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Real-world applications modelled by time-dependent dynamical systems with specific properties
such as long-range dependence or self-similarity are usually described by fractional Brownian
motion. The investigation of the qualitative behaviour of its realisations is an important
topic. For this purpose, efficient mappings from realisations of the dynamical system, i.e., time
series, to a set of scalar-valued representations that capture certain properties are considered.
Permutation entropy is a well-known measure to quantify the complexity of univariate time
series in a scalar-valued representation, for example, to derive estimates for self-similarity or
as features or representations in learning tasks. However, since many real-world problems
involve multivariate time series, permutation entropy needs to be extended to the multivariate
case. This work summarises the behaviour of pooled permutation entropy (PPE), multivariate
multi-scale permutation entropy (MMSPE), and multivariate weighted permutation entropy
(MWPE) on multivariate fractional Brownian motion, and this work fills the gaps in existing
research. In addition, we provide a new study of multivariate ordinal pattern permutation
entropy (MOPPE) on multivariate fractional Brownian motion. We conclude with a detailed
experimental evaluation and comparison between all multivariate extensions, for example,
demonstrating identical behaviour of PPE and MMSPE or uncovering different aspects such as
amplitude and cross-correlations by using MWPE and MOPPE, respectively.

1 Introduction

This paper is an extension of two works originally presented in
the Proceedings of the Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference 2020 (APSIPA
ASC) [1] and in the International Florida Artificial Intelligence So-
ciety Conference Proceedings (FLAIRS-34) [2]. Both papers study
the qualitative behaviour of multivariate fractional Brownian motion
by analysing the distribution of up and down encodings in terms of
ordinal patterns and permutation entropy.

Time series data is part of many real-world applications, e.g.,
weather records, patient health evolution metrics, (industrial) sen-
sor data, stock prices, website clicks, server metrics, network data,
political or sociological indicators, video or voice messages – just
to name a few. Time series can be understood as a series of (real-
valued) random variables of a time-dependent system that changes
over time, also called a dynamical system. For many real-world
applications, modelling time-dependent dynamical systems require

specific properties such as long-range dependence or self-similarity.
For example, the long memory is fundamental in internet traffic [3]
or for financial data [4]. If financial return series exhibit a long-
range dependence, this indicates that observed returns over time are
not independent. When returns are not independent, past returns
may help predict future returns [5]. This work focuses on a special
class of dynamical systems or stochastic processes that describe
long-range dependence and self-similarity properties, called frac-
tional Brownian motion (fBm) and denoted as BH(t), where the
so-called Hurst parameter H describes the self-similarity.

While classical time series analysis examines the values of the
time series themselves, symbolic time series analysis considers a
non-parametric mapping or encoding into a sequence of symbols.
This is particularly promising in the case of dynamical systems
such as fBm, as the overall dynamics of the generating system is
uncovered [6]. To measure the qualitative behaviour of a generat-
ing system, efficient measures of the sequence of symbols to a set
of scalar-valued representations, also called features, that capture
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specific properties are considered. Entropy, a measure that has its
origins in information theory, is promising through an encoding
that preserves the information content of an object [7]. PE is a
robust, scalar-valued measure for determining the degree of com-
plexity of dynamical systems or observed time series by analysing
the distribution of symbolic sequences of ordinal patterns [8]. While
the associated entropy is low for a deterministic time series, it ap-
proaches its maximum value in case of uncorrelated randomness
or high complexity. To distinguish between randomness and com-
plexity, an additional measure is necessary. As a complement to
permutation entropy (PE), multi-scale permutation entropy (MSPE)
captures the complexity of time series on different time scales [9].
On higher time scales, random noise tends to cancel out, resulting
in a low entropy value, where complex signals retain a high entropy
value. In this manner, it is possible to gain a deeper insight into
the randomness and complexity of a system. Another limitation
of PE is the inability to distinguish between different patterns of a
given motif in amplitudes. In [10], the author introduce weighted
permutation entropy (WPE), which takes into account patterns that
differ in amplitudes by assigning weights to each extracted pattern.

The behaviour of PE on fBm in the univariate case is well un-
derstood [8, 11, 12]. Not only the PE but also the distributions of
ordinal patterns of certain lengths yield interesting properties. The
distributions of ordinal patterns of lengths (also called order) two
and three yield parameter functions that can be used for descriptive
purposes such as autocorrelation. The distribution of order four
has irrational values and depends on the noise distribution. The
resulting closed formulas for computation are used in this work.
The distributions of ordinal patterns of lengths greater than four do
not yield closed formulas. Thus, a relationship between autocor-
relation or spectrum on the one hand and ordinal patterns, on the
other hand, does no longer exist [8]. In [13], the author investigate
the behaviour of MSPE on fBm, denoted as BH(t), and show that
MSPE of the fractional Gaussian noise, the increment process of
fBm, i.e., X(t) = BH(t + 1) − BH(t), is time-scale invariant. In [2]
we investigate the behaviour of WPE on fBm and show that the
distribution of ordinal patterns of order d = 2 and thus also WPE
are independent of the weighting.

Moreover, in many fields of applications, multivariate measure-
ments are performed. Examples of multivariate fractional Brownian
motion (mfBm) can be found in economic time series [14], or func-
tional Magnetic Resonance Imaging of several brain regions [15].
This work summarises the behaviour of several multivariate ex-
tensions of PE on mfBm. The first original conference paper [1]
studies the behaviour of two canonical multivariate extensions of PE,
known as pooled permutation entropy (PPE) and multivariate multi-
scale permutation entropy (MMSPE) of orders d = 2 and d = 3, on
mfBm. The second original conference paper [2] investigates the
behaviour of multivariate weighted permutation entropy (MWPE)
of orders d = 2 and d = 3 on mfBm. We extend original works [1]
and [2] by

• a comprehensive review of all existing extensions to multi-
variate permutation entropy including code for computing on
Github1 and Python Package Index (PyPI)2,

• a complement in existing theoretical and experimental inves-
tigations of PPE, MMSPE and MWPE on mfBm in a varia-
tion of its Hurst parameter H, i.e., we fill the gaps by investi-
gating the behaviour of additional orders d = 4 and d = 5 as
well as other parameters such as in particular different time
delays, time scales and number of variables of mfBms,

• a new study on the behaviour of multivariate ordinal pattern
permutation entropy (MOPPE) on mfBm, and

• a comparison of all considered multivariate extensions.

Review on Multivari-
ate Permutation EntropySection 3

Complements on

• PPE on mfBm [1]

• MMSPE on mfBm [1]

• MWPE on mfBm [2]

Section 4

Section 5

Section 6

New study of

• MOPPE on mfBmSection 7

ComparisonSection 8

Figure 1: Structure of this research.

This paper is structured as follows and as visualised in Fig-
ure 1. After presenting background on (m)fBm and univariate PE
in Section 2, needed for the paper to be self-consistent, we provide
in Section 3 a review of multivariate extensions of PE and cate-
gorise them according to their approach. Since this paper focuses on
canonical extensions, we present all those extensions in detail and
provide algorithms for their computations. In Section 4, Section 5,
and Section 6 we investigate the behaviour of PPE, MMSPE and
MWPE, respectively, on mfBm in variation of the Hurst parameter
H, and we complement the original work with previously mentioned
investigations. In Section 7 we present a new study on the behaviour
of MOPPE on mfBm in variation to the Hurst parameter H. In
Section 8 we compare our findings and show that PPE and MMSPE
behave identically for all investigated orders, delays, scales, and
the number of variables. In addition, MWPE and MOPPE of orders
d > 2 uncover different aspects of mfBm, i.e., amplitudes and cross-
correlations, respectively. In Section 9 we conclude our work with
mentioning future work.

1https://github.com/marisamohr/mpePy
2https://pypi.org/project/mpePy
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2 Background
We shortly formalise fBm and subsequently key concepts of ordi-
nal patterns and PE. We then summarise known results from the
application of PE on fBm in the univariate case.

2.1 Multivariate Fractional Brownian Motion

A stochastic process, or more generally a mathematical object that is
similar to itself at all scales, is called a fractal. When you zoom in on
a fractal, it resembles or looks exactly like the original shape. The
mathematical property is called self-similarity and is expressed by
the so-called Hurst parameter H ∈ (0, 1) in honour of Harold Edwin
Hurst [16]. The work described here focuses on a class of special
stochastic processes, namely fractional Brownian motion (fBm), in-
volving the properties of self-similarity and long-range dependency.

Definition 2.1 (Fractional Brownian Motion) A stochastic pro-
cess is called fractional Brownian motion (fBm) with Hurst pa-
rameter H ∈ (0, 1) and denoted as BH(t) if it is

1. Gaussian,

2. self-similar, i.e., there exists H ∈ (0, 1) such that for any a > 0
it is

BH(at) ∼ aH BH(t), (1)

where ∼ denotes the equality of probability distributions, and
it has

3. stationary increments, i.e., BH(t) − BH(s) ∼ BH(t − s).

In case H = 1/2, fBm corresponds to the ordinary Brownian mo-
tion. In case H > 1/2, the process has a persistence property
and positively correlated increments, i.e., an upward jump is more
likely followed by another upward jump and vice versa, and the
process exhibits long-range dependence. For H → 1, the pro-
cess becomes smoother, less irregular and more trendy. In case
H < 1/2, the process has negatively correlated increments and an
anti-persistence property. Figure 2 shows three different realisa-
tions of fBms of length T = 5000 with different Hurst parameters
H ∈ {0.25, 0.5, 0.75} illustrating the properties mentioned above.

Figure 2: Three different realisations of fBm of length T = 5000 with different H.

Stationarity refers to the fact that the distribution of the process
doesn’t change in time, which has important consequences. In par-
ticular, the BH(t) are identically distributed, i.e., the expectation
values and variances of components do not depend on time t. Fur-
thermore, the distribution BH(t) − BH(s) depends only on t − s, so
the correlations of the components also depend only on t − s.

Multivariate generalisations of fBms are introduced in [17, 18]
and require an extension of self-similarity to multivariate processes
first. While the definition given in [19] concerns a far-reaching
generalisation of fBm, where self-similarity becomes operator self-
similarity for the multivariate case, in [18] the authors restrict them-
selves to joint self-similarity, where joint self-similarity can be seen
as a special case of operator self-similarity where the operator is
diagonal. For the sake of simplicity, we focus on the definition
introduced in [18].

Definition 2.2 (Multivariate Self-Similar Process) A multivari-
ate process ((Xi(t))m

i=1)t∈R = (X1(t), . . . , Xm(t))t∈R with variable-
dimension m ∈ N is called self-similar, if there exists a vector
H = (H1, . . . ,Hm) with Hi ∈ (0, 1) for i = 1, ...,m such that for any
a > 0 it holds that

(X1(at), . . . , Xm(at))t∈R ∼ (aH1 X1(t), . . . , aHm Xm(t))t∈R,

where ∼ denotes the equality of finite-dimensional distributions.

With Definition 2.2, mfBm is defined as follows.

Definition 2.3 (Multivariate Fractional Brownian Motion [20])
An m-multivariate process ((Xi(t))m

i=1)t∈R is called multivariate
fractional Brownian motion (mfBm) with self-similarity or Hurst
parameter H = (H1, . . . ,Hm) with Hi ∈ (0, 1) for i = 1, ...,m, and is
denoted as Bm

H(t) , if it is

1. Gaussian distributed,

2. self-similar with Hurst parameter H, and it has

3. stationary increments, i.e., Bm
H(t) − Bm

H(s) ∼ Bm
H(t − s).

Multivariate self-similarity imposes some constraints on the covari-
ance structure of mfBm [18]. The covariance structure is charac-
terised by three parameters σi > 0, ρi j ∈ (−1, 1) and ηi j ∈ R for
i, j = 1, ...,m, which allow two components to be more or less
correlated and the process to be reversible in time or not. Parame-
ter σi > 0 is the standard deviation of the i-th variable at time t = 1.
Parameter ρi j = ρ ji is the correlation coefficient between the vari-
ables i and j at time t = 1. Parameters ηi j = −η ji are antisymmetric
and linked with the time-reversibility of mfBm. Multivariate frac-
tional Brownian motion can be characterised by its covariances and
cross-covariances of its variables as follows.

Lemma 2.1 (Covariance Function of mfBm [21]) The mfBm
Bm

H(t) is marginally an fBm, such that the covariance function
of the i-th variable Bi

Hi
of mBfm is as in the univariate case, i.e.,

Cov(Bi
Hi

(s), Bi
Hi

(t)) =
σ2

i

2
(|s|2Hi + |t|2Hi − |t − s|2Hi ). (2)

where σ2
i = Var(Bi

Hi
(1)). The cross-covariances of mfBm for all

(i, j) ∈ {1, ...,m}2 and i , j are given by

Cov(Bi
Hi

(s), B j
H j

(t)) =
σiσ j

2
(wi j(−s) + wi j(t) − wi j(t − s)) (3)

where the function wi j(h) is defined by

wi j(h) =

{
(ρi j − ηi j sign(h))|h|Hi+H j if Hi + H j , 1,
ρi j|h| + ηi jh log |h| if Hi + H j = 1. (4)
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Moreover, the setting of ρi j = 1 and ηi j = 0 in (3) and (4)
matches with the definition in the univariate case in (2). For m = 1,
Definition 2.3 matches with the univariate Definition 2.1 of fBm.
Figure 3 shows three realisations of mfBm of length T = 2000,
ρi, j = 0.3, ηi, j = 0.1/(1 − Hi − H j) with different Hurst parameters.

(a) mfBm with m = 3 and Hi = 0.25 for all i = 1, . . . , 3

(b) mfBm with m = 5 and Hi = 0.75 for all i = 1, . . . , 5
(1).png

(c) mfBm with m = 5 and different Hi ∈ [0.35, 0.75]
(2).png

Figure 3: Three different realisations of mfBm with different Hurst parameters.

2.2 Ordinal Pattern Representations

To investigate the qualitative behaviour of mfBm, we use ordinal
pattern symbols. Before we get into the details of multivariate
ordinal patterns, we introduce univariate concepts.

2.2.1 Ordinal Pattern Symbolisation

In the mathematical theory of symbolic dynamics, a dynamical sys-
tem is modelled by a discrete space consisting of infinite (sequences
of) abstract symbols. These sequences of symbols are the subject
of advanced analysis such as entropies. As far as current research
is concerned, there are two general approaches to encode the se-
quence of real-valued measurements into a sequence of symbols as
visualised in Figure 4.

On the one hand, classical symbolisation approaches partition
the data range according to specified mapping rules in order to then
encode a numerical time series into a sequence of discrete symbols
from a predefined alphabet Σ. An example of the partitioning of a
data range can be found in Figure 4a, while the assignment of the
symbols (encoding) to the time series is visualised in Figure 4b. A
corresponding and well-known algorithm for determining data range

partitions is Symbolic Aggregate ApproXimation (SAX) presented
in [22]. On the other hand, ordinal pattern symbolisation is another
approach that, independent of the data range of the time series, en-
codes the total order between two or more neighbours (x < y or
x > y) into symbols. This ordinal pattern approach is based on the
idea of Bandt and Pompe [23] and visualised in Figures 4c and 4d.
Since we use the ordinal symbolisation scheme in the remainder of
this work, we present its formalism and advantages in detail in the
following.

Ordinal patterns describe the total order between two or more
neighbours encoded by permutations.

Definition 2.4 (Univariate Ordinal Pattern)
A vector (x1, . . . , xd) ∈ Rd has ordinal pattern (r1, . . . , rd) ∈ Nd of
order d ∈ N if xr1 ≥ · · · ≥ xrd and rl−1 > rl in the case xrl−1 = xrl .

Note that equality of two values within a pattern is not allowed. In
this case, without loss of generality, the newer value is replaced
with a smaller value. Figure 4c shows all possible ordinal patterns
of order d = 3 of a vector (x1, x2, x3). To symbolise a time series
(x1, x2, ..., xT ) ∈ RT each point in time t ∈ {d, ...,T } is assigned its
ordinal pattern of order d. The order d is chosen to be much smaller
than the total length T of the time series to look at smaller ordinal
pattern windows within the series and their distributions of “up
and down” movements. To assess the overarching trend, delayed
behaviour is of interest. The time delay τ ∈ N is the delay between
successive points in the symbol sequences. Different delays show
different details of the structure of a time series. Figure 4d visu-
alises ordinal pattern determination of order d = 3 and time delay
τ = 1 of three different time points in a time series marked in blue,
orange and magenta. Note that ordinal patterns are determined at
any arbitrary point in time.

The ordinal approach has notable advantages in its practical
application. First of all, the method is conceptually simple as it
reflects man’s natural thought of up and down movements and is,
therefore, open to interpretation. Second, prior knowledge of the
data range or the type of time series is not necessary. The concept
can be applied to any time series as long as the range of values is
ordered, e.g. xt ∈ R. Third, the ordinal approach supports robust
and fast implementations [24, 25]. Fourth, it allows for an easier es-
timation of a good symbolisation scheme compared to the classical
symbolisation approaches [26, 27].

2.2.2 Permutation Entropy

Not the ordinal patterns themselves, but their distributions in a uni-
variate time series (xt)T

t=1 are of interest. Thus, each pattern is iden-
tified with exactly one of the ordinal pattern symbols j = 1, 2, ..., d!.
To assess the (dis)order of the identified symbols in the system or in
the time series, we use a measure of the dispersion from the field
of statistics, namely entropy. The greater the disorder, the higher
the entropy. The statistical interpretation of entropy corresponds
to Shannon’s information entropy used in information theory or
computer science. Applying the well-known formula for (Shannon)
entropy

I(Z) = −
∑
z∈Z

pz ln pz, (5)
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a = (−∞, 10]
b = (10, 20]
c = (20, 30]
d = (40, 50]
e = (50, 60]
f = (60,∞]

(a) All symbols from an alphabet Σ of size |Σ| = 6.

10 15 20

a
b
c
d
e
f

a e

Symbolisation

a f e e a a a d d c b d d d d f a d b

(b) Partitioning of the data range and classical symbolisation determination in a univariate time series.

(0 1 2) (2 1 0) (1 0 2)

(2 0 1) (0 2 1) (1 2 0)

(c) All possible ordinal patterns of order d = 3.
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(d) Ordinal pattern determination of order d = 3 and time delay τ = 1 at any time point t ∈ [dτ − τ + 1,T ].

Figure 4: Two approaches for symbolising a univariate time series: (a) and (b) classical symbolisation and (c) and (d) ordinal pattern symbolisation. Best viewed in colour.

where Z is an alphabet of symbols Z = {z1, z2, . . . , zn} to ordinal pat-
tern symbols leads directly to the definition of permutation entropy.

Definition 2.5 (Permutation Entropy [23])
Permutation entropy (PE) of order d ∈ N and delay τ ∈ N of a
univariate time series x = (xt)T

t=1, T ∈ N is defined by

PEd,τ(x) = −

d!∑
j=1

pτ,dj ln pτ,dj , (6)

where pτ,dj is the frequency of occurrence of ordinal pattern j in the
time series.

In time series with maximally random ordinal pattern symbols, the
ordinal patterns are equally distributed so that PE is ln(d!). For a
time series with a regular pattern, e.g., in the case of strict monotony,
PE is equal to zero [7].

2.2.3 Multi-Scale-Permutation Entropy

For example, biological and physiological time series, as well as
time series from other fields, often contain complex correlations
between both temporal and spatial levels (scales) that need to be
uncovered. PE achieves a maximum entropy value both on com-
pletely random time series and on series with complex correlations
based on a determinism. To uncover multi-scale complex corre-
lations, multi-scale entropy (MSE) proposed in [28] provides a
systematic procedure to assign small complexity values to both fully
predictable and fully random uncorrelated time series. In contrast,
correlated processes across different scales have a high complexity
value. In [9], the author extend the concept of MSE to univariate
ordinal patterns.

For the consideration of different scales of a time series and an
associated definition of MSPE, a coarse-grained procedure is used:

From the original time series, several consecutive time data points
are averaged within a non-overlapping time window of scaling
length ε, also called scaling factor. Each element of the coarse-
grained time series y = (y(ε)

l )T/ε
l=1 is calculated as:

y(ε)
l =

1
ε

lε∑
t=(l−1)ε+1

xt (7)

for 1 ≤ l ≤ T
ε

.

Definition 2.6 (Multi-Scale Permutation Entropy [9])
Multi-scale permutation entropy (MSPE) of order d ∈ N and delay
τ ∈ N of a univariate time series x = (xt)T

t=1, T ∈ N is defined as PE
of its coarse-grained time series y = (y(ε)

l )T/ε
l=1 , that is

MSPEd,τ,ε(x) = PEd,τ(y). (8)

2.2.4 Weighted Permutation Entropy

Another shortcoming in the above Definition 2.5 of PE is that when
the ordinal patterns are extracted, no information other than the
order structure is preserved. In particular, information about the am-
plitude in a time series is lost. However, ordinal patterns with large
differences in amplitude should contribute in different ways to the
computation of PE. The weighted permutation entropy introduced
in [10] allows for the weighting of ordinal patterns by exploiting
amplitude information resulting from small fluctuations in the time
series due to the effect of noise to be weighted less than ordinal
patterns with large amplitudes.

Definition 2.7 (Weighted Permutation Entropy [10])
Weighted permutation entropy (WPE) of order d ∈ N and delay
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τ ∈ N of a univariate time series x = (xt)T
t=1, T ∈ N is defined as

WPEd,τ(x) = −

d!∑
j

pτ,dw j
ln pτ,dw j

(9)

with

pτ,dw j
=

∑
t≤T wt · [(xt−(d−1)τ, ..., xt−τ, xt) has pattern j]∑

t≤T wt · [(xt−(d−1)τ, ..., xt−τ, xt)]
(10)

where [x] = 1 if x is true, and 0 otherwise, and

wt =
1
d

d∑
k=1

(xt−(k−1)τ − xd,τ
t )2 (11)

is the empirical variance of the sub-sequence and xd,τ
t denotes its

arithmetic mean, i.e., xd,τ
t = 1

d
∑d

k=1 xt−(k−1)τ.

2.3 On the Behaviour of Permutation Entropy on Frac-
tional Brownian Motion

This work investigates the behaviour of PE on fBm in a multivariate
setting. To this purpose, we recapitulate univariate results from [8].
They investigate the distribution of ordinal patterns in fBm of differ-
ent orders and, if possible, provide closed formulas for computation
of pattern distributions as follows:

Order d = 2. The ordinal patterns are equally distributed, more
specifically

pτ01 = pτ10 = 1/2, (12)

such that PE2,τ(BH(t)) = − ln(1/2) for all τ.

Order d = 3. The distribution of ordinal patterns is given by

pτ012 =
1
π

arcsin 2H−1 =: u (13)

for all τ. Furthermore, for a Gaussian process with stationary incre-
ments (as fBm), it holds that

pτj =

{
u if j = (012), (210),
(1 − 2u)/4 otherwise, (14)

for all τ. In particular, PE3,τ(BH(t)) is independent of the delay τ
but monotonically dependent on the Hurst parameter H.

Order d = 4. The distribution of ordinal patterns can also be
expressed, albeit in a more complex formula

pτj =
1
8

+
1

4π
· v j (15)

for all delays τ, where

v j =



arcsinα1 + 2 arcsinα2 if j = (0123), (3210),
arcsinα4 − 2 arcsinα5 if j = (3120), (0213),
2 arcsinα6 + arcsinα1 if j = (1032), (2301),
arcsinα7 − arcsinα1 − arcsinα5 if j = (0132), (1023),

(2310), (3201),
arcsinα7 − arcsinα4 − arcsinα5 if j = (0312), (3021),

(2130), (1203),
arcsinα3 + arcsinα8 − arcsinα5 if j = (2013), (0231),

(3102), (1320),
arcsinα6 − arcsinα8 + arcsinα2 if j = (0321), (3012),

(1230), (2103),
(16)

with

α1 =
1 + 32H − 22H+1

2
, α2 =22H−1 − 1, α3 =

1 − 32H − 22H

2 · 6H ,

α4 =
32H − 1
22H+1 , α5 =22H−1, α6 =

−1 − 32H + 22H

2 · 3H ,

α7 =
32H − 22H − 1

22H+1 , and α8 =
22H−1

3H .

In particular, PE4,τ(BH(t)) is independent of the delay τ but mono-
tonically dependent on the Hurst parameter H.

Order d ≥ 5. There are no closed formulas.

The formulas for the distribution of univariate order patterns
of different orders lead to the following behaviour of PE and its
extensions MSPE and WPE on fBm.

Theorem 2.2 For order d = 2, it holds

PE(BH(t)) = − ln(1/2) (17)
= MSPE(BH(t)) (18)
= WPE(BH(t)). (19)

for all delays τ ∈ N and all scales ε.

Proof. Equation (17) follows directly from (12). Equations (18) or
(19) are shown in [1] and [2], respectively. The independence of
MSPE from the scale ε follows from the invariance of the coarse-
grained procedure of fBm. �

Theorem 2.3 For orders d = 3 and d = 4, PE(BH(t)) and
MSPE(BH(t)) are independent of all delays τ ∈ N but monotonically
dependent on the Hurst parameter H. Moreover, MSPE(BH(t)) is
independent of all scales ε, and thus PE(BH(t)) and MSPE(BH(t))
are identical.

Proof. The independence of MSPE from the scale ε follows from
the invariance of the coarse grain procedure of fBm and is shown
in [1]. Thus, independence of the delay τ and the dependence on
the Hurst parameter H follows directly from (13). �

In [2] we observe that for WPE of order d = 3, certain ordinal
patterns, namely the strictly ascending ordinal pattern (012) and the
strictly descending pattern (210), have higher weights and thus have
more impact on the computation of WPE than the other four ordinal
patterns. As a result, WPE decreases faster than PE for increasing
Hurst parameter H. We elaborate on this experimental discovery in
Section 6.
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3 A Review of Multivariate Permutation
Entropy

This section provides a comprehensive overview of existing exten-
sions of permutation entropy to the multivariate case. We categorise
existing multivariate extensions according to their procedure before
presenting them in detail.

3.1 Different Approaches for Multivariate Permutation
Entropy

A multivariate time series ((xi
t)

m
i=1)T

t=1 such as a certain realisation of
mfBm has more than one time dependent variable. Each variable xi

for i ∈ 1, ...,m not only depends on the respective past values in time
but also has some dependence on other variables in phase space.
Considering two time points (xi

t)
m
i=1 and (xi

t+1)m
i=1 with m variables,

simply put two vectors, it is not possible to establish a total order
between them. A total order is only possible if xi

t > xi
t+1 or xi

t < xi
t+1

for all i ∈ 1, ...,m. Therefore, there is no trivial generalisation of the
PE algorithm to the multivariate case.

Nevertheless, numerous studies deal with the multivariate exten-
sions of PE. We classify proposed extensions into four procedures.
The multivariate time series is

a) projected into univariate ordinal space by determining univari-
ate ordinal pattern between neighbouring values in time space
(row marked in red in Figure 5a) in each single variable i ,
and then pooled over all m variables for multidimensionality,
or

b) projected into univariate ordinal space by determining univari-
ate ordinal pattern between values of all m variables (column
marked in red in Figure 5b) for each single time point t, and
then pooled over all T time points for multidimensionality, or

c) projected into multivariate ordinal space by determining the
multivariate ordinal pattern between d vectors of variable
dimension m (box marked in blue in Figure 5c for d = 2), or

d) projected onto a single-dimensional reduction first (box
marked in green in Figure 5d), and then transformed into
ordinal space by determining univariate ordinal pattern.

The first procedure a) is a canonical extension of the univari-
ate definition and is presented in [29] as pooled permutation en-
tropy (PPE). PPE is probably the most widely used multivariate
extension. While PPE measures the complexity of each variable
in time space, procedure b) analyses the complexity of the vari-
ables in phase space. A variant of procedure b) is introduced in
[30] as Multivariate Permutation Entropy (MvPE). The third pro-
cedure c) first requires an extension of univariate ordinal pattern
to multidimensionality. Some theoretical basis for this is set in
[31, 32]. A detailed discussion and challenge on real-world data
can be found in [33]. The idea of the fourth procedure d) is to first
reduce the number of variables m to a single dimension, i.e., m = 1,
by applying a distance measure or dimension reduction algorithm.
Consequently, Definition 2.5 can then be used for PE computation
directly. Rayan, i n[34], the author propose several distance mea-
sures to reduce the dimensionality, that is Euclidian distance with

reference point (xi
t=0)m

i=1, Manhattan distance with reference point
(xi

t=0)m
i=1, and Euclidian distance with reference point 0. To consider

correlations between variables in space, in [33], the author propose
to reduce the dimension using principal component analysis.
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Figure 5: Four procedures of ordinal pattern determination in a multivariate time
series.

Since the determination of ordinal patterns in both procedures
b) and d) requires transformations of the structure of mfBms, we
restrict ourselves in the following to extensions a) and c) that are
some kind of canonical extensions.

3.2 Pooled Permutation Entropy and Adaptions

The procedure in Figure 5a is a canonical extension of PE to the
multivariate case, i.e., univariate ordinal patterns are determined
for each variable of the multivariate time series before each pattern
of all variables is pooled. This idea is introduced in [29] and re-
ferred to as pooled permutation entropy (PPE). In addition, we
introduce two adaptations based on PPE that take into account dif-
ferent aspects of a time series, i.e., different scales or amplitudes,
called multivariate multi-scale permutation entropy (MMSPE) or
multivariate weighted permutation entropy (MWPE), respectively.

3.2.1 Pooled Permutation Entropy

The idea of PPE is to use marginal frequencies of d! ordinal patterns
regarding all m variables as input for entropy computation. For the
determination of marginal frequencies, an auxiliary matrix has to
be established first as follows.

1. For each variable i = 1, ..,m and for each ordinal pat-
tern j = 1, ..., d!, count all time steps s ∈ [τ(d − 1) + 1,T ], for
which the variable-time pair (i, s) has the ordinal pattern j.
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2. Divide the counts by m · δ, where δ := T − τ(d− 1) is the total
count of ordinal patterns each variable has.

3. Store the results, i.e., frequencies pτ,di j in a so-called pool-
ing matrix P ∈ (0, 1)m×d!, which reflects the distribution of
ordinal patterns in the multivariate time series across its m
variables.

It holds
∑m

i=1
∑d!

j=1 pτ,di j = 1. For computational reasons, marginal
frequencies pτ,d. j =

∑m
i=1 pτ,di j must not vanish for j = 1, ..., d!. If they

vanish, set the value close to zero.

Definition 3.1 (Pooled Permutation Entropy [29])
Pooled permutation entropy (PPE) of a multivariate time series
X = ((xi

t)
m
i=1)T

t=1 is defined as PE of the marginal frequencies
pτ,d. j =

∑m
i=1 pτ,di j for j = 1, ..., d! describing the distribution of the

ordinal pattern and can be calculated as

PPEd,τ(X) = −

d!∑
j

pτ,d. j ln pτ,d. j . (20)

In the literature, PPE is often referred to as Multivariate Permu-
tation Entropy. To avoid confusion with other multivariate versions,
we use the original naming. A major advantage of PPE is that within
the procedure also univariate PE can be derived for each variable
by calculating the PE based on the frequencies pi j of all ordinal
patterns j = 1, . . . , d! for corresponding i = 1, . . . ,m, i.e. row by
row on the pooling matrix. Algorithm 1 provides pseudocode for
computing PPE.

Algorithm 1: Computation of PPE

Input: Multivariate Time Series Xm×T , Order d, Delay τ
Function pooling(X,d,τ):

Pm×d! ← pooling matrix initialised with zeros
for every time series variable i = 1, . . . ,m in X do

for each ordinal pattern j = 1, . . . , d! do
c← number of time steps s ∈ [τ(d − 1) + 1,T ]
with pattern j

Pi j ← divide c by the number of total time steps
δ · m in the multivariate time series X

return P

Function marginalisation(P):
p1×d! ← vector of marginalisation initialised with zeros
for every column j = 1, . . . , d! in Pm×d! do

p j ← sum up pi j

return p

return PE(p)

For example, PPE is successfully used in the analysis of elec-
troencephalography (EEG) signals, as cross-channel regularities
between spatially distant variables, i.e., on different hemispheres or
in different areas, can be extracted by long-range spatial nonlinear
correlations [29]. Furthermore, in [24], the author successfully
used PPE to study the 19-channel scalp EEG reflecting changes
in brain dynamics of a boy with lesions predominantly in the left
temporal lobe caused by connatal toxoplasmosis. In [35], the au-
thor use PPE to characterise sleep EEG signals from more than

80 hours of nocturnal sleep recordings and classify sleep stages.
They find that each sleep stage is characterised by statistically
different PPE values and that the observed pattern of PPE is consis-
tent with the physiological properties of the EEG in each sleep stage.

3.2.2 Multivariate Multi-Scale Permutation Entropy

In addition to PPE and by analogy with MSPE, Morabito et al. [9]
provide a canonical definition of multivariate multi-scale permuta-
tion entropy. MSPE and MMSPE are calculated on different time
scales by processing the coarse-grained time series as a function
of the scale factor ε. Per variable i in a multivariate time series,
several consecutive time data points are averaged within a non-
overlapping time window of the scaling length ε. Each element of
the coarse-grained time series Y = ((y(ε)

i,l )T/ε
l=1 )m

i=1 is calculated as:

y(ε)
i,l =

1
ε

lε∑
t=(l−1)ε+1

xi,t (21)

for all i = 1, ...,m and 1 ≤ l ≤ T
ε

.

Definition 3.2 (Multivariate Multi-Scale PE [9])
Multivariate multi-scale permutation entropy (MMSPE) of order
d ∈ N and delay τ ∈ N of a multivariate time series X is defined as
PPE of its coarse-grained time series Y, that is

MMSPEd,τ,ε(X) = PPEd,τ(Y). (22)

The simultaneous utilisation of a multi-scale approach and the
consideration of multiple variables of the time series facilitates
assessing the complexity of the underlying dynamical system. Al-
gorithm 2 provides pseudocode for computing MMSPE.

Algorithm 2: Computation of MMSPE

Input: Multivariate Time Series Xm×T , Order d, Delay τ,
Scale Factor ε

Ym×(T/ε) ← coarse-grained multivariate time series
initialized with zeros

for every time series variable i = 1, . . . ,m in X do
yi ← calculate coarse-grained univariate time series

// see Eq.(21)

return PPE(Y, d, τ)

3.2.3 Multivariate Weighted Permutation Entropy

In addition to PPE and by analogy with WPE, in [2] we provide a
canonical definition of multivariate weighted permutation entropy.
Again, for the determination of MWPE, an auxiliary matrix has to
be established first:

1. For each variable i = 1, ..,m and for each ordinal pat-
tern j = 1, ..., d!, select all time steps s ∈ [τ(d − 1) + 1,T ] for
which the variable-time pair (i, s) has the ordinal pattern j.

2. Add up the weights wt, i.e., wij =
∑T

t=dτ−τ+1 wt for all selected
ordinal pattern vectors j and for each variable i = 1, ...,m.
Note that the total count of weights wi

t for each variable i is
δ := T − (dτ − τ).
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3. Divide the weighted sum wij by the total sum of all m · δ
weights to obtain the weighted frequencies for every ordinal
pattern j.

4. Store the results, i.e., weighted frequencies pτ,dwi j in a so-called
weighted pooling matrix Pτ,d

w ∈ Rm×d!, which reflects the
weighted distribution of ordinal patterns in the multivariate
time series across its m variables.

Based on the weighted pooling matrix Pτ,d
w , multivariate

weighted permutation entropy can be calculated as follows.

Definition 3.3 (Multivariate Weighted PE [2])
Multivariate weighted permutation entropy (MWPE) of a multivari-
ate time series X = ((xi

t)
m
i=1)T

t=1 is defined as PE of the marginal
weighted frequencies pτ,dw· j =

∑m
i=1 pτ,dwi j for j = 1, ..., d! describing the

distribution of the weighted ordinal pattern and can be calculated as

MWPEd,τ(X) = −

d!∑
j

pτ,dw· j ln pτ,dw· j . (23)

Algorithm 3 provides pseudocode for computing MWPE.

Algorithm 3: Computation of MWPE

Input: Multivariate Time Series Xm×T , Order d, Delay τ
Function weightedPooling(X,d,τ):

Pm×d! ← weighted pooling matrix initialised with zeros
for every time series variable i = 1, . . . ,m in X do

for each ordinal pattern j = 1, . . . , d! do
wi j ← add up weights wt // see Eq.(11)

pi j ← divide wi j by the total sum of all m · δ
weights

return P

p← marginalisation(P)
return PE(p)

3.3 Multivariate Ordinal Pattern Permutation Entropy

A multivariate time series ((xi
t)

m
i=1)T

t=1 and its corresponding data
matrix X ∈ Rm×T has more than one time-dependent variable. Each
variable xi for i ∈ 1, ...,m not only depends on the respective past
values in time but also has some dependence on other variables in
phase space. Since all procedures from the previous section consider
univariate ordinal patterns per variable i separately, interdependence
is not considered. To involve interdependence, an intuitive idea
introduced in [33] is to store the univariate ordinal patterns of all
variables at a time point t together into one common multivariate
ordinal pattern.

Definition 3.4 (Multivariate Ordinal Pattern) A data matrix
(x1, ..., xd) ∈ Rm×d has multivariate ordinal pattern

r11 · · · r1d
...

. . .
...

rm1 · · · rmd

 ∈ Nm×d (24)

of order d ∈ N if xri1 ≥ ... ≥ xrid for all i = 1, ...,m and ril−1 > ril in
the case xril−1 = xril .

Figure 6 shows all possible multivariate ordinal patterns of order
d = 3 and number of variables m = 2.(
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Figure 6: All possible multivariate ordinal patterns of order d = 3 with m = 2
variables. Best viewed in colour.

With the natural extension of univariate ordinal pattern, which
leads to Definition 3.4, it is possible to apply the PE algorithm from
Definition 2.5 to multivariate time series in its original form.

Definition 3.5 (Multivariate Ordinal Pattern PE [33])
Multivariate ordinal pattern permutation entropy (MOPPE) of order
d ∈ N and delay τ ∈ N of a multivariate time series X = ((xi

t)
m
i=1)T

t=1
is defined by

MOPPEd,τ(X) = −

d!∑
j=1

pτ,dj ln pτ,dj , (25)

where pτ,dj is the frequency of multivariate ordinal pattern j in the
multivariate time series.

Algorithms 1, 2, 3 and 4 for computing PPE,MMSPE, MWPE
and MOPPE, respectively, can also be found on Github1 and PyPI2.

Algorithm 4: Computation of MOPPE

Input: Multivariate Time Series Xm×T , Order d, Delay τ
p1×d! ← frequencies initialised with zeros
for every time step t in X do

for each ordinal pattern j = 1, . . . , d! do
c← count all time points t with multivariate ordinal

pattern j // see Def. 3.4

p j ← divide c by the number of total time steps
T − τ(d − 1) in the multivariate time series X

return PE(p)

The number of the possible multivariate ordinal pattern increases
exponentially with the number of variables m, i.e., (d!)m. Therefore,
if d and m are too large, depending on the application, each pattern
occurs only rarely or some not at all, resulting in a uniform distribu-
tion of ordinal patterns. This has the consequence that subsequent
learning procedures may fail. Nevertheless, for small order d and
sufficiently large length T of the time series, the use of multivariate
ordinal patterns can lead to higher accuracy in learning tasks, e.g.,
classification [33], because they incorporate interdependence.
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4 PPE Applied to mfBm
In this section, we investigate the behaviour of PPE of different
orders and delays on mfBm in the variation of its Hurst parameter
from both theoretical and experimental points of view. For the sake
of completeness, we recapitulate results from previous work and fill
in gaps with further results.

4.1 Theoretical Analysis

Orders 2 and 3. In previous work, [1] we show that for order
d = 2 the PPE of mfBm is constant for all delays τ as well as any
number of variables m, in particular, it holds that

PPE2,τ(Bm
H(t)) = − ln(1/2) (26)

for all τ,m. Furthermore, we show that for order d = 3, the PPE of
mfBm stays also independent of the delay τ, but depends monotoni-
cally on the number of variables m as well as the Hurst parameter H.
In the case Hi = H j for all variables i, j, PPE is also independent of
the number of variables m. Details and corresponding formulas for
entropy calculation can be found in the original paper [1].

Orders greater than 3. In this work, we show that a behaviour
analogous to that of PPE with order d = 3 can be transferred to
orders d > 3.

Theorem 4.1 PPE(Bm
H(t)) of order d = 4 is independent of all de-

lays τ but monotonically dependent on the number of variables m
and the Hurst parameter H of mfBm. In the case Hi = H j for all
i, j, it is independent on the number of variables m.

Proof. Let d = 4. Since mfBm Bm
H(t) is marginally an fBm

BH(t), we conclude from Definition 2.3 and (15), that

pτ,4i j =
1
m

(
1
8

+
1

4π
· v j

)
(27)

for all i = 1, ...,m and v j as in (16).
The marginal frequencies for j = 1, ..., d! are given by

pτ,4. j =

m∑
i=1

1
m

(
1
8

+
1

4π
· v j

)
, (28)

where v j is as in (16), while

α1 =
1 + 32Hi − 22Hi+1

2
, α2 =22Hi−1 − 1, α3 =

1 − 32Hi − 22Hi

2 · 6Hi
,

α4 =
32Hi − 1
22Hi+1 , α5 =22Hi−1, α6 =

−1 − 32Hi + 22Hi

2 · 3Hi
,

α7 =
32Hi − 22Hi − 1

22Hi+1 , and α8 =
22Hi−1

3Hi
.

Considering the distribution of all possible realisations of fBm,
we see from the use of (28) in Definition 3.1 that the number of
variables m in the case of Hi = H j for all i, j cancels out. Thus,
PPE(Bm

H(t)) is independent of the number of variables m. In ad-
dition, PPE(Bm

H(t)) stays independent of all delays τ. Monotonic

dependence on the Hurst parameter H is preserved since the transfor-
mations carried out, i.e. additions, do not change the monotonicity.
�

For order d > 4, no closed formulas for the distribution of ordi-
nal patterns in fBm exist (see Section 2.3). Nevertheless, analogous
behaviour can also be observed in this case, and we we evaluate that
in an experimental setting in the next section.

4.2 Experimental Evaluation

In this experimental evaluation, we investigate the behaviour of
PPE on mfBm in the variation of the Hurst parameter H, the num-
ber of variables m and the delay τ. All experimental computa-
tions are based on simulations of mfBms using an algorithm de-
scribed in [20] with parameters Hi = H j for all i, j, ρi, j = 0.0 and
ηi, j = 0.1/(1 − Hi − H j) for Lemma 2.1. The lengths T = 10, 000
of mfBms are assumed to be large. The results of computations are
visualised in Figure 7.

In Figure 7a we show the independence of PPE of all orders
d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) on
mfBm from number of variables m. For this, the delay is fixed to
τ = 1. All green lines, i.e., for d = 2, are constant, namely − ln(1/2),
for each m, confirming the independence of numbers of variables
m in (26). All other lines, i.e., for d > 2, are also the same for
any m, but monotonically dependent on the Hurst parameter H, i.e.,
in particular confirming Theorem 4.1. In Figure 7b we show the
independence of PPE on mfBm from delay τ. For this, the number
of variables is fixed to m = 3. Again, all green lines, i.e., for d = 2,
are constant − ln(1/2) for each τ, confirming the independence of
delay τ in (26). All other lines, i.e., for d > 2, are also the same for
any τ, but monotonically dependent on the Hurst parameter H, in
particular confirming Theorem 4.1.

The deviations of the values of PPE in Figure 7 with increasing
Hurst parameter H thus result from the length restriction in the sim-
ulation, i.e., the distributions as given in the theoretical part are only
to be expected if T → ∞ converges [13]. Thus, for a small length T ,
the estimates of the probabilities for the ordinal patterns differ from
the true values of a hypothetical mfBm of infinite length. All in
all, the experiment underpins our theoretical results. The results
are not surprising since PPE pools over the univariate patterns so
that mfBm can be understood by the computational logic as a kind
of extended univariate fBm. This kind of extension ensures that
the deviations for greater Hurst parameter H and larger number of
variables become smaller and can also be observed in Figure 7a.

5 MMSPE Applied to mfBm
In this section, we investigate the behaviour of MMSPE of different
orders, delays, and scales on mfBm in the variation of its Hurst
parameter from both theoretical and experimental points of view.
For the sake of completeness, we recapitulate results from previous
work and fill in remaining results.

5.1 Theoretical Analysis

To investigate the behaviour of MMSPE on mfBm, coarse-grained
fractional Brownian motion has to be considered. By using (7)
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(a) PPE of fixed delay τ = 1 on mfBm for different numbers of variables m = 3. (b) PPE of different delays τ on mfBm for fixed variable dimension m = 3.

Figure 7: Experimental computations of PPE of orders d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parameters H.

or (21) on fBm, coarse-grained fractional Brownian motion (cfBm)
is defined as

Bi,(ε)
Hi

(l) =
1
ε

ε∑
j=1

Bi
Hi

((l − 1)ε + j) (29)

for l = 1, ...,T/ε and all i = 1, ...,m.
In [1] we show that the structure of the covariance function

is the same as the original fBm for all variables i = 1, ...,m, but
with additional information of the scale factor ε. Therefore the
covariance function of the original fBm or mfBm is invariant to
the coarse-grained procedure. For this reason, the results from the
previous Section 4 are directly transferable to MMSPE.

Orders 2 and 3. For order d = 2 the MMSPE on mfBm is con-
stant for all delays τ, number of variables m, as well as any scales ε.
In particular holds

MMSPE2,τ,ε(Bm
H(t)) = − ln(1/2) (30)

for all τ,m, ε. Furthermore, for order d = 3, the MMSPE on mfBm
is also independent of delays τ and scales ε but depends monotoni-
cally on the number of variables m as well as the Hurst parameter H
of mfBm. In the case Hi = H j for all variables i, j, MMSPE is also
independent of the number of variables m. Details and correspond-
ing formulas for entropy calculation can be found in the original
work [1].

Orders greater than 3. With previous insights, the transfer of
results from MMSPE of order d = 3 to MMSPE of order d = 4 is
straightforward. For the sake of completeness, we formulate the
following theorem.

Theorem 5.1 MMSPE(Bm
H(t)) of order d = 4 is independent of all

delays τ and scales ε, but monotonically dependent on the number
of variables m and Hurst parameter H of mfBm. In the case Hi = H j

for all i, j, it is independent on the number of variables m.

Proof. For mfBm, each variable i = 1, . . . ,m is marginally an
fBm. Since the covariance function of fBm is invariant to the coarse-
grained procedure in (29), the independence of scales ε follows [1].
Then Theorem 4.1 is directly applicable, which implies indepen-
dence from the delay τ, the number of variables m and monotonic
dependence on the Hurst parameter H. �

For order d > 4, no closed formulas for the distribution of
ordinal patterns in fBm exist (see Section 2.3). Nevertheless, analo-
gous behaviour can also be observed in this case. We evaluate this
behaviour in an experimental setting in the next section.

Summarising the results of this subsection, the inclusion of dif-
ferent scales in mfBm has no influence. This is particularly related
to or reflects the fractal property because it resembles the original
shape when a fractal is zoomed in or scaled. Thus, MMSPE and
PPE show identical behaviour, which we investigate and discuss in
detail in Section 8.

5.2 Experimental Evaluation

In this experimental evaluation, we investigate the behaviour of
MMSPE on mfBm in the variation of the Hurst parameter H, delay
τ, number of variables m, as well as scale ε. The experimental
computations are based on the same simulations of mfBms as in
Section 4.2.

In Figure 8a we show the independence of MMSPE of all orders
d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) on
mfBm from number of variables m. For this, the delay is fixed to
τ = 1, and the scale is fixed to ε = 2. All green lines, i.e., for
d = 2, are constant, namely − ln(1/2), for each m, confirming the
independence of numbers of variables m in (30). All other lines, i.e.,
for d > 2, are also the same for any m, but monotonically dependent
on the Hurst parameter H, in particular confirming Theorem 5.1. In
Figure 8b we show the independence of MMSPE on mfBm from
delay τ. For this, the number of variables is fixed to m = 3, and the
scale is fixed to ε = 2. Again, all green lines, i.e., for d = 2, are con-
stant with value − ln(1/2) for each τ, confirming the independence
of delay τ in (30). All other lines, i.e., for d > 2, are also the same
for any τ, but monotonically dependent on the Hurst parameter H,
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in particular confirming Theorem 5.1.

(a) MMSPE of fixed delay τ = 1 and fixed scale ε = 2 on mfBm for different numbers
of variables m = 3.

(b) MMSPE of different delays τ and fixed scale ε = 2 on mfBm for fixed variable
dimension m = 3.

(c) MMSPE of fixed delay τ = 1 and different scales ε on mfBm for fixed variable
dimension m = 3.

Figure 8: Experimental computations of MMSPE of orders d = 2 (green), d = 3 (or-
ange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parameters H.

In Figure 8c we show the independence of MMSPE on mfBm

from scale ε. For this, the number of variables is fixed to m = 3 and
the delay to τ = 1. Again, all green lines, i.e., for d = 2, are constant
with value − ln(1/2) for each ε, confirming the independence of
scale ε in (30). All other lines, i.e., for d > 2, are also the same for
any scale ε, but monotonically dependent on the Hurst parameter
H, in particular confirming Theorem 5.1. Again, the reason for
the deviations of the values of MMSPE in Figure 8 with increasing
Hurst parameter H is the same as in the previous Section 4, namely
from length restriction T < ∞ of mfBm.

All in all, the experiment underpins our theoretical results from
Since MMSPE is based on PPE and scaling has no influence on
mfBm, the behaviour of MMSPE on mfBm in Figure 8 is to be
expected the same as that of PPE in Figure 7. A direct comparison
is discussed in Section 8.

6 MWPE Applied to mfBm
In this section, we investigate the behaviour of MWPE of different
orders and delays on mfBm in the variation of its Hurst parameter
from both theoretical and experimental points of view. For the sake
of completeness, we recap results from past work and add some
further results to fill in some of the remaining research gaps.

6.1 Theoretical Analysis

Order 2. In previous work, [2] we show that for order d = 2,
PPE of mfBm is constant for all delays τ as well as numbers of
variables m.

Theorem 6.1 MWPE of order d = 2 on mfBm BH(t) is given by

MWPE2,τ(Bm
H(t)) = − ln(1/2) (31)

for all τ,m.

Proof. From [2]: WPE or MWPE differs from PE or PPE, re-
spectively, in that the ordinal patterns are weighted depending on
their position t according to (11). For a weight wt of order d = 2,
i.e., of two time steps xt−τ and xt, we have

wt =
1
2

2∑
k=1

(xt−(k−1)τ − x2,τ
t )2 (32)

=
1
2

(xt − xt−τ)2. (33)

Since xt ∼ BH(t), we conclude from Definition 2.3, property (3),
i.e., fBm has stationary increments, that

1
2

(BH(t) − BH(t − τ))2 ∼
1
2

(BH(τ))2 (34)

with Var(BH(τ)) = σ2τ2H and σ2 = Var(BH(1)) = s2H as in (2).
Consequently, the weights wt are independently distributed from t,
i.e.,

wt ∼ N(0,
1
2

(sτ)2H). (35)

Considering the distribution of all possible realisations of fBm, we
see from the use of the weights wt from (11) in the computation of
WPE that the weights cancel out for a constant delay τ ∈ N. With
(12) it follows that WPE(BH(t)) = − ln(1/2).
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Calculating the frequencies of ordinal patterns for the weighted
pooling matrix Pτ,d

w ∈ R
m×d! results in an equal distribution with

Pτ,2
wi,(1,0)

= Pτ,2
wi,(0,1)

=
1

2m
(36)

for all i = 1, ..,m. By calculating the marginal relative frequencies,
the number of variables m is reduced, i.e.,

Pτ,2
w· j =

1
2

(37)

for j = {(0, 1), (1, 0)}. Hence the claim follows. �

Orders greater than 2. For orders d = 3 and d = 4, the follow-
ing theorem can be derived by inspecting corresponding weights of
ordinal patterns in combination with results from PPE.

Theorem 6.2 MWPE(Bm
H(t)) of orders d = 3 and d = 4 are inde-

pendent of all delays τ but monotonically dependent on the number
of variables m and Hurst parameter H of mfBm. In the case Hi = H j

for all i, j, it is independent on the number of variables m.

Proof. The weights for ordinal patterns of order d = 3 are given
by

wt =
2
9
· (x2

t − xt(xt−τ − xt−2τ) + x2
t−τ − xt−τxt−2τ + x2

t−2τ). (38)

In contrast to d = 2, in particular in contrast to (33), due to the
lack of symmetry, the weights depend on the time t, and therefore
do not cancel and thus influence the value of MWPE. Since the
distribution of the ordinal pattern is independent of the weights wt,
the independence of the delay τ is retained. In addition, the multi-
plication of weights wt and counts do not affect the monotony that
follows from (13) and (14) of PPE. The independence of MWPE
from the number of variables m for Hi = H j for all variables i, j
follows with the same line of reasoning as from the end of the proof
of Theorem 4.1 when calculating the marginal frequencies.

The weights for ordinal patterns of order d = 4 are given by

wt = 1
16 · (3x2

t − 2xt(xt−τ + xt−2τ + xt−3τ)

+3x2
t−τ − 2xt−τ(xt−2τ + xt−3τ) (39)

+3x2
t−2τ − 2xt−2τxt−3τ + 3x2

t−3τ).

Using the same reasoning as in the case of d = 3 and with (15),
the independence of the delay τ, the number of variables m and the
monotonic dependence of the Hurst parameter H for MWPE are
preserved. �

For order d > 4, no closed formulas for the distribution of ordi-
nal patterns in fBm exist (see Section 2.3). Nevertheless, analogous
behaviour can also be observed in this case, which we evaluate in
an experimental setting in the next section.

For increasing Hurst parameter H → 1, m(fBm) is more posi-
tively correlated, i.e., after an upward jump, a further upward jump is
more likely to follow and vice versa. Consequently, it is more likely
that the strictly ascending ordinal pattern (0, 1, 2) or the strictly de-
scending ordinal pattern (2, 1, 0) occurs than the other four ordinal
patterns (0, 2, 1), (1, 0, 2), (2, 0, 1) and (1, 2, 0). Since for H → 1
and t → ∞ m(fBm) becomes trendier, the weights of (0, 1, 2) and
(2, 1, 0) respectively must be larger on average. Thus, by weight-
ing the ordinal patterns of orders d > 2, the values of MWPE are
expected to decrease faster than the values of PPE.

6.2 Experimental Evaluation

In this experimental evaluation, we investigate the behaviour of
MWPE on mfBm in the variation of Hurst parameter H, delay τ,
and the number of variables m. The experimental computations are
based on the same simulations of mfBms as in Section 4.2.

(a) MWPE of fixed delay τ = 1 on mfBm for different numbers of variables m = 3.

(b) MWPE of different delays τ on mfBm for fixed variable dimension m = 3.

Figure 9: Experimental computations of MWPE of orders d = 2 (green), d = 3 (or-
ange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parameters H.

In Figure 9a we show the independence of MWPE of all orders
d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) on
mfBm from number of variables m. For this experiment, the delay
is fixed to τ = 1. All green lines, i.e., for d = 2, are constant, namely
− ln(1/2), for each m, confirming the independence of numbers of
variables m in (31). All other lines, i.e., for d > 2, are the same
for any number of variables m, but monotonically dependent on
the Hurst parameter H. In Figure 9b we show the independence of
MWPE on mfBm from delay τ. For this experiment, the number of
variables is fixed to m = 3. Again, all green lines, i.e., for d = 2,
are constant with value − ln(1/2) for each delay τ, confirming the
independence of delay τ in (31). All other lines, i.e., for d > 2, are
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also the same for any delay τ, but monotonically dependent on the
Hurst parameter H. The reason for the deviations of the values of
MWPE in Figure 9 with increasing Hurst parameter H is the same
as in the previous Section 4, i.e., the deviations are caused by length
constraint T < ∞ of mfBm.

All in all, the experiment underpins our theoretical results statet
in Theorem 6.1 and Theorem 6.2. In particular, the behaviour of
MWPE in Figure 9 is similar to that of PPE in Figure 7 in terms of
the independence of the parameters τ and m, as well as the constant
or monotonic progression at orders d = 2 or d > 2, respectively.

In the theoretical analysis, we discussed the influence of the
weighting of ordinal patterns of different orders on the values of
MWPE. For d = 2, we show that weighting has no influence (Theo-
rem 6.1). For orders d > 2, we assume that certain ordinal patterns
(strictly ascending and strictly descending) are weighted more than
others. Thus the values of MWPE fall faster than the values of PPE
as the Hurst parameter H increases. Exemplarily, Table 1 shows the
frequencies of (weighted) ordinal patterns (pw j ) p j of order d = 3
on a simulated mfBm of length T = 10000 with number of vari-
ables m = 3, correlation coefficient ρ = 0.0, and Hurst parameter
H = (0.8, 0.8, 0.8). While for PPE it holds that wt = 1 for every
pattern j, we see that the weights wt of ordinal patterns (0, 1, 2) and
(2, 1, 0) on average are larger than those of the other four ordinal
patterns. Consequently, the frequencies of these ordinal patterns are
also higher than in the unweighted case of PPE. For more details
on the difference between MWPE and PPE, see Section 8.

j counts wt pw j p j

(0, 1, 2) 10539 0.76 0.48 0.35
(0, 2, 1) 2470 0.19 0.03 0.08
(1, 0, 2) 2482 0.19 0.03 0.08
(1, 2, 0) 2450 0.19 0.03 0.08
(2, 0, 1) 2462 0.19 0.03 0.08
(2, 1, 0) 9588 0.72 0.40 0.33

Table 1: Frequencies of (weighted) ordinal patterns (pw j ) p j of order d = 3.

7 MOPPE Applied to mfBm
In this section, for the first time, the behaviour of MOPPE of differ-
ent orders and delays on mfBm is investigated in the variation of its
Hurst parameter, both from a theoretical and experimental point of
view.

7.1 Theoretical Analysis

Since multivariate ordinal patterns are defined as univariate ordinal
patterns combined in a matrix, joint probabilities are considered to
investigate the behaviour of MOPPE on mfBm. Let pτj be a proba-
bility for a univariate ordinal pattern j of arbitrary order d in fBm
given in Section 2.3. Since any univariate ordinal pattern of any
order d is independent of the delay τ, we write p j in the following.

Order 2. In contrast to the previous sections, the behaviour of
MOPPE on mfBm is obviously dependent on the number of vari-
ables m but remains independent of the delays τ.

Lemma 7.1 Let Bk
Hk

(s) and Bl
Hl

(t) for every k, l = 1, . . . ,m condi-
tionally independent, then it holds that

MOPPE2,τ(Bm
H(t)) = − ln

( 1
2m

)
(40)

for all τ.

Proof. The independence from the delay τ follows directly from
Definition 3.4 and the distribution of the univariate ordinal patterns
of order d = 2 in (12). Let j ∈ {(0, 1), (1, 0)} be a univariate ordinal
patterns of order d = 2. Let Xk = Bk

Hk
(t) and Xl = Bl

Hl
(t) for every

k, l = 1, . . . ,m conditionally independent, then the joint probability
function satisfies

P(X1 = j, . . . , Xm = j) = P(X1 = j) · · · · · P(Xm = j) (41)
= p j

m (42)

With (12) it is p j = 1/2 for every j, so that the joint distribution
of every m-fold combination of ordinal patterns j ∈ {(0, 1), (1, 0)}
stays p j

m. For the number of variables m, there exist 2m multivariate
ordinal patterns as combinations from univariate ordinal patterns so
that

MOPPE2,τ(Bm
H(t)) = −

2m∑
j=1

1
2

m

· ln
(1
2

m)
. (43)

�

Orders greater than 2. For orders d = 3 and d = 4, the follow-
ing theorem can be derived by considering joint probabilities of
univariate ordinal pattern distributions introduced in Section 2.3.

Lemma 7.2 MOPPE(Bm
H(t)) of orders d = 3 and d = 4 are inde-

pendent of all delays τ, but dependent on number of variables m,
and monotonically dependent on the Hurst parameter H.

Proof. The independence from the delay τ follows directly from
Definition 3.4 and the distribution of the univariate ordinal patterns
or orders d = 3 or d = 4 in (13) or (15), respectively. As intro-
duced in Section 2.3, the distribution of ordinal patterns of order
d = 3 is twofold (see (14)). Therefore, let A = {(0, 1, 2), (2, 1, 0)}
and B = {(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)}. Since multivariate
ordinal patterns are combinations of univariate ordinal patterns,
in the following, we consider three cases where the ordinal pat-
terns of all m variables are either from A, from B or from A and B.
Again, let Bk

Hk
(s) and Bl

Hl
(t) be conditionally independent for each

k, l = 1, . . . ,m.

1. Let the univariate pattern ai of the i-th variable be ai ∈ A for
all i = 1, . . . ,m. Using (13) and (41) the joint distributions of
all 2m combinations of a1, . . . , am ∈ A are given by

m∏
i=1

1
πm arcsin 2Hi−1 =:

m∏
i=1

1
πm ui. (44)

2. Let the univariate pattern bi of the i-th variable be bi ∈ B for
all i = 1, . . . ,m. Using (14) and (41) the joint distributions of
all 4m combinations of b1, . . . , bm ∈ B are given by

m∏
i=1

1
4

(1 −
1
πm ui). (45)
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Differences of PPE and MMSPE or MWPE

Figure 10: Differences of PPE and MMSPE or MWPE of different orders (from left to right) and fixed delay τ = 1 on simulations of mfBm with fixed number of variables
m = 3 in variation of Hurst parameters Hi = H j for all i, j.

3. Let the univariate pattern ci of the i-th variable be, where
c1, . . . , ck ∈ A and ck+1, . . . , cm ∈ B. Then using (13), (14),
and (41) the joint distributions of all 6m − 4m − 2m remaining
combinations c1, . . . , cm are given by

k∏
i=1

1
πk ui ·

m∏
i=k+1

1
4

(1 −
1

πm−k ui). (46)

In particular, the joint distributions or the distributions of the mul-
tivariate ordinal patterns remain monotonically dependent on the
Hurst parameter H after the monotonic transformations.

For order d = 4, formulas for joint distributions corresponding
to multivariate ordinal patterns are derivable with (15) and (41) in
the same way as for order d = 3. �

For orders d > 4, no closed formulas for the distribution of
ordinal patterns in fBm exist. Nevertheless, analogous behaviour of
MOPPE of orders d > 4 can also be observed in this case, which
we evaluate in an experimental setting in the next section.

7.2 Experimental Evaluation

In this experimental evaluation, we investigate the behaviour of
MOPPE on mfBm in the variation of the Hurst parameter H and
delay τ. Since the number of multivariate ordinal patterns depends
on the number of variables m and thus also on MOPPE, we refrain
from an experimental evaluation of different m, i.e., we assume
m = 2 small for computational reasons. The experimental computa-
tions are based on the same simulations of mfBms as in Section 4.2
with the difference that in this experiment, we include more than
one correlation parameter as MOPPE takes into account the interde-
pendence of variables.

In Figure 11a we show the independence of MOPPE on mfBm
from delay τ. For this, the number of variables is fixed to m = 2.
Again, all green lines, i.e., for d = 2, are constant − ln(1/4) for
each τ, confirming the independence of delay τ in (40). All other
lines, i.e., for d > 2, are also the same for any τ, but monotoni-
cally dependent on the Hurst parameter H, i.e., for increasing Hurst
parameter H the value of MOPPE decreases. The reason for the de-
viations of the values of MOPPE in Figure 11 with increasing Hurst
parameter H is the same as in the previous Section 4. All in all, the
experiment underpins our theoretical results from Theorem 7.1 and
Theorem 7.2.

(a) MOPPE of different delays τ on mfBm with fixed number of variables m = 2.

(b) MOPPE of fixed delay τ = 1 on mfBm with fixed number of variables m = 2.

Figure 11: Experimental computations of MOPPE for different delays τ on mfBm
with different correlations ρ = {0.0, 0.8} in variation of its Hurst parameters H.

Although we have focused on independent variables in the the-
oretical part for simplicity as well as due to the lack of results in
the literature, we examine the dependence on the correlations of
variables in space in Figure 11b, since the definition of multivariate
ordinal patterns involves the dependence on several variables. A
high cross-covariance or correlation of the variables causes the be-
haviour of the individual variables (for different Hurst parameters)
to converge. Another influences the behaviour of one variable, and
so is the occurrence of the higher-order ordinal patterns that are
dependent on the Hurst parameter. For the investigation of cor-
relations using MOPPE, the delay or the number of variables are
fixed to τ = 1 or m = 2, respectively. In Figure 11b, the yellow
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lines, corresponding to a correlation coefficient of 0.8, are constantly
below the green lines corresponding to a correlation coefficient of
0.0. This reflects the fact that due to a higher correlation of the
variables, there is a greater fit of the individual univariate ordinal
pattern order in the multivariate combination, resulting in a smaller
MOPPE value. Advantages are discussed in Section 8.

8 Comparison

Up to this point, we have examined the behaviour of numerous mul-
tivariate representations, namely pooled permutation entropy (PPE),
multivariate multi-scale permutation entropy (MMSPE), multivari-
ate weighted permutation entropy (MWPE), and multivariate or-
dinal pattern permutation entropy (MOPPE). In this section, we
summarise both the differences and the similarities between the
various representations. This leads to different possible applications
as well as to different recommendations.

PPE can be understood as a canonical extension of univariate
ordinal patterns to a multivariate variant that pools the univariate
ordinal patterns over the variables. MMSPE and MWPE belong to
the same family as PPE. They are all based on a pooled matrix while
addressing different aspects of the time series and ordinal patterns,
namely scaling and amplitudes. One advantage for these approaches
is that, in contrast to MOPPE, they also allow univariate analyses on
the individual variables within the algorithm. Figure 10 compares
PPE with its extensions MMSPE and MWPE with different orders
d = 1, . . . , 5 from left to right. Since, as evaluated in the individual
sections, all measures are independent of the delay and the number
of variables, we set τ = 1 and m = 3. Similarly, MMSPE is inde-
pendent of the scale parameter ε, so we set the scale factor ε = 5.
The left sub-figure shows the equality of PPE, MMSPE and MWPE
for order d = 2, which again underpin (26), (30) and (31). Thus,
scaling or weighting has no effect. The three right sub-figures in
Figure 10 show the equality of PPE and MMSPE (blue lines) for
orders d = 3, 4, 5. Similarly, they show a difference between PPE
and MWPE as the orange lines increase in variation of increasing
H, indicating a faster decrease of MWPE.

MOPPE can be understood as a canonical extension of univari-
ate ordinal patterns to multivariate ordinal patterns by conceiving
univariate patterns as multidimensional patterns in a matrix. The
advantage of this approach lies in consideration of the interdepen-
dencies of several variables at a single time point. A disadvantage
is the exponentially increasing number of possible ordinal patterns,
which increase the complexity of the computation and result in a
uniform distribution and thus maximum entropy for T � ∞. Fur-
thermore, MOPPE considers the multivariate time series as a whole,
i.e., not each variable individually, which means that an analysis of
the individual variables using MOPPE within the algorithm is not
possible, in contrast to PPE.
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Hi = Hj for all i, j

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Differences in ρij = {0.0, 0.8}

δd=4

δd=3

δd=2

Figure 12: Differences of MOPPE values on mfBm with different correlations
ρi j = {0.0, 0.8} in variation of its Hurst parameter H.

Figure 12 visualises the differences of MOPPE values of dif-
ferent orders d = 2 (green), d = 3 (orange), and d = 4 (blue) and
fixed delay τ on mfBm with fixed variable dimension m = 2 and
different correlations ρi j = {0.0, 0.8} in variation of its Hurst param-
eter H = (H1,H2), where H1 = H2. As the visualisation shows, the
differences for any d ∈ {2, 3, 4} are almost constant for all Hurst
parameters H. Increasing differences for increasing order d result
from increasing maximum entropy values per order d.

The differences in the multivariate extensions of PE are impor-
tant because they may be relevant to the use of different applications.
In the field of inverse problems, the aim is to estimate the parame-
ters, e.g., the Hurst parameter, of a generating dynamic system from
observed realisations [36]. As all multivariate variants for orders
d > 2 involve a direct relationship between the distribution of uni-
variate ordinal patterns and the Hurst parameter H, PPE, MWPE and
MOPPE are suitable candidates to solve the inverse problem regard-
ing H. Given a realisation of mfBm, for example, the calculation
of entropies that decrease as H increases can provide conclusions
about the value of H. In addition to estimating H, MOPPE has the
potential to uncover additional correlations by taking interdepen-
dencies into account, and it does so from one source. However,
MOPPE is only practical for a small number of variables m. In
machine learning, a high accuracy of the prediction depends not
only on the model used but also on the representations of the data.
Therefore, extracting good or expressive representations, also called
features, from the data is essential. Especially in classification tasks,
it is necessary to extract features that separate well [37]. In this case,
MWPE may promise advantages over PPE because MWPE favours
certain ordinal patterns (strictly rising and strictly falling) and thus
decreases faster compared to PPE.

9 Conclusion and Future Work
Fractional Brownian motion (fBm) is usually used for modelling
real-world applications with specific properties such as long-range
dependence or self-similarity. Since many real-world applications
also contain multivariate interdependencies between several vari-
ables, we focus on multivariate fractional Brownian motion (mfBm).
This paper provides a comprehensive study of several multivari-
ate measures that study the qualitative behaviour of multivari-
ate fractional Brownian motion (mfBm), namely pooled permu-
tation entropy (PPE), multivariate multi-scale permutation entropy
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(MMSPE), multivariate weighted permutation entropy (MWPE),
and multivariate ordinal pattern permutation entropy (MOPPE). All
measures are understood as multivariate extensions of univariate per-
mutation entropy (PE), which is based on the distribution of ordinal
patterns, i.e., on the ups and downs of different orders d ∈ N>1. The
main contributions of this paper are the extensions of the theoret-
ical and experimental investigations of PPE, MMSPE and MWPE
on mfBm in the original papers [1, 2] to additional orders d = 4
and d = 5. Furthermore, this paper provides a new study on the
behaviour of MOPPE on mfBm, and for the first time, a comparison
of all multivariate extensions considered.

Our theoretical and experimental analyses show the following
results on the behaviour of PPE, MMSPE, MWPE and MOPPE on
mfBm. For order d = 2, for all four cases the multivariate permuta-
tion entropy is constant − ln(1/2) regardless of number of variables,
Hurst parameters, delays, scales, or weights (or − ln(1/2m) in case
of MOPPE). Because all measures are equal, in particular constant
and independent of all parameters, no characteristics can be deter-
mined via these measures with order d = 2. Therefore, usage is
not reasonable in applications. Since scaling does not change the
structure of mfBm, MMSPE of any scale ε is equal to PPE and
analysis with MMSPE of higher orders d > 2 does not provide any
additional insight than PPE.

However, for orders d > 2, the use of PPE, MWPE and MOPPE
provide interesting insights and possible applications. The distri-
bution of ordinal patterns, and thus also PPE, MWPE and MOPPE,
are directly related to the Hurst parameter H. For example, con-
sidering the estimation of H is an inverse problem, PPE, MWPE
and MOPPE can be used since they all depend monotonically on H,
i.e., the entropy decreases as H increases. In contrast to PPE and
MOPPE, MWPE is substantially influenced by strictly ascending
and descending ordinal patterns. For this reason, MWPE decreases
faster than PPE as H increases, providing more expressive represen-
tations that may promise better discriminability. Since multivariate
ordinal patterns involve the dependence of several variables on
mfBm, MOPPE is promising for estimating the Hurst parameter H
and correlations from one hand, which the other measures cannot.
To prove the exact theoretical relationship, conditional probabilities
of univariate ordinal patterns must first be derived.

In the literature, there are additional approaches to multivari-
ate permutation entropy determination, specifically Multivariate
Permutation Entropy (MvPE), introduced in [30], or multivariate
permutation entropy based on principal component analysis (MPE-
PCA), introduced in [33]. Since their application requires a prior
transformation of mfBm and thus is not a canonical extension of the
univariate definition, its study is not part of this work. Nevertheless,
both have the potential to uncover (additional) structures in mfBm
but are left for future work. In addition, the theoretical results of
the measures investigated in this work motivate various potential
applications, e.g., for estimating the Hurst parameter or as a feature
in a learning task in the field of machine learning. Similarly, the
application of these measures is of great interest not only in the con-
text of mfBm but also for any real-world data set. Since this work
focuses on the theoretic contexts, we leave concrete applications for
future work.
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[12] L. Zunino, D. G. Pérez, M. T. Martı́n, M. Garavaglia, A. Plastino, O. A. Rosso,
“Permutation entropy of fractional Brownian motion and fractional Gaussian
noise,” Physics Letters A, 372(27), 4768–4774, 2008.
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