AES-QPP, QPP consists of 16 selected 8-bit permutation matrices based on
the shared classical key materials. For quantum safe, the key length can be any size from
256 bits to 4 KB. That means, this QPP holds up to 4 KB of Shannon information entropy.
Its code size is less than 2 KB with 4 KB of RAM memory. In this paper, we propose to
apply QPP for a streaming cipher and carry out its encryption performance and the
randomness analysis of this streaming cipher. The proposed QPP streaming cipher
demonstrates not only good randomness in its ciphertexts but also huge performance
improvement: 13x faster than AES-256, with an overall runtime space (6.8 KB).

Keywords:
AES
Quantum Permutation Gates
Quantum Permutation Pad
Permutation Matrix
Quantum Algorithm
QPP
Shannon entropy
Lightweight Cryptography
Streaming Cipher
Block Cipher

1. Introduction

Since the U.S. National Institute of Standards and Technology
(NIST) announced the standardization of Advanced Encryption
Standard or AES in 2001 [1], AES has been widely accepted as
secure data encryption for data in transit or at rest. As a standard
block cipher, AES accepts a fixed block size of 128 bits for three
key lengths: 128, 192, and 256 bits with 10, 12, and 14 rounds
respectively. Each AES round includes four steps: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Over the past
decade, the internet of things or IoT has captured the great
attentions cross the world due to its potential to transform our
daily lives through varieties of aspects such as smart home, smart
city, autonomous vehicles, connected devices, etc. IoT devices are
generally considered as resource constrained systems. They are
often battery-powered, low computing power, and limited
storages. These limitations put certain pressures on the standard
AES to run in IoT devices, especially with high security
requirements. The authors published their NIST report on
lightweight cryptography [2], covering lightweight bloch ciphers,
lightweight hash functions, lightweight message authentication

codes, and lightweight streaming ciphers. In [3], the authors
proposed their implementation of modified lightweight AES in
FPGA, with a parallel manner for achieving better latency.

On the other hand, varieties of symmetric lightweight
cryptographic algorithms have been proposed. In 2018 [4], the
author have reviewed those algorithms to benchmark them on
executing time, RAM memory and binary code sizes. those
algorithms support the block sizes from 64 bits to 128 bits with
key lengths from 80 bits to 128 bits.

AES generally faces three types of attacks: differential, linear,
and integral [5]-[8]. The single static S-box representing
substitutions or non-linear-transformations enables the
differential analysis attacks due to some characteristic of XOR
differences between input blocks and output blocks, especially
impossible differences found at round 4, also called impossible
differential attacks [6,7]. The differential analysis attack can be
further improved with sets or multisets of input and output XOR
results to create a new integral attack [8]. AddRoundKey at the
end of each round contributes the linear analysis attack due to the
linear transformation between rounds.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Randy Kuang, randy.kuang@quantropi.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 401-405 (2021)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj060445

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060445

R. Kuang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 401-405 (2021)

www.astesj.com 402

In 1994, Shor proposed an algorithm to use quantum systems
or qubits to perform computations called quantum computing [9].
Shor’s algorithm enables a new natural parallel computing
mechanism arising from the fundamental characteristic of their
superpositions. With quantum computers, the classical exponential
difficulty of prime factorizations becomes polynomial time,
shaking the foundation of classical public key cryptography. The
recent advancements in quantum computing development speeds
up the urgency of quantum safe cryptography for both asymmetric
and symmetric. In September 2019, Google announced their 54-
qubit quantum computer called “Sycamore”, marked their
quantum supremacy [10]. On the other hand, in [11] the author
made a milestone achievement in prime factorization with D-
Wave's annealing quantum computer.

In 1996, Grover proposed his new search algorithm by using
quantum computing mechanism called Grover’s algorithm [12].
Grover’s algorithm can achieve a square root complexity O(√𝑛𝑛)
in the unstructured search problem of size n, while any classical
algorithm needs O(n) queries. The squared searching power from
the Grover’s algorithm requires any symmetric cryptography not
only to double the key length from 128 bits to 256 bits, but also to
be true random. For resource constrained IoT devices, standard
AES cryptography itself is already heavy so the doubled key length
requires extra four rounds from 10 rounds to 14 rounds. It is
necessary to explore different lightweight cryptographic
algorithms in the post-quantum era. In [13], the authors proposed
to use quantum cryptography with One-Time-Pad or OTP for
secure encryption for power grid data. This can be considered as a
hybrid quantum secure encryption combining QKD with OTP. In
[14], the authors proposed a new lightweight symmetric
cryptographic algorithm called Saturnin by introducing two
representations of AES 256-bit internal states: the 2-dimensional
and 3-dimensional notations. In its 2-dimensional representation,
a 256-bit state can be expressed by sixteen 16-bit registers; but in
its 3-dimensional representation, it is expressed by a 4x4x4 cube
of nibbles. Through those major changes, Saturnin established a
new quantum resistant lightweight cryptography for 128-bit and
256-bit block ciphers and a 256-bit hash function.

Quantum mechanics allow us to have two implementations of
quantum gates: physically for quantum computing power and
digitally for quantum security. In [15], the authors first attempted
to present classical information quantum mechanically with a state
denoted by a Dirac ket over a quantum computational basis. The
well-known symmetric group Sn containing entire group actions
over a set of n items has its matrix representations or permutation
matrices over the corresponding quantum computational basis.
The extremely large size of the quantum permutation group, 28!
(factorial), for an 8-qubit quantum computational basis holds huge
equivalent Shannon information entropy, desirable for information
security. For an 8-bit system, the permutation group is S256. Kuang
and Bettenburg [15] extend the Shannon perfect secrecy of the
classical one-time-pad (OTP) over GF(2n) [16], to their proposed
quantum permutation pad (QPP) over a quantum computational
basis. In contrast to the one-time-use nature of OTP, QPP retains
the Shannon perfect secrecy over multiple uses, thanks to the
general non-commutativity properties of the symmetric group.

In [17], the authors have applied QPP for a lightweight block
cipher called AES-QPP, with 16 permutation matrices selected by

using the shared classical random key to replace both SubBytes
and AddRoundKey. AES-QPP has a footprint below 2KB and
RAM memory 4KB, with performance improvement about 3x. In
this paper, we extend the work [17] further for a quantum safe
lightweight streaming cipher.

This paper is organized as follows: Section 2 is for the
summary of lightweight block cipher AES-QPP. Then Section 3
describes the proposed streaming cipher. The randomness and
performance of the proposed streaming cipher is presented in
Section 4. We will draw a conclusion at the end.

2. Quantum safe Lightweight Block Cipher AES-QPP

2.1. Quantum Permutation Pad

QPP is a pad of quantum permutation matrices randomly
selected from the n-bit permutation group [15, 17] as shown in
Fig. 1 for AES with 16 8-bit permutation matrices. They are all
28x28 square matrices and they are unitary and reversable so their
reverse transformations are their transposes. This characteristic is
great for lightweight cryptography, especially for resource
constrained IoT devices. At the encryption side, we can use the
selected QPP and then at receiving side we use their transposes or
QPPT. Therefore, transformations are exactly symmetric with the
same computational performance for encryption and decryption.
The QPP selection is a process to map classical key materials into
a QPP pad over the 8-bit computational basis. There are several
algorithms to be used such as RC4 key scheduling algorithm or
Fisher-Yates random shuffling algorithm. We use the Fisher-
Yates algorithm to map classical key into a QPP pad as shown in

Algorithm 1.

Algorithm 1: Pseudo code of mapping a key to
permutation matrix

Result: Permutation matrix P[256][256]
Input: 256 bytes of random key k[256]
Initialization: set S[256] and P[256][256] to 0
for i = 0 to 255
 S[i] = i;
end for
i = 255
while i-- > 1 do
 j = k[i];

 swap S[j] and S[i];

end
for i = 0 to 255
 P[i][S[i]] = 1;
end for

For each permutation matrix, we need 256 bytes of random
numbers as shown in the pseudo-code. For a QPP pad with 16

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

��
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� ……… �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

 P1 P2 Pi P16

Figure 1: QPP is illustrated.

http://www.astesj.com/

R. Kuang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 401-405 (2021)

www.astesj.com 403

permutation matrices, we would need to supply total 4 KB of
random numbers. That means, the selected QPP holds total 4 KB
of entropy. It is up to the desired security level to choose a right
key length from 256 bits to 32,768 bits. To support this variable
key length, a key scheduling is required to extend a variable key
length to 4 KB.

2.2. AES-QPP

SubBytes in AES performs a substitution with a static S-box
which is a 16x16 matrix. S-box can be converted to a 256x256
permutation matrix. The substitution can be considered as the
permutation matrix multiplication with an 8-bit state vector over
the 8-bit computational basis. AddRoundKey step performs byte-
by-byte XOR operations between the output block from
MixColumns step and a round key. XOR operation is a special
case of permutation transformations. In our early block cipher, we
use the QPP to replace both SubBytes and AddRoundKey in an
AES round with the ShiftRows and MixColumns steps as follows:

1. 16 8-bit QPP;
2. ShiftRows;
3. MixColumns;
4. the same QPP as in the step 1.

We illustrate AES-QPP in Figure 2. In standard AES, each byte
in a16-byte block is supplied to the single static S-box, but in AES-
QPP, each byte in a block is supplied to its corresponding
permutation matrix. The last step is performed in the same way as
in the first step, unlike the standard AES in the AddRoundKey step
with each byte from MixColumns to be XORed with the
corresponding byte in a round key. This design of AES-QPP
enables us to use variable key length without change the
implementation of the cryptography.

 The decryption is the same process as in the encryption with
transposed QPPT.

2.3. AES-QPP Rounds

In comparison with AES rounds, QPP increases the diffusion
capability at least 16x with 16 permutation matrices. This extra
strengthened diffusion ability helps to reduce the number of
rounds. AES-256 needs 14 rounds to achieve good randomness in
ciphertexts. In our early report, the number of rounds in AES-QPP
was reduced to 5 rounds. The ciphertext still demonstrates
excellent randomness from NIST and ENT random testing suites.

2.4. Cipher Randomness with Shannon Entropy Distribution

Cipher randomness is a good measure for a cryptosystem to
avoid statistical analysis attacks. We have demonstrated
randomness analysis with NIST random test suite, especially with
ENT testing tool to identify any byte level and bit level biases.
AES-QPP shows excellent randomness in its ciphertexts. In NIST
testing suites, AES-QPP ciphers with 5 rounds pass all 15 testing
cases. In the sensitive testing suite ENT, the AES-QPP ciphers not
only pass 6 testing cases but also demonstrate excellent Chi
Square value, arithmetic means, Monte Carlo 𝝅𝝅, as well as serial
correlation. Here we want to add analysis for Shannon entropy
distribution for AES-QPP in comparison with the standard AES.
Shannon entropy distribution performs analysis of each 16-bit,
entropy per 16-bit random data, as well as how close to the
Gaussian distribution.

Figure 3 plots the Shannon entropy distribution for AES-QPP
with 5 rounds, using a 16 bits Shannon Entropy calculator [18]. .
The entropy is 15.999072 per 16 bits of ciphertexts, very close to
the ideal entropy 16 bits. The left side of the graph displays the
frequency of each 16-bit integer. The graph displays a nice
symmetric behavior around an average count. The analysis shows
that the median counts are 781, minimum count 656, and
maximum count 896 for 100 MB files. The right-hand side of Fig.
3 shows a good Gaussian distribution with a nice symmetric shape
around the median count, indicating a good randomness in AES-
QPP-5 ciphertexts.

Figure 4 plots the Shannon entropy distribution for AES-256.
The same size of AES-256 ciphertext file as AES-QPP-5 is used.
It demonstrates a very close relationship to Figure 5 with median
counts 781, minimum counts 655 comparing with 656 in AES-
QPP, and maximum counts 907, slightly better symmetry than
AES-QPP. The Shannon entropy of AES-256 is 15.999087 per 16
bits of ciphertexts, extremely close to AES-QPP-5.

3. Quantum Safe Lightweight Streaming Cipher with QPP
In the last section, we discussed the block cipher

implementation with QPP. We can also implement it in a
streaming cipher with a pre-randomized dispatcher as shown in
Figure 5.

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

ShiftRows

MixColumns

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
 ⋯ ⬚

� �
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

Figure 2: The proposed AES-QPP is illustrated

Figure 3: Shannon entropy distribution is plotted for AES-QPP-5.

http://www.astesj.com/

R. Kuang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 401-405 (2021)

www.astesj.com 404

Seed is an input classical key material, Init box is the
scheduling to map the classical key material into a QPP pad as
shown in Algorithm 1. PRNG box is a pseudo random number
generator used to pre-randomize input plaintexts with a directly
XOR operation before dispatching them to QPP. Dispatcher box
also takes a PRNG byte and performing a 4-bit right shift as an
index to the permutation matrix inside the QPP pad. A ket |m⟩
represents a plaintext byte. The ciphertext denoted by a ket |c⟩
can be created byte-by-byte in the same way as input
plaintexts. At the receiving side, the same shared classical key
material is used to establish the same QPP pad in a transposed
mode because permutation matrix is unitary and reversable.
The decryption is straightforward.

QPP streaming cipher implementation eliminates the repeated
rounds for better randomness ciphers, replacing with a pre-
randomized process under a consideration of bijective quantum
permutation transformations. We can roughly estimate the
executing time for the encryption at the level of a single round
AES encryption. This would dramatically improve its
performance for latency and battery consumptions.

The footprint of QPP streaming cipher is about 2.5 KB, In
comparison with 1.1 KB in AES-QPP because of the pre-
randomization process in QPP streaming. RAM memory is the
same as AES-QPP at 4KB because we still use a QPP pad with 16
permutation matrices.

4. Discussions of QPP Streaming Cipher

For the proposed QPP streaming cipher shown in Figure 5, we
create a plaintext file of 120 MB by a paragraph of English
sentences. Then QPP streaming encrypts the plaintext file and
stores the ciphertexts into ciphertext file. The ciphertext file is
passed all NIST 15 randomness test cases. We should be very
interesting to see the ENT testing reports listed in Table 1,
together with the results for the input plaintext file. The plaintext
file comes with 4.49 bits of entropy per 8-bits, huge Chi Square
value, totally wrong arithmetical mean, as well as a wrong Monte
Carlo 𝝅𝝅 value. All those results show that the input plaintext
file is totally biased. The ciphertext file produced from our
proposed QPP streaming cipher demonstrates excellent

randomness: 8 bits of entropy per 8 bits of ciphertexts, Chi
Square value 237.64 with a p-value 0.775, arithmetical mean
127.49 compared to 127.50, very nice Monte Carlo 𝝅𝝅 value
3.141771788 compared to 3.14159265, and serial correlation
value 8.2x10-5. The overall ENT testing results from QPP
streaming cipher is very similar to AES-QPP-5 [17].

Table 1: ENT randomness testing reports for QPP streaming cipher and plaintext
files of size 120 MB

ENT Plaintext QPP Streaming
Entropy (bits) 4.491422 7.999999

Chi Square 1736817422.90 237.64
p-Value 0.0001 0.775

Arith. Mean 95.7060 127.49
Monte Carlo 𝝅𝝅 4.000000000 3.141771788

Serial Corr. 0.047905 0.000082
Figure 6 plots the Shannon Entropy distribution with 120 MB

ciphertext file from a streaming encryption implementation of 16
permutation matrices. The Shannon entropy is 15.999244 bits per
16 bits of ciphertexts. The distribution demonstrates a nice
Gaussian type with a med 957, minimum 826 and a maximum
1085, slightly better symmetry than AES-QPP-5 [17].

Table 2 illustrates performance comparisons among AES-256,
AES-QPP-5, and QPP streaming cipher. For AES-256, we take
the open-source implementation or Tiny-AES. AES-256
demonstrates a fastest key scheduling with 0.01 ms, then AES-
QPP-5 with 0.120 ms, and QPP streaming with 0.235 ms,
respectively. It is understandable that QPP initialization takes
longer time because it processes 4KB key materials to select 16
permutation matrices, unlike in AES where key is only 32 bytes
long. Also, in QPP streaming cipher, we take a special handling
to increase confusion capability. This special handling would help
to produce totally different QPP pad even with a single bit change
in the supplied key materials.

Table 2: Performance comparisons are tabulated for key scheduling and
encryptions for AES-256, AES-QPP-5, and QPP streaming cipher. Encryption
speeds are tested with 16 bytes blocks in the same computer: MacBook Pro, 2.6
GHz 6-Core Intel Core i7.

 AES-256 AES-QPP-5 QPP Streaming
Key Schedule 0.01 ms 0.120 ms 0.235 ms
Encryption MB/s 51.3 115.1 672.3
Ratio 1.0 2.24 13.1
Code Footprint 11.5 KB 1.39 KB 2.5 KB
Run Time Space 12.0 KB 5.39 KB 6.5 KB

Init

PRNG
�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

……..

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

�
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

�

Dispatcher

QPP

Seed

|c⟩
|m⟩

Figure 5: A streaming cipher is illustrated

http://www.astesj.com/

R. Kuang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 401-405 (2021)

www.astesj.com 405

It can also be seen from Table 2 that AES-256 is the slowest
among three ciphers with an encryption speed 51.3 MB/s for 16
bytes blocks, then AES-QPP is faster than AES-256 with 115.1
MB/s, finally QPP streaming cipher is the fastest cipher with
672.3 MB/s. AES-QPP is 2.24x faster than AES-256, slightly
slower than what we expected 2.8x, that may be the fact that
overall permutation transformations with 16 permutation matrices
take longer than each step of SubBytes and AddRoundKey in AES.
However, the discrepancy is very acceptable. QPP streaming
cipher is 13x faster than AES-256, indicating that pre-
randomization with randomly dispatching together is almost
equivalent to a single round in AES. In comparison with AES-
QPP-5, QPP streaming cipher is 5x faster than AES-QPP-5.

In comparison with code sizes, compiled footprints are 11.5
KB, 1.39 KB, and 2.5 KB for AES-256, AES-QPP, and QPP
streaming respectively, and runtime memory spaces are 0.47 KB
for AES-256, 4 KB for both AES-QPP and QPP streaming cipher.
As for overall runtime space, AES-QPP takes the least runtime
space at 5.39 KB, then QPP streaming cipher at 6.5 KB, after then
AES-256 needs the most runtime space at 12 KB.

5. Conclusion

We have applied quantum permutation pad or QPP to establish
both lightweight quantum safe block cipher and streaming cipher.
In a block cipher implementation, QPP replaces both SubBytes
and AddRoundKey in a standard AES or called AES-QPP. In
addition to cipher randomness analysis in [17], we perform the
Shannon entropy distribution for a more complete randomness
analysis of this quantum safe block cipher.

In this paper We explored the QPP algorithm for a streaming
cipher with a straightforward pre-randomization and random
distribution process. The randomness analysis of the QPP
streaming cipher demonstrates very good randomness, especially
with ENT randomness testing tool. The very promising
encryption speed plus overall memory space makes QPP
streaming be a good candidate for quantum safe lightweight
streaming cipher and AES-QPP for quantum safe lightweight
block cipher.

In the future, we may extend the exploration both ciphers for
4-bit permutation matrix pad to further reduce their runtime
memory spaces.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Information Technology Laboratory (National Institute of Standards and
Technology), Announcing the ADVANCED ENCRYPTION STANDARD
(AES), Computer Security Division, Information Technology Laboratory,
National Institute of Standards and Technology Gaithersburg, MD 2001.

[2] K. McKay, L. Bassham, M. Sonmez, N. Mouha, Report on Lightweight
Cryptography, NIST Interagency/Internal Report (NISTIR), National
Institute of Standards and Technology, Gaithersburg, MD, [online], 2017,
doi:10.6028/NIST.IR.8114 (Accessed August 23, 2021).

[3] M. James, D. S. Kumar, "An Implementation of Modified Lightweight
Advanced Encryption Standard in FPGA，" Procedia Technology, 25, 582-
589，2016, doi:10.1016/ j.protcy.2016.08.148.

[4] D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, A.
Biryukov, "Triathlon of lightweight block ciphers for the Internet of
things," Journal of Cryptographic Engineering, 9 (3), 283–302,
2018, doi:10.1007/s13389-018-0193-x. S2CID 1578215.

[5] J. Daemen, V. Rijmen, The Design of Rijndael, AES - The Advanced.
Encryption Standard, Springer-Verlag 2002.

[6] H. M. Heys, S. E. Tavares, “Substitution-permutation networks resistant to
differential and linear cryptanalysis,” Journal Cryptology 9, 1–19, 1996.
doi:10.1007/BF02254789.

[7] L. O'Connor, On the distribution of characteristics in bijective mappings, J.
Cryptology 8, 67–86, 1995, doi:10.1007/ BF00190756.

[8] J. Lu, O. Dunkelman, N. Keller, J. Kim, “New Impossible Differential
Attacks on AES,” In: Chowdhury D.R., Rijmen V., Das A. (eds) Progress in
Cryptology - INDOCRYPT 2008. INDOCRYPT 2008. Lecture Notes in
Computer Science, 5365, Springer, Berlin, Heidelberg. doi：10.1007/978-
3-540-89754-5_22.

[9] K. Autre, K. Arya, , et al， “Quantum supremacy using a programmable
superconducting processor，” Nature 574 (7779)，505–510. 2019.

[10] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring，” in Proceedings 35th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society Press: 124–134, 1994.

[11] B. Wang, F. Hu, H. Yao, et al., “Prime factorization algorithm based on
parameter optimization of Ising model,” Sci Rep 10, 7106, 2020,
doi:10.1038/s41598-020-62802-5

[12] L. Grover, “A fast quantum mechanical algorithm for database search,” In:
Proceedings of the 28th ACM STOC, Philadelphia, Pennsylvania, 212–219,
ACM Press, 1996.

[13] Y. Li, P. Zhang and R. Huang, "Lightweight Quantum Encryption for Secure
Transmission of Power Data in Smart Grid," in IEEE Access, 7, 36285-
36293, 2019, doi: 10.1109/ACCESS.2019.2893056.

[14] A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin, T. Pornin,
A. Schrottenloher, "Saturnin: a suite of lightweight symmetric algorithms for
post-quantum security,” IACR Transactions on Symmetric
Cryptology, 2020(S1), 160-207, doi:10.13154/tosc.v2020.iS1.

[15] R. Kuang, N. Bettenburg, "Shannon Perfect Secrecy in a Discrete Hilbert
Space," 2020 IEEE International Conference on Quantum Computing and
Engineering (QCE), Denver, CO, USA, 249-255, 2020, doi:
10.1109/QCE49297.2020.00039.

[16] C. E. Shannon, “Communication Theory of Secrecy Systems?” Bell System
Technical Journal， 28 (4): 656–715， October 1949.

[17] R. Kuang, D. Lou, A. He and A. Conlon, "Quantum Safe Lightweight
Cryptography with Quantum Permutation Pad," 2021 IEEE 6th International
Conference on Computer and Communication Systems (ICCCS), 790-795,
2021, doi: 10.1109/ICCCS52626.2021.9449247.

[18] Server Test, https://servertest.online/entropy.

http://www.astesj.com/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://eprint.iacr.org/2015/209.pdf
https://eprint.iacr.org/2015/209.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs13389-018-0193-x
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:1578215
https://doi.org/10.1007/
https://doi.org/10.13154/tosc.v2020.iS1.160-207

	2. Quantum safe Lightweight Block Cipher AES-QPP
	2.1. Quantum Permutation Pad
	2.2. AES-QPP
	2.3. AES-QPP Rounds
	2.4. Cipher Randomness with Shannon Entropy Distribution

	3. Quantum Safe Lightweight Streaming Cipher with QPP
	4. Discussions of QPP Streaming Cipher
	5. Conclusion
	Conflict of Interest

	References

