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 The development of Machine Learning methods and approaches offers enormous growth 
opportunities in the Healthcare field. One of the most exciting challenges in this field is the 
automation of clinical treatment selection for patient state optimization. Using necessary 
medical data and the application of Machine Learning methods (like the Genetic Algorithm 
and the Analytic Hierarchy Process) provides a solution to such a challenge. Research 
presented in this paper gives the general approach to solve the clinical treatment selection 
task, which can be used for any type of disease. The distinguishing feature of this approach 
is that clinical treatment is tailored to the patient's initial state, thus making treatment 
personalized. The article also presents a comparison of the different classification methods 
used to model patient indicators after treatment. Additionally, special attention was paid to 
the possibilities and potential of using the developed approach in real Healthcare 
challenges and tasks. 
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1. Introduction 
This paper is an extension of work originally presented in the 

15th International Conference on Computer Sciences and 
Information Technologies, held in Zbarazh (Ukraine) in 
September 2020 [1]. 

It is well known that human treatment is a delicate moment, as 
any wrong decision can radically affect the person's state [2], for 
which doctors will be primarily responsible [3]. The word 
'treatment' can mean different things, and it should be understood 
that not all treatments are equal. For example, treating a person for 
influenza [4], wherein most cases it suffices to prescribe a few 
medications for a couple of weeks, is not equivalent to treating 
cancer [5], which can last for years [6-7]. Undoubtedly, this does 
not mean that influenza poses no risk to human health [8], but if 
influenza progresses to a critical stage, medical supervision and 
prescription of clinical treatment are mandatory [9-11]. 

Clinical treatment refers to the process during which the patient 
stays in a medical institution under the strict supervision of 
clinicians and specialists, and undergoes all stages of therapy 
(including experimental treatments) to eliminate the symptoms of 
disease or complications. One of the major objectives in 
Healthcare is to treat the disease itself (not the symptom), so 
treatment must be chosen carefully and without hesitation. It is 
therefore the regular practice to use clinical protocols (guidelines) 
[12-14] while prescribing treatment. 

Briefly, clinical protocols are systematically developed 
statements, which assist clinicians and patients in making 
decisions about appropriate treatment for specific conditions based 
on the best scientific evidence at the time of development [15-17]. 
These protocols are the primary medico-technological documents 
that specialists must follow in any given clinical situation, 
choosing the most effective solution to cure a patient. A clinical 
protocol is a manual for a doctor, and it contains guidelines to treat 
a specific disease. 

In Ukraine, Ministry of Healthcare allows international clinical 
protocols under Order no. 1422 of the by 29 December 2016, 
which entered into force on 28 April 2017 [18-19]. To get these 
protocols, the Ministry of Healthcare has signed an agreement with 
"Duodecim Medical Publications Ltd", a Finnish medical-
scientific company specializing in comprehensive solutions for 
evidence-based medicine [18]. Since then, about a thousand 
international clinical protocols in English have been available 
online for registered users in Ukraine. Using new clinical protocols 
in medical practice has become one of the most important ways of 
implementing evidence-based medicine in Ukraine [19]. 

Many researchers are now focusing on clinical protocols to 
model the clinical treatment process [10] because these protocols 
do not guarantee a complete cure for the patient. The reason is that 
doctors do not have full knowledge of medicines, their types, and 
their correct use. This responsibility lies with clinical pharmacists 
(or clinical provisors) [20-21]. Specialist training in this field in 
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Ukraine was established in 1999 by the National University of 
Pharmacy in Kharkiv [22]. Despite more than 20 years of training 
such specialists, the country simply does not have enough clinical 
pharmacists, which may be due to the limited financial resources 
of local medical institutions. This problem, and the rapid 
digitization of Healthcare in Ukraine [23], make it an urgent task 
to develop an automated decision support system for clinical 
treatment selection. 

The making of decision support system was chosen because the 
selection of optimal clinical treatment should not be made solely 
by a machine. Medical staff is responsible for causing harm to 
humans [24], which is why Artificial Intelligence (AI) software 
must be used with utmost care for these challenges.  

The basic requirements for such systems are: 

• Usage of clinical protocol standards as a basis for decision 
support in treatment selection. 

• As set out in right no. 12 of the European Charter of Patients' 
Rights [25], the individual characteristics of the patient must 
be considered. 

• The availability of AI and Machine Learning (ML) techniques 
to provide high-quality assistance for medical staff. 

This research aims to develop a general approach to selecting 
optimal clinical treatment based on the requirements listed above. 
The first thing to consider is how treatment outcomes are assessed, 
as that enables AI- and ML-based applications to improve 
efficiency in decision making. 

2. Assessing the Quality of Treatment: An Overview 

2.1. Scales of Patient Severity 

The quality of clinical treatment should be assessed foremost 
by results, bearing in mind that the aim of providing medical care 
is to ease the patient's state. At all stages of treatment in the various 
fields of medicine, the determination of a patient severity objective 
assessment is essential for clinical decision-making. The close 
association of state severity with the prognosis of mortality risk 
further extends the application of such tools at different stages of 
care. For example, intensive care units (ICU) must provide 
prognoses for patients within the first 24 hours of admission. 

The stratification of patients into risk groups according to the 
severity of their state is necessary to compare treatments and their 
quality, establish differences between different medical 
institutions, and evaluate the results of clinical trials in evidence-
based medicine.  

Establishing a prognosis comprises estimating the probability 
of death using indicators that are commonly used to diagnose and 
treat critically ill patients [26]. Severity scales are the classic tools 
used to establish such prognoses. 

Rating systems quantify or qualify the severity of a state and 
classify the patient into specific risk groups, based on the analysis 
of anatomical, physiological and biochemical abnormalities [26-
27]. Over two dozen severity scales have been developed, but only 
some of them can be considered universally accepted. 

The most commonly used (in ICUs of USA and EU countries) 
scoring systems for assessing patient severity are: SAPS II, 
APACHE II and III, GCS, MPM II, SOFA, MODS, and LODS 
[28].  

2.2. Models of Patient Severity 

Most morbidity estimation models are based on Logistic 
Regression [29]. Authors of [30] analyzed papers that use SOFA 
models to predict mortality in ICUs. Only ten studies (56%) 
applied logistic regression models, and five of them had validated 
models with independent tests. The following models were also 
considered: combined with other assessment scales (APACHE, 
MOD) and additional measures of organ failure, time models 
(sequential SOFA scores), and automatically detected from the 
data SOFA templates. For example, the predictive ability of 
APACHE II was assessed using Logistic Regression analysis. For 
the Logistic Regression model based on the APACHE II score, the 
AUC of the ROC curve [31] was 0.863. Authors note that although 
there is heterogeneity across studies, it is impossible to say which 
SOFA-based model is optimal. 

Decision Tree [32] methods have recently become more 
widespread in medical research. Clinical practitioners swallow 
them because they are illustrative and can turn into logical 
conditions (classification rules). Classification Trees have been 
used in critical situations, e.g., to calculate the probability of death 
from coronary pathologies [33], intracerebral hemorrhage [34] or 
craniocerebral injury [35], to predict persistent autonomic states 
[36], and to stratify patient groups by the likelihood of mortality in 
the general population of ICUs [37-38]. 

In [39], the author predicted the probability of hospital 
mortality using three Decision Tree classification algorithms: 
CART, CHAID, and C4.5. All models are based on estimating the 
severity of patients within the first 24 hours of admission only 
(2864 patients, 70:30). Authors of [39] point out that the chief 
advantages of Decision Trees are that the resulting decision rules 
can be easily interpreted and the composition of the patient group 
obtained at each final node of the tree is relatively homogeneous. 
All Decision Tree models achieved the AUC of 0.75-0.76, which 
was close to the AUC for APACHE II (0.77) but lower than the 
Logistic Regression AUC (0.81). 

It is worth noting that such multidimensional models are not 
designed to handle streaming data. Modern morbidity estimation 
models are based on ML methods such as Support Vector Machine 
(SVM) [40], Bayesian models [41], Artificial Neural Network 
(ANN) [42], etc. 

The predicted length of stay (LOS) [43], which is based on 
monitoring data, is seen as a target that helps plan resuscitation 
resources and make ICU care individualized. 

2.3. Information Systems of State Assessment and Forecasting  

INTCare [44] is an intelligent decision support system for 
intensive care medicine. It is a system based on both collecting data 
from monitors at the bedside and updating the model, reducing the 
need for human intervention. INTCare currently provides 
predictions about organ failure and the likelihood of in-hospital 
death. Reliable prognostic results contribute to improving the 
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quality of service. The system presents functional and structural 
aspects. It aims to automate the knowledge discovery process. 

The most important feature of INTCare’s intelligent decision 
support system is the ability to operate autonomously and in real-
time. Two approaches were used to model and predict 2 targets 
(survival and LOS): 

• Collected data and physiological features during the first 24 
hours of inpatient treatment. 

• Collected patient clinical data in real-time. 

In the first approach, the achieved results were poor (73% 
accuracy). However, when predictions (dwell time) were made 
using data collected in real-time, the results became higher (model 
sensitivity 96.1%). Researchers in their work used these models: 
SVM, Decision Trees, and Naïve Bayes. For survival prediction, 
the Decision Trees method had the best result with a sensitivity of 
87.32%.  

A systematic review of the literature (2008-2018) [45], which 
aims to investigate the use of ML to improve patient health, 
analyzed 78 such studies. The conclusion is that AI techniques can 
analyze and learn useful standards from clinical datasets (which 
are stored in electronic medical records) to provide better evidence 
for supporting health professionals' decisions. 

More recently, the work has appeared that uses Deep Learning 
(DL) techniques, namely, Recurrent Neural Networks (RNN) with 
the Long Short-Term Memory (LSTM) architecture [46]. 
Experiments have shown that it is possible to predict vital signs in 
advance with good accuracy (more than 80%) to the deterioration 
of the patient's state. Predicting a patient's vital signs and using 
them to calculate a prognostic index makes it possible to predict 
future severe diagnoses that would not be possible using only the 
patient's current vital signs (50%-60% of cases were not detected). 

Also noteworthy is the Ukrainian work by Nastenko et al. [47], 
which used Group Method of Data Handling (GMDH) [48] models 
and Simplex Method [49] optimization algorithm to select the 
treatment strategy. 

3. Mathematical Background 

Let’s devise the general Healthcare challenge of this research. 
It is to find the optimal clinical treatment for the patient. In fact, in 
the mathematical space of objects, the patient (object) can be 
represented as a multidimensional vector, where the parameters are 
his/her indicators. In the simplest case, 2 patient states are possible 
in a given space: an initial state (before treatment) and a final state 
(after treatment). On this basis, 2 vectors of data are given for the 
challenge: 
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…, ym are the patient’s indicators after clinical treatment). 

Finding the optimal treatment involves finding the optimum of 
vector Y. The clinical treatment, which is applied to a patient for 

getting the Y-vector, can be described by a vector
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, where 

i1, i2, …, ik – are the different types of drugs (the influence 
parameters on the patient’s state). Therefore, Y-vector directly 
depends on vectors X and I (Fig. 1).  

 
Figure 1: Visual representation of treatment process 

This dependency can be described by the next general 
equation: 

 

 

(1) 

Thus, it can be said that X = Y if no treatment is given (without 
regard to externalities). 

Equations for y1, y2, …, ym (1) can be both linear or non-linear, 
parametric or non-parametric. With their usage, it seems possible 
to simulate (modeling) the clinical treatment process. 
Consequently, a multi-criteria optimization problem arises, where 
it is necessary to find such values of I-vector that will give the 
optimum of Y-vector. Values of X-vector are set by default, so the 
personalized solution search will be done by considering the 
patient’s initial state indicators (this idea was proposed in [47] for 
a single-criteria problem). So, it is necessary to create an algorithm 
that will solve such a task. 
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4. Personalized Clinical Treatment Selection Algorithm 

As mentioned earlier, finding the optimal clinical treatment is 
a multi-criteria optimization problem. However, creating the 
algorithm for solving this problem raises the following issues: 

• Simultaneous optimization of the Y-vector parameters 
(patient’s indicators after treatment). 

• Searching the values of I-vector (influence parameters on the 
patient’s state), which gives the global optimum (NP-
complete problem). 

The first issue can be solved using Multi-Criteria Decision 
Making (MCDM) methods [50]. Since in most cases the final state 
of a patient is described by two or more Y-vector parameters (in 
this problem – the criteria for optimization), it is worthwhile to 
assess the patient's state after treatment in the right way. MCDM 
methods allow getting a convolution of several criteria into one so-
called "supercriterion". Apart from solving simultaneous 
optimization, this supercriterion can be used as an assessment 
metric to describe the final state of the patient. 

One of the simplest and most easily interpreted methods of 
MCDM is the Analytic Hierarchy Process (AHP) [51-52], 
invented by Thomas L. Saaty in the 70s. This method allows 
getting a function of additive convolution by pairwise comparison 
of criteria priorities. The comparison mechanism by AHP in 
general form is shown in Table 1. 

Table 1: The General Form of Criteria Pairwise Comparison 

 y1 y2 … ym 

y1 1
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where: vi – the sequential number in the criteria list of Y-vector, 
ranked by importance. 

The above table interprets the matrix of criteria pairwise 
comparison. To obtain a metric for the final patient state using 
AHP, the geometric mean for each matrix row is calculated. Then, 
the obtained values should be normalized; they will be the weights 
(w) of each criterion of the Y-vector, so the metric can be 
represented as follows: 

 Fac = w1y1 ± w2y2 ± … ± wmym (2) 

This metric is a function of additive convolution (Fac) of the 
criteria. It has the advantage of flexibility because it depends on 
priorities set out in Table 1 by the decision-maker. The signs in (2) 
are placed depending on whether it is necessary to maximize (then 
the "+" sign) or minimize (then the "-" sign) yi. 

That solves the first issue of the given multi-criteria 
optimization problem, which allows converting it to the single-
criteria optimization problem, where it is necessary to find the 
maximum of Fac. Solving it can be done by many optimization 
approaches. One of the most famous methods is the Genetic 
Algorithm [53-55] – a stochastic method for finding the required 
solution. The ideas of natural selection and genetics provide a fast 
search for the global optimum, thus solving the second issue of the 
NP-complete problem. The algorithm is shown schematically in 
Fig. 2. 

 
Figure 2: Genetic Algorithm scheme 

To describe the Genetic Algorithm in more detail: 

1. A random sample ("population") of N arrays ("individuals", 
or "chromosomes") that contain values of I-vector parameters 
("genes") is created (Figure 3).  

 
Figure 3: Population in general form 
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The number N, as well as the boundaries in which the values 
of genes will lie, are set directly by the researcher. 

2. "Fitness function" for each individual is calculated. In the 
current research, the fitness function is Fac (2). 

3. The condition of the algorithm end is checked (it can be the 
presence of the preassigned value of Fac or exceeding the time limit 
of the algorithm). 

3.1. If the condition is complete, the Genetic Algorithm returns 
the "best" individual (optimal clinical treatment strategy). 

3.2. If the condition is incomplete, the formation of a new 
population begins. 

3.2.1. The "selection" [53-55] of individuals from the current 
population is carried out. This procedure aims to select individuals 
for the next generation creation, and the chance of selecting each 
individual directly depends on the value of his fitness function. The 
selected individuals form N pairs, which will then give "new" 
individuals. 

3.2.2. The usage of "crossover" (one of the genetic operators) 
[53-55] for crossing the resulting pairs of individuals. A mixing of 
"genes" (parameters of I-vector) occurs between a pair of 
individuals, thus forming a new individual that stores the 
information about his "ancestors". In the general case, randomly 
the "crossover point" is determined, which allows mixing a pair of 
"parents": the genes of the first parent are before the crossover 
point, and after it – the genes of the second parent:  

 
Figure 4: Example of crossover 

That creates a new individual. To ensure the diversity of the 
population during the entire algorithm’s operation, another genetic 
operator called "mutation" [53-55] is also used. This operator can 
be triggered with low probability instead of crossover, and its main 
purpose is to replace randomly selected genes of individuals with 
completely new ones. 

3.2.3. Back to point number 2. 

4. Using the best individual as a recommendation for 
personalized treatment. Multiple choices can be derived so that the 
doctor has a choice. 

As a result, the Genetic Algorithm has been got, where Fac is 
used as a fitness function, derived from the AHP ideology. The 
idea of using the convolution function (obtained by the MCDM 
method) as a fitness function of the Genetic Algorithm is not new. 

In [56], the authors used Weight Sum Approach and Tchebycheff 
Approach to get the convolution function. The authors of [57] were 
comparing Non-Dominated Sorting Genetic Algorithm II (NSGA-
II), Multi-Objective Differential Evolution (MODE), and Multi-
Objective Particle Swarm Optimization (MOPSO) algorithms. 
Such approaches are rather difficult to interpret, which makes it 
more complex to explain to the doctor the principle of the 
algorithm for finding the optimal clinical treatment. Therefore 
AHP was chosen to obtain a convolution function. 

5. Statement of Findings 

5.1. Description of Clinical Data 

To test the performance of the algorithm, 2 clinical databases 
of patients with congenital heart defects [58] were used, which 
were provided by Amosov National Institute of Cardiovascular 
Surgery [59]. 

The first database ("DB1") has 128 patients from 3 to 28 years. 
They underwent a total cavopulmonary connection (TCPC) in an 
extracardiac conduit modification as the final stage of 
hemodynamic correction between January 2005 and September 
2016. Patients were treated in two phases: surgical treatment 
(various types of surgery were performed, including TCPC) and 
conservative treatment (use of medication). Only conservative 
treatment is considered for the research. With that in mind, the 
database has the following variables:  

• 7 patient indicators before conservative treatment – the vector 
X. 

• 22 types of drugs (that were used to treat patients) – the vector 
I. 

• 38 patient indicators after treatment – the vector Y. 

It is worth mentioning that patient indicators before treatment 
were selected with the help of doctors specifically for the research. 

The second database ("DB2") has 144 patients from 1 to 18 
years. As in the first case, patients were treated in two stages (the 
only difference was the methodology). Variables of this database: 

• 10 patient indicators before conservative treatment. 

• 10 types of drugs (that were used to treat patients). 

• 9 patient indicators after treatment. 

It is also worth emphasizing that the variables' names are not 
given so that people cannot use this research for self-medication. 

5.2. Modeling the Patient Final State 

As mentioned earlier, to perform an optimal clinical treatment 
selection, it is necessary to obtain models of the patient final state 
parameters (1). Both patient indicators before and after 
conservative treatment are either quantitative or qualitative 
features. Regression methods can be used to model quantitative 
features. However, doctors are not so much interested in what a 
particular value will equal a feature whether it will be in the normal 
range. Therefore, the authors of this research proposed another 
unique approach, namely, the binarization of quantitative features. 
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In this way, it is necessary to get models of the binary features 
(0 – patient indicator after treatment is normal, 1 – patient indicator 
is abnormal). Patient indicators before treatment and drugs 
indicators will be used as models’ predictors. That requires the use 
of classification methods. The following algorithms were chosen: 

• Linear Discriminant Analysis (LDA) [60]. 

• Logistic Regression [29]. 

• Naïve Bayes [40]. 

• Linear SVM [41]. 

• SVM with Radial Basis Function (RBF) kernel [41]. 

• Gaussian Process Classifier (GPC) [61]. 

• Random Forest Classifier (RFC) [62]. 

• Adaptive Boosting (AdaBoost) [63]. 

• Multilayer Perceptron (MLP) [64]. 

All these algorithms were implemented using the Python 
programming language. Models were built for all final patient 
parameters in the "DB1" (38 indicators) and "DB2" (9 indicators) 
databases. To evaluate the models more adequately, the total data 
samples were split into training (80%) and test samples (20%). The 
models were evaluated according to their:  

• accuracy (percentage of correctly classified objects): 

  (3) 

• sensitivity (share of correctly classified objects of the first 
class): 

  (4) 

• specificity (share of correctly classified objects of the second 
class): 

  (5) 

• Matthews Correlation Coefficient (MCC): 

   (6) 

where: TP – true positives; FP – false positives (type I error); FN 
– false negatives (type II error); TN – true negatives. 

The last metric (6) is a measure of binary classification quality. 
Its peculiarity is to consider positive and negative results, both true 
and false. MCC is a balanced measure that is used even for 
unbalanced classification. It is a correlation coefficient between 
real and predicted objects: it returns a value from -1 (complete 
mismatch) to 1 (perfect match). At 0, the classifier is considered to 
have made the prediction "by chance". 

Tables 2 and 3 show results of the classification, namely, the 
average values of the model classification metrics for each 
algorithm. As seen from the tables below, the RBF SVM 
classification algorithm performed best, showing an average 
model accuracy of around 100% on the test sample.  

The resulting models are mathematical equations for patient 
indicators after treatment (1), which can be substituted in formula 
(2) to get Fac. This allows using the Genetic Algorithm to derive 
the best clinical treatment options for patients. These options will 
be personalized as each of the models is substituted for patient 
indicators before treatment. 

Table 2: Final State Indicators Classification Results ("DB1") 

Classification 
algorithm Accuracy Sensitivity Specificity MCC 

Training sample (80%) 
LDA 89.6% 0.89 0.7 0.611 

Logistic 
Regression 73.7% 0.742 0.779 0.321 

Naïve Bayes 74.4% 0.807 0.758 0.429 
Linear SVM 79.8% 0.801 0.838 0.474 
RBF SVM 100% 1 1 1 

GPC 98.6% 0.949 0.715 0.679 
RFC 99.9% 1 0.996 0.998 

AdaBoost 98.7% 0.985 0.98 0.97 
MLP 87.1% 0.862 0.391 0.323 

Test sample (20%) 
LDA 87.7 0.859 0.673 0.508 

Logistic 
Regression 71.6 0.722 0.717 0.288 

Naïve Bayes 75.3 0.811 0.74 0.412 
Linear SVM 77.1 0.77 0.82 0.431 
RBF SVM 99.2 0.987 0.99 0.982 

GPC 97.6 0.936 0.728 0.661 
RFC 99.1 0.995 0.972 0.975 

AdaBoost 96.4 0.957 0.95 0.918 
MLP 86.3 0.856 0.413 0.314 

Table 3: Final State Indicators Classification Results ("DB2") 

Classification 
algorithm Accuracy Sensitivity Specificity MCC 

Training sample (80%) 
LDA 79.6 0.639 0.713 0.413 

Logistic 
Regression 65.6 0.656 0.665 0.242 

Naïve Bayes 54.5 0.321 0.901 0.215 
Linear SVM 68.6 0.699 0.691 0.307 
RBF SVM 100 1 1 1 

GPC 100 1 1 1 
RFC 99.9 0.999 0.996 0.997 

AdaBoost 95.1 0.917 0.972 0.891 
MLP 90.1 0.892 0.604 0.511 

Test sample (20%) 
LDA 76.4 0.6 0.646 0.267 

Logistic 
Regression 63 0.625 0.616 0.192 

Naïve Bayes 55.4 0.364 0.843 0.172 
Linear SVM 64.1 0.644 0.618 0.204 
RBF SVM 99.6 1 0.989 0.992 

GPC 98.5 1 0.972 0.967 
RFC 99 0.991 0.971 0.973 

AdaBoost 89.8 0.852 0.886 0.748 
MLP 88.8 0.846 0.598 0.46 
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6. Conclusions and Future Work 

The research described the development of an algorithm for 
personalized clinical treatment selection by using the principles of 
the Genetic Algorithm (for quick treatment variant searching) and 
the Analytic Hierarchy Process (for patient final state indicators 
simultaneous optimization). It was detailed from start to finish how 
the algorithm performs the selection of optimal treatment, 
including such steps as binarizing the quantitative features of the 
patient after treatment, and further modeling them with different 
classification algorithms (in the conference paper [1] only Group 
Method of Data Handling algorithm was used for modeling). A 
comparative analysis of classification algorithms showed that the 
best option for obtaining patient indicators after treatment models 
is the Support Vector Machine classifier with Radial Basis 
Function kernel. 

The resulting classification models are substituted into the 
function of additive convolution formula (obtained by Analytic 
Hierarchy Process), which is used as an optimization function that 
estimates the final state of the patient. The values of this function 
range from 0 to 1, and the higher the function value, the better the 
patient's state. Such a feature could be used as a state-of-the-art 
metric for patient assessment. 

This paper can be described as the beginning of creating a 
decision support system for personalized clinical treatment 
selection in Ukraine. It is necessary to carefully elaborate on all 
stages of the system to provide effective support for the doctor in 
deciding on a clinical treatment strategy. In this way, the system 
will be able to fill the absence of clinical pharmacists and optimize 
the work of medical institutions. 

Also, despite the excellent results that were obtained, there 
were a few data to complete a full study. The problem is that 
Ukrainian medical institutions do not yet have much confidence in 
such Artificial Intelligence and Machine Learning methods, and 
with the medical liability legislation few institutions will provide 
data for comprehensive research and implementation. The decision 
support system requires a considerable number of resources and 
finances, which will be reviewed by authors for the future 
development of Medicine and Healthcare in Ukraine. 
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