

www.astesj.com 167

Acoustic Scene Classifier Based on Gaussian Mixture Model in the Concept Drift Situation

Ibnu Daqiqil Id*, Masanobu Abe, Sunao Hara

Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-0001, Japan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 July, 2021
Accepted: 22 September, 2021
Online: 30 September, 2021

 The data distribution used in model training is assumed to be similar with that when the
model is applied. However, in some applications, data distributions may change over time.
This situation is called the concept drift, which might decrease the model performance
because the model is trained and evaluated in different distributions. To solve this problem
for scene audio classification, this study proposes the kernel density drift detection (KD3)
algorithm to detect the concept drift and the combine–merge Gaussian mixture model
(CMGMM) algorithm to adapt to the concept drift. The strength of the CMGMM algorithm
is its ability to perform adaptation and continuously learn from stream data with a local
replacement strategy that enables it to preserve previously learned knowledge and avoid
catastrophic forgetting. KD3 plays an essential role in detecting the concept drift and
supplying adaptation data to the CMGMM. Their performance is evaluated for four types of
concept drift with three systematically generated scenarios. The CMGMM is evaluated with
and without the concept drift detector. In summary, the combination of the CMGMM and
KD3 outperforms two of four other combination methods and shows its best performance at
a recurring concept drift.

Keywords:
Acoustic Scene Classifier
Concept Drift
Kernel Density Estimation
Gaussian Mixture Model

1. Introduction

Human–computer interaction through audition requires
devices to recognize the environment using acoustic sound
analysis. One of the primary research topics in this area is acoustic
scene classification (ASC), which attempts to classify digital audio
signals into mutually exclusive scene categories. ASC is an
important area of study covering various applications, including
smart homes, context-aware audio services, security surveillance,
mobile robot navigation, and wildlife monitoring in natural
habitats. Machine audition applications have a high potential to
lead to more innovative context-aware services.

We intend to develop an ASC system for environmental or
scene audio in specific locations (i.e., beach, shop, bus station, and
airport) with different acoustic characteristics. The scene audio
contains an ensemble of background and foreground sounds. One
of the most important aspects of the audio scene in real life is the
concept drift [1], whose data distribution might evolve or change
in the future. For example, the foreground event sounds in a bus
station, such as an ambulance siren, wind noise, and rustling
sounds, might change because of the physical environment, human
activities, or nature [2]. These changes cause the acoustic data

distributions to change, potentially causing a lower performance in
the trained model [3].

The simplest solutions for handling the abovementioned
problems to maintain the model performance are periodic
retraining and redeployment of the model. Nevertheless, these
solutions can be time consuming and costly. Moreover, the
decision for the frequency of retraining and redeployment is a
difficult task. Another promising approach is to use an evolving or
incremental learning method [4], [5], where the model is updated
when a new subset of data arrives [6]. Each iteration is considered
as an incremental step toward revisiting the current model.

In this study, we propose a combine–merge Gaussian mixture
model (CMGMM) and kernel density drift detection (KD3) to
solve the concept drift problem [7]. The CMGMM is an algorithm
based on the Gaussian mixture model (GMM) that adapts to the
concept drift by adding or modifying its components to
accommodate the emerging concept drift. The algorithm’s
advantages are adaptation and continuous learning from stream
data with a local replacement strategy to preserve previously
learned knowledge and avoid catastrophic forgetting.

In [7], we compared the CMGMM to the incremental GMM
(IGMM) [8] and KD3 to adaptive windowing (ADWIN) [9] and
HDMM [10] in two approaches, namely the active and passive

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Ibnu Daqiqil Id, Okayama, Japan, daqiqil@s.okayama-
u.ac.jp

https://dx.doi.org/10.25046/aj060519

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

http://www.astesj.com/
https://dx.doi.org/10.25046/aj060519
http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 168

approaches. In the active approach, the concept drift is detected
using a specific algorithm, then adapts the model. In the passive
approach, the model is continuously adapted at a specific fixed
interval. The result is that the combination of CMGMM and KD3
outperforms other combinations in two of three evaluation
scenarios.

The work described herein extends and improves that of
previous publications [7,11] in the following respects:

• The algorithm has been modified to use component pruning
to overcome the overfitting problem and support the Scikit-
Multiflow Framework [12].

• The KD3 hyperparameter is optimized, and the algorithm is
evaluated using prequential evaluation for better results and
online performance monitoring in several concept drift types
and scenarios.

The rest of this paper is organized as follows: Section 2
presents the related work of this research and the fundamental
equations used in our proposed solutions; Section 3 describes the
proposed CMGMM and KD3; Section 4 outlines the experimental
setup; Section 5 discusses the experimental results; and finally,
Section 6 provides our conclusions.

2. Related Work

This section provides a brief overview of the related work on
the concept drift and the fundamental theory used in the proposed
method.

2.1. Concept Drift in Audio Scenes

A concept is defined as a set of object instances [13].
Probabilistically, a concept is defined using prior class
probabilities 𝑝𝑝(𝑦𝑦) and class conditional probabilities 𝑝𝑝(𝑋𝑋|𝑦𝑦) [4].
𝑝𝑝(𝑦𝑦) and 𝑝𝑝(𝑋𝑋|𝑦𝑦) determine the joint distribution 𝑝𝑝(𝑋𝑋, 𝑦𝑦) [3];
hence, a concept is defined as the joint probability distribution of
a set of input features 𝑋𝑋 and the corresponding label 𝑦𝑦 in dataset
𝔇𝔇. In this paper, 𝑋𝑋 is an acoustic scene sound defined as a mixture
of specific event sounds (𝑥𝑥�) perceived and defined by humans [14],
and 𝑦𝑦 is the label of 𝑋𝑋. 𝑋𝑋 has numerous types of acoustic event
sounds and background noises 𝑥𝑥� that often overlap with each
other. In other words, the relationship between of 𝑋𝑋 and 𝑥𝑥�
determines 𝑝𝑝(𝑋𝑋, 𝑦𝑦) , 𝑋𝑋 ∈ (𝑥𝑥�1, 𝑥𝑥�2, 𝑥𝑥�3, . 𝑥𝑥�𝑖𝑖 ,) , where 𝑖𝑖 denotes the
number of 𝑥𝑥� in 𝑋𝑋.

In the future, the relationship of 𝑥𝑥� in 𝑋𝑋 might change, which
then changes the relationship of 𝑝𝑝(𝑋𝑋, 𝑦𝑦). For example, another
event sound might appear, or some existing event sounds may
disappear. This situation is called the concept drift, which is
expressed as follows:

∃𝑋𝑋: 𝑝𝑝𝑤𝑤0(𝑋𝑋, 𝑦𝑦) ≠ 𝑝𝑝𝑤𝑤𝑛𝑛(𝑋𝑋, 𝑦𝑦). (1)

Eq. (1) and Figure 1 describe concept drift as the change in the
joint probability distribution between two-time windows, 𝑤𝑤0
and 𝑤𝑤𝑛𝑛. Models built on previous data at 𝑤𝑤0 might not be suitable
for predicting new incoming data at 𝑤𝑤𝑛𝑛 . This change may be
caused by a change not only in the number of 𝑥𝑥�, but also in the
underlying data distribution of 𝑥𝑥� . These changes require model
adaptation because the model's error may no longer be acceptable
with the new data distribution [15].

Figure 1: Illustration of the concept drifts in an acoustic scene audio at a park

The change in the incoming data at 𝑤𝑤𝑛𝑛 depends on a variety of
different internal or external influences (e.g., event sounds that
exist in a park depending on the season). The initial data recorded
in the winter may only consist of people talking, bird calls, and
dogs barking. However, the event sounds change in the summer,
and new event sounds, such as insect and wind sounds, emerge.

2.2. Concept Drift Detection Methods

Several methods have been proposed to detect concept drifts
from a data stream. This study focuses on window-based methods
that use fixed windows as a reference for summarizing previous
information. This approach has more accurate results than other
more straightforward methods, such as cumulative sum [16].
However, the computational time and space used are higher [17].
This approach usually utilizes statistical tests or mathematical
inequalities to compute the change in data. Some of the state-of-
the-art methods used in this paper is presented below:

• ADWIN is a sliding window-based concept drift detection
algorithm. The size of ADWIN windows 𝑆𝑆𝑆𝑆 might change
depending on the instance in the distribution. Its size increases
when the instance in the stream continues in the same
distribution. 𝑆𝑆𝑆𝑆 shrinks when distribution changes occur [9].
ADWIN detects concept drifts when the averages between
these windows are higher than a given threshold.

• The HDDM is a concept drift detection algorithm based on
fixed windows and probability inequalities [10]. The author
proposes two types of HDDM, namely HDDMA and
HDDMW. The HDDMA uses moving averages, whereas the
HDDMW uses weighted moving averages to detect the concept
drift. The HDDMA is suitable for detecting the abrupt concept
drift, whereas the HDDMW is suitable for detecting the
gradual concept drift.

• KSWIN [18] is a window-based concept drift detection method
that utilizes the Kolmogorov–Smirnov statistic test (KS-Test)
to compare the distances of two distributions. This test is a non-
parametric test that does not require any assumptions about the
underlying data distribution.

 Each method has its optimal hyperparameters, which differ
based on the datasets used and the type of drift in those datasets.

2.3. Merging Gaussian Mixture Component

A component of a Gaussian distribution is represented by
(𝑤𝑤, 𝜇𝜇,𝑃𝑃) and {(𝑤𝑤1, 𝜇𝜇1,𝑃𝑃1), (𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2), … (𝑤𝑤𝑛𝑛 , 𝜇𝜇𝑛𝑛,𝑃𝑃𝑛𝑛)} to denote
a mixture of 𝑛𝑛 Gaussian components, where 𝑤𝑤, 𝜇𝜇, and 𝑃𝑃 are the
weight or prior probability, distribution means, and covariance
matrix, respectively. This mixture must satisfy 𝑤𝑤1 + 𝑤𝑤2 + ⋯+
𝑤𝑤𝑛𝑛 = 1 and has the pdf defined in Eq. (2).

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 169

𝑓𝑓(𝑋𝑋) = ∑ 𝑤𝑤𝑖𝑖𝑁𝑁(𝑥𝑥;𝑛𝑛
𝑖𝑖=1 𝜇𝜇𝑖𝑖 ,𝑃𝑃𝑖𝑖), (2)

where,

𝑁𝑁(𝑥𝑥;𝜇𝜇𝑖𝑖 ,𝑃𝑃𝑖𝑖) = 1

�(2𝜋𝜋)𝑑𝑑 det 𝑃𝑃𝑖𝑖
𝑒𝑒�−

1
2(𝑥𝑥−𝜇𝜇𝑖𝑖)𝑇𝑇𝑃𝑃𝑖𝑖

−1(𝑥𝑥−𝜇𝜇𝑖𝑖)�. (3)

Suppose we wish to merge two Gaussian components
�(𝑤𝑤𝑖𝑖 , 𝜇𝜇𝑖𝑖,𝑃𝑃𝑖𝑖), �𝑤𝑤𝑗𝑗 , 𝜇𝜇𝑗𝑗 ,𝑃𝑃𝑗𝑗��, where 𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗 ≤ 1 , and approximate
the result as a single Gaussian. The new Gaussian candidate
(𝑤𝑤𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖) must preserve the zeroth-, first-, and second-order
moments of the original Gaussian. The moment-preserving merge
is shown in Eqs. (4)–(6).

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗 (4)

𝜇𝜇𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗
𝜇𝜇𝑖𝑖 +

𝑤𝑤𝑗𝑗
𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗

𝜇𝜇𝑗𝑗 (5)

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗
𝑃𝑃𝑖𝑖 +

𝑤𝑤𝑗𝑗
𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗

𝑃𝑃𝑗𝑗

+
𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗

�𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗�
2 �𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗�

𝑇𝑇

(6)

2.4. Kullback–Leibler (KL) Dissimilarity

Kullback–Leibler (KL) discrimination, known as KL
divergence or relative entropy, is a tool for measuring the
discrepancy between two probability distributions. The KL
discrimination between 𝑓𝑓(𝑥𝑥), a probability distribution for random
variables 𝑋𝑋 and 𝑔𝑔(𝑥𝑥) , another probability distribution is the
expected value of the log-likelihood ratio. The KL divergence of
𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) is defined in Eq. (7), where ℜ𝑑𝑑 is the sample space
of the random variable 𝑋𝑋.

𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓,𝑔𝑔) = � 𝑓𝑓(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑.

ℜ𝑑𝑑
 (7)

Based on Eq. (7), KL is not a perfect distance metric because
it is asymmetric 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔) ≠ 𝑑𝑑𝐾𝐾𝐾𝐾(𝑔𝑔, 𝑓𝑓) and does not satisfy the
triangle inequality, 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔) + 𝑑𝑑𝐾𝐾𝐾𝐾(𝑔𝑔, ℎ) ≥ 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, ℎ) .
However, we can use it as metric distance because the KL
discrimination of two probability distributions is larger than zero,
𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔) ≥ 0 , and the discrimination of the identical two
probability distributions is zero, 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑓𝑓) = 0.

Accordingly, we apply the KL dissimilarity by computing the
Kullback–Leibler discrimination upper bound of the post-merge
mixture with respect to the pre-merge mixture. In the case of the
Gaussian mixture, where 𝑓𝑓(𝑥𝑥) = 𝑁𝑁(𝑤𝑤1 , 𝜇𝜇1,𝑃𝑃1),𝑔𝑔(𝑥𝑥) =
 𝑁𝑁(𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2) and 𝑤𝑤1 + 𝑤𝑤2 < 1 , the KL dissimilarity between
𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) is shown in Eq. (8).

𝑑𝑑𝐾𝐾𝐾𝐾({(𝑤𝑤1, 𝜇𝜇1,𝑃𝑃1)}, {(𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2)}).

=
1
2
�𝑡𝑡𝑡𝑡(𝑃𝑃2−1[𝑃𝑃1 − 𝑃𝑃2

+ (𝜇𝜇1 − 𝜇𝜇2)(𝜇𝜇1 − 𝜇𝜇2)𝑇𝑇])

+ 𝑙𝑙𝑙𝑙𝑙𝑙
det (𝑃𝑃2)
det (𝑃𝑃1)

�

(8)

1https://github.com/ibnudaqiqil/CMGMM

Please refer to [19] for more details about the KL dissimilarity
of the Gaussian distributions.

3. Proposed Method

This study extends the combine–merge Gaussian mixture
model (CMGMM) [7] to classify audio scenes in concept drift
situations. The CMGMM was developed based on the GMM
algorithm that can incrementally adapt to the new identified
component. This algorithm can add new components as new
concepts and update existing components as a response to the
change of the current existing concept in the current data. The
CMGMM implementation is available in our public repository1,
with the algorithm pipeline shown in Figure 2.

Figure 2: Combine–merge Gaussian mixture model (CMGMM) general

workflow

In the training process, we extract the feature of the scene audio
from the training dataset D0 and train an optimal model Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 .
We use the Expectation maximization (EM) [20] algorithm to train
the model and the Bayesian information criterion (BIC) [21] to
select the best model.

In the incremental process, the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 performance is
observed through the prediction likelihood. When KD3 detects a
significant likelihood change, the model activates the concept drift
adaptation process. The concept drift adaptation process then
begins by creating a local model Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 from the new coming
data. Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the new concepts or concept updates in
the incoming data. Finally, we combine the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
components to include any new concepts from Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 that may
not exist in the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 at the initial training and merge similar
components to update the existing component in Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 .

The CMGMM pipeline process is detailed in the subsections
that follow.

3.1. Feature Extraction

Feature extraction is the first step of both the training and
incremental processes. In this research, we use normalized Mel-
frequency cepstral coefficients (MFCCs) that represent the short-
term power spectrum of audio in the frequency domain of the Mel
scale. MFCCs are commonly used as features in audio processing
and speech recognition. The first step is pre-emphasis for
enhancing the quantity of energy in high frequencies. The next step
is windowing the signal and computing the fast Fourier
transformation to transform the sample from the time domain to
the frequency domain. Subsequently, the frequencies are wrapped

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 170

on a Mel scale, and the inverse DCT is applied [22]. Finally, each
of the MFCCs is normalized using mean and variance
normalization based on Eq. (9):

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝜇𝜇)
𝑆𝑆

, (9)

where, 𝜇𝜇 and 𝑆𝑆 denote the mean and the standard deviation of the
training samples, respectively.

3.2. Model Training

The training process is intended to build a set of models from
the training dataset 𝐷𝐷0 containing training data 𝑥𝑥 =
{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, where 𝑥𝑥𝑛𝑛 denotes the MFCC vector. The models
are trained 𝑄𝑄 times using the EM algorithm. For each training
cycle, a different number of components 𝐾𝐾 ranging from Kmin to
Kmax is used, where 𝑄𝑄 = Kmax − Kmin. Consequently, a set of models
ℳ = �ℳ1,ℳ2,ℳ3, . ,ℳ𝑄𝑄 � is obtained based on the different
numbers of components.

The next step is model selection using the BIC. In [23], the BIC
value of a model ℳ𝐾𝐾 trained over the dataset X with K
components, BIC(X, 𝑀𝑀𝐾𝐾), is defined as follows:

 𝐵𝐵𝐵𝐵𝐵𝐵(𝑋𝑋,𝑀𝑀𝑘𝑘) ≡ − 2 log 𝐿𝐿(𝑋𝑋,𝑀𝑀𝐾𝐾) + 𝑣𝑣 log𝑁𝑁 , (10)

where, L denotes the model likelihood; 𝑣𝑣 denotes the degree of
freedom of the model parameters; and 𝑁𝑁 denotes the number of
training data points. The model with the lowest BIC value is
selected because it maximizes the log-likelihood [6]. Algorithm 1
presents the steps of the learning process.

Algorithm 1: Training the Optimal Model
Input: Initial Dataset Dinit, Minimum Component Number

Kmin, and Maximum Component Number Kmax
Result: Best GMM Model
BICbest = ∞
for Kmin to Kmax do
 Mcandidate= EMTrain(Dinit, k)

BICcandidate = ComputeBIC (Dinit, Mcandidate)
 if BICcandidate < BICbest then
 Mbest = Mcandidate
 end
end
return Mbest

3.3. Concept Drift Detection

We propose Kernel Density Drift Detection (KD3) to detect the
concept drift. KD3 is a window-based algorithm for concept drift
detection. It works based on estimating the window density using
the Kernel Density Estimation (KDE) or the Parzen’s window
[24]. The KDE is a non-parametric probability density estimator
that automatically estimates the shape of the data density without
assuming the underlying distribution. The concept drift can be
detected by comparing the probability functions between these
windows. The greater the variation between the windows, the more
evidence obtained for the concept drifts. Aside from detecting
concept drifts, KD3 also collects data for adaptation (Ddrift) by
identifying a warning zone when data begin to show indications of
concept drift.

KD3 requires three hyperparameters, namely α, β, and ℎ ,
which denote the margins for detecting the concept drift and

accumulating the density distance and the window length,
respectively. α is used to determine the threshold of the density
variation in the concept drift, while β is employed to determine the
threshold of the density variation in the warning zone. Therefore,
α must be greater than β. KD3 accepts a set of likelihood windows
𝑧𝑧𝑐𝑐 as input. 𝑧𝑧𝑐𝑐 is the current likelihood window that contains a
sequence of log-likelihood ℓ from the model prediction, 𝑧𝑧𝑐𝑐 =
{ℓ1, ℓ2, ℓ3, … , ℓℎ}.

First, this algorithm aims to estimate the density (𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘) of the
current 𝑧𝑧𝑐𝑐 and previous 𝑧𝑧𝑐𝑐−1 windows. Let ℓ𝑛𝑛 be the latest
generated ℓ . Let 𝑧𝑧𝑐𝑐 contain the ℎ -latest ℓ from ℓ𝑛𝑛 , 𝑧𝑧𝑐𝑐 ∈
[ℓ𝑛𝑛−ℎ, ℓ𝑛𝑛], and let 𝑧𝑧𝑐𝑐−1 contain the ℎ-latest ℓ from ℓ𝑛𝑛−ℎ, 𝑧𝑧𝑐𝑐−1 ∈
[ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛−ℎ]. To detect a concept drift, the distance 𝑑̀𝑑𝑡𝑡 between
𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘 of 𝑧𝑧𝑐𝑐 and 𝑧𝑧𝑐𝑐−1 is computed using Eq. (11) within the bounds
of 𝑏𝑏1 and 𝑏𝑏2. The bounds are computed based on the maximum
and minimum values of the joined ℓ of 𝑧𝑧𝑐𝑐 and 𝑧𝑧𝑐𝑐−1.

𝑑̀𝑑𝑡𝑡 =
1
2

 � |𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘(𝑧𝑧𝑐𝑐) − 𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘(𝑧𝑧𝑐𝑐−1)|
𝑏𝑏2

𝑏𝑏1

 𝑑𝑑𝑑𝑑, where (11)

𝑧𝑧𝑐𝑐 ∈ [ℓ𝑛𝑛−ℎ, ℓ𝑛𝑛], 𝑧𝑧𝑐𝑐−1 ∈ [ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛−ℎ],

𝑏𝑏1 = min(ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛) , 𝑏𝑏2 = max(ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛).

Finally, the algorithm compares 𝑑̀𝑑𝑡𝑡 to α and β.hen 𝑑̀𝑑𝑡𝑡 > β.
Suppose that the accumulative distance is equal to or greater than
α. In that case, the algorithm sends the collected data to the model
for adaptation. Figure 3 and Algorithm 2 illustrate the detailed
KD3 process.

Figure 3: Illustration of the Kernel density drift detection (KD3) concept

Algorithm 2: Detecting the Concept Drift
Input: Set of t likelihood ℓ, drift margin α, warning margin β (α

> β), window length ℎ,
Result: Drift Concept Signal, Drifted Dataset (Ddrift)
Window1 = ℓ[𝑐𝑐 − ℎ: 𝑐𝑐];
Window2 = ℓ[𝑐𝑐 − 2ℎ: 𝑐𝑐 − ℎ];
Bmin, Bmax = CalculateWindowBound(ℓ[𝑐𝑐 − 2ℎ: 𝑐𝑐]);
KDE1 = EstimateKDE(Window1)
KDE2 = EstimateKDE(Window2)
diff = distance(KDE1, KDE2, Bmin, Bmax)
if (diff ≥ α) then
 resetWarningZoneData()

return true, [𝑐𝑐 − ℎ: 𝑐𝑐]
end
if (diff ≥ β) then
 accumulativeWarning += diff
 if (accumulativeWarning ≥ α) then
 resetWarningZoneData();

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 171

 return true, [𝑐𝑐 − ℎ: 𝑐𝑐]
 end

return false, [𝑐𝑐 − ℎ: 𝑐𝑐]
end
return false, null

3.4. Model Adaptation

Model adaptation aims to revise the current model upon newly
incoming data that might contain new concepts or concept
changes. The result of this adaptation is an adapted weighted
mixture component that respects the original mixture.

The model adaptation method starts by training a new model
𝑀𝑀drift from data drifts Ddrift using Algorithm 1, and then combining
the existing model ℳ. Consequently, the newly adapted model ℳ
accommodates the new concept represented by the components in
ℳdrift. The next step is to calculate the pairwise distance between
the components in ℳ using KL discrimination. The KL
discrimination formula (Eq. (8)) enables us to set an upper bound
on the discrimination of the mixture before and after the merging
process. According to this formula, components with low weights
means close to their variances, and similar covariance matrices are
selected for merging. When two components are merged, the
moment-preserving merging method [25] is used to preserve the
mean and the covariance of the overall mixture (Eqs. (4)–(6)).
Figure 4 illustrates the CMGM adaptation process.

Figure 4: Illustration of the combine–merge Gaussian mixture model (CMGMM)

adaptation process

As a result, the reduction process generates a set of merged
models ℳmerge. To select the best ℳmerge model, the accumulative
BIC is computed by combining sampling data from ℳcurr. Ddrift
then computes the BIC value using Eq. (10). The smaller the value
of the accumulative BIC, the better the newly adapted model.

Based on [7] and [11], the CMGMM tends to increase the
number of components because it combines and merges them. This
mechanism leads to an overfitting problem because the adaptation
frequency increases due to the sensitive KD3 hyperparameter.

To maintain the compactness of the CMGMM and avoid
overfitting, we design a strategy to merge statistically equivalent
components into one component, then prune the inactive
components. The inactive components are identified by the

proximity of the ratio of 𝑤𝑤2 and P2 of the merged component to
zero. In practice, components with 𝑤𝑤 that are very close to zero are
ignored by the model, whereas those with a large covariance tend
to overlap with other components. Algorithm 3 presents in detail
the steps of the proposed CMGMM-based method.

Algorithm 3: Model adaptation
Input: Current Model 𝑀𝑀, Drifted Dataset Ddrift
Result: Adapted Model
𝑀𝑀drift = findBestGMM(Ddrift)
𝑀𝑀combine = CombineGMMComponent(𝑀𝑀drift, 𝑀𝑀)
distanceMatrix = KLDissimalarity(𝑀𝑀combine)
ds = Ddrift + 𝑀𝑀.generateData()
nCompmin = 𝑀𝑀.number_component
nCompmax = 𝑀𝑀combine.number_component
BICbest = ∞
for targetComponent = nCompmin to nCompmax
 𝑀𝑀merge = mergeComponent(target, distanceMatrix)
 if useComponentPrune then
 ComponentPrune(𝑀𝑀merge)
 End
 BICcandidate = ComputeBIC (𝑀𝑀merge, ds)
 if BICcandidate < BICbest then
 Mbest = Mmerge
 End
end
return Mbest

4. Experiment

This section provides information about the datasets and
experimental setup used in this study to train, optimize, and
evaluate the proposed method.

4.1. Datasets

We used three types of datasets in this experiment, that is,
training, optimization, and evaluation. The training dataset
consisted of audio signals extracted with a 10-seconds window
from 15 scenes in the TUT Acoustic Scenes 2017 [26] and TAU
Urban Acoustic Scenes 2019 datasets [26]. The scenes were home,
airport, beach, office, cafe, grocery store, bus, tram, metro, city
center, residential area, street pedestrian, and shopping mall.

To simulate the concept drift in the datasets, the optimization
and evaluation datasets were generated by overlay new additional
event sounds from and UrbanSound8K datasets [27] and the BBC
Sound Class Library [28]. When the sounds were added, the
numbers of additions (1–10), positions in the time axis (0–9000
ms), and loudness (−20,0) of the sounds were randomly changed
at random. In total, the dataset had 46 new event classes and 371
added event sounds.

We generated four concept drift types with three scenarios. The
four types of concept drift are as follows:

• abrupt concept drift (AB), where ongoing concepts are
replaced with new concepts at a particular time;

• gradual concept drift (GR), where new concepts are added to
an ongoing concept at a particular time;

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 172

• recurring concept drift type 1 (R1), where an ongoing
concept is replaced at a particular time with concepts that
previously appeared; and

• recurring concept drift type 2 (R2), where concepts that
previously appeared are added to an ongoing concept at a
particular time.

Figure 5 illustrates the scenario generation. The three scenarios
were designed to have different data distribution complexities. The
scenario details are described below:

• Scenario 1 (Sc1): A unique event sounds from a specific
event sounds is repeatedly introduced with a random number
of times, gain, and timing. For example, in the airport scene,
unique sounds representing the airplane sound, crowd
background, and construction site are overlaid with a random
number of times (1–10), position (0–9000 ms), and loudness
(−20,0).

• Scenario 2 (Sc2): Several event sounds are randomly
selected from a set of the same sound labels in Sc1 and added
using the same rule as Sc1.

• Scenario3 (Sc3): This scenario differs from Sc1 and Sc2 in
that event sounds coexist among scenes. For example, a set
of rain sounds exists in other scenes (e.g., beach, city center,
and forest paths). The methods of selection and addition are
the same as those in Sc2.

Figure 5: Concept drift scenario

Table 1 shows a list of event sounds that appear at scene types
in every concept drift scenario. The mutually exclusive event
sounds appear in all scenarios, but coexisting sounds only appear
for Sc3.

Table 1: Setting of the novel sounds in scene audio for Sc1, Sc2, and Sc3

Scene Mutually Exclusive
Sounds in Sc1, Sc2, and

Sc3

Additional Coexisting
Sounds in Sc3

Airport Helicopter, crowd, and
construction site

Airplane, footsteps, and
children playing

Beach People swimming, footsteps
on the sand, and rain

Teenage crowd, dog, and
birds

Bus Car horn, engine, and city
car

Kitchenware, phone
ringing, children playing,
and teenage crowd

2https://bit.ly/CMGMM_Dataset

Café
/restaurant

Washing machine, food
mixer, and kitchenware

Phone ringing, children
playing, and teenage
crowd

City center Sound of bird, ambulance,
and wind

Footsteps, phone ringing,
and children playing

Grocery
store

Footsteps, children playing,
and shopping cart

Vacuum cleaner, phone
ringing, and footstep

Home Frying, door, and vacuum
cleaner

Clock and phone ringing

Metro
station

Siren, road car, and thunder Footsteps, crowd, and
wind

Office Typing, phone ringing, and
sneeze

Broom, camera, and
footsteps

Public
square

People running, music, and
airplane

Birds, rain, and teenagers
talking

Residential
area

Wind, camera, and cat Birds, sneeze, and clock

Shopping
mall

Clock, camera, and teenage
crowd

Children playing, phone
ringing, dog

Street
pedestrian

Dog, bicycle, and bird Footsteps and children
playing

Street traffic Motorcycle, horn, and train Siren, airplane, and bell
Tram Coughing, bell, and

footsteps on the pavement
Teenage crowd and
children playing

Finally, we have one training dataset, four optimization
datasets, and 12 evaluation datasets in this experiment. Each
training dataset contained 3,000 scene audio, while the
optimization and evaluation dataset contained 15,000 scene audio.
The datasets are available in our repository2.

4.2. Experimental Setup

The CMGMM accuracy was evaluated under four concept drift
types in three scenarios (i.e., Sc1, Sc2, and Sc3). The evaluations
are performed using the two following approaches:

• Active CMGMM adaptation: In this approach, the CMGMM
actively detects the concept drift using a certain method and
only adapts the model when the concept drift is detected. In
this study, we compared KD3 to ADWIN [9], HDDMA,
HDDMW [10], and KSWIN [18].

• Passive CMGMM adaptation: In this approach, the CMGMM
adapts as soon as a particular datum is received without
requiring the explicit prior detection of the concept drift.
Several adaptation cycle sizes were tested, that is, 25, 50, 100,
150, and 200.

5. Experiment Result

The experimental result of the proposed method are presented
herein.

5.1. Hyperparameter Optimization

The first step in this experiment is the systematic optimization
of the KD3 hyperparameter. We used the grid-search method using
a combination of hyperparameters α from 0.1 to 0.001, β from
0.0001 to 0.000001, and ɦ from 45 to 300. We prepared a particular

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 173

dataset for the KD3 hyperparameter optimization in four types of
concept drift.

In [11], we reported that hyperparameters β and ɦ did not have
a significant effect on accuracy. Therefore, during the initial step,
we observed the performance change according to β and ɦ. Figure
6 shows the average accuracy in all concept drift types according
to hyperparameters β and ɦ. In this experiment, the best β and ɦ
were set at 0.0001 and 45, respectively.

Figure 6: Result of hyperparameters β and ɦ in four types of concept drift

Table 2 lists the experimental results of α in the optimization
dataset in four types of concept drift. Based on this experiment,
every concept drift type has its respective hyperparameter α
according to the concept drift characteristics. AB and GR have
similar characteristics. There are no repeating concepts in the
future; hence, a more sensitive concept drift detector than R1 and
R2 is required.

Table 2: KD3 hyperparameter optimization result

Concept
Drift Types

Hyperparameter α (β = 0.001, ɦ = 45)
α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001

AB 0.6568 0.7113 0.7069 0.7137 0.7066
GR 0.6007 0.6173 0.7050 0.6922 0.7002
R1 0.7332 0.7232 0.7158 0.7054 0.6927
R2 0.7268 0.7133 0.7228 0.7090 0.6823

Overall 0.6793 0.6912 0.7126 0.7050 0.6950

In AB and GR, a sensitive hyperparameter α accelerated the
update frequency. In the experimental result for these types of
concept drifts, a high adaptation frequency reduced the loss
received. However, a less-sensitive hyperparameter showed a
better result in recurring concept drifts, where an old concept
reappears in the future. A less-sensitive hyperparameter α provided
the model with longer data compared to the sensitive
hyperparameter.

We also selected the overall hyperparameter setting based on
this experiment. The overall hyperparameter was selected from the
best average performance of the hyperparameter optimization (α =
0.01, β = 0.001, and ɦ = 45). We used this hyperparameter for
further CMGMM and KD3 evaluations.

5.2. Active Combine–Merge Gaussian Mixture Model (CMGMM)
Adaptation Result

Table 3 presents the experimental results of the active
CMGMM adaptation. In general, the model performance without
a concept drift detector is low in all concept drift types and

scenarios. The adaptations of the CMGMM on R1 and R2 showed
better accuracy than those on AB and GR. On average, AB
exhibited the lowest accuracy, while R2 showed the highest
accuracy. This high accuracy on recurring was caused by the
CMGMM being designed to preserve the old concept, even though
the new concept is adapted in the model. Thus, the model can
recognize the previously learned concept if it is repeated in the
future.

The CMGMM experiment result depicted that KD3
outperformed other combinations in two of the four concept drift
types in GR and R2. Meanwhile, ADWIN showed the best
accuracy in AB. KSWIN demonstrated the best accuracy in R1,
whereas HDDM was unsuitable for this case. Despite getting the
highest overall accuracy score, the combination of the CMGMM
and KD3 needed more frequent adaptations than ADWIN and
KSWIN. In contrast, both HDDM-based methods showed worse
performances compared to all others. HDDMA overdetected the
concept drift in all concept drift types for more than 3000 times in
GR.

The abovementioned results illustrated that the concept drift
detector plays a vital role in the concept drift adaptation. The
model performance decreased over time if the drift detector failed
to detect or delay detecting or over detecting the concept drift.

Performance of the combine–merge Gaussian mixture model
(CMGMM) and kernel density drift detection (KD3)

KD3 showed the best average accuracy of 0.6983 compared to
ADWIN, KSWIN, and HDMM with 209 adaptations. This
combination also showed its best results on R2 with 0.7321
accuracy, followed by R1 with 0.7373 accuracy, GR with 0.6999
accuracy, and AB with accuracy 0.6469. Furthermore, this
combination was the most stable in all scenarios. The maximum
performance decrements in AB, GR, R1, and R2 were 1.38%,
1.2%, 1.34%, and 0.94%, respectively.

Despite achieving a good performance in all concept drift
types, the number of concept drifts detected in this combination
was higher than ADWIN and KSWIN. The most significant
number of adaptations occurred in AB. The disadvantage of a high
number of adaptations is the higher computation time required to
finish the task and possible overfitting. In this case, the higher
numbers of adaptations in AB and GR are obtained because the
concept constantly changes over time, and the learned concept
becomes obsolete in the future; hence, the higher the adaptation,
the better the performance.

Performance of the combine–merge Gaussian mixture model
(CMGMM) and ADWIN

In general, the combination of CMGMM and ADWIN showed
a good performance in every concept drift type, especially on the
abrupt datasets, where this combination showed its best
performance. The overall accuracy was 0.6371 with 83 times of
adaptation. The overall accuracies of this combination in AB, GR,
R1, and R2 were 0.6369, 0.6475, 0.6912, and 0.7169, respectively.
Furthermore, this combination had the advantage of a small
number of adaptations in all concept drift types. Hence, ADWIN
showed an effective performance in using resources and had a
reasonably good performance. This combination performed very
well on Sc1, but showed a performance drop in Sc2 and Sc3. For

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 174

example, the accuracies of AB, GR, R1, and R2 decreased in Sc3
by 4.64%, 3.82%, 2.74%, and 287%, respectively.

Performance of the combine–merge Gaussian mixture model
(CMGMM) and Hoeffding’s bounds-based method (HDDM)

In this experiment, both Hoeffding's inequality-based
algorithms showed underperformance results for all concept drift
types. Both algorithms were less effective in detecting the concept
drift in this case. The overall accuracies of HDDMA in AB, GR,
R1, and R2 were 0.4326, 0.4302, 0.494, and 0.607, respectively.
The number of HDDMA adaptations exceeded 3000 times of
adaptation. This high adaptation process was ineffective because
the amount of trained data for each adaptation was too small. This
condition led to an overfitting and decreased the model
performance.

HDDM W also experienced the same problem. In some cases,
HDDMA failed to detect the drift concepts, such as GR, R1, and
R2 in Sc1. The overall accuracies of this HDDMW in AB, GR, R1,
and R2 were 0.4347, 0.439, 0.491, and 0.5886, respectively.

Performance of the combine–merge Gaussian mixture model
(CMGMM) and KSWIN

The combination of CMGMM and KSWIN showed the best
performance in R1, with an overall accuracy of 0.750 with 134
adaptations. The accuracies of this combination in AB, GR, R1,
and R2 were 0.6317, 0.6322, 0.7508, and 0.6882, respectively. On
average, KSWIN required eight to nine adaptations per scene in all
dataset types. This algorithm seems able to detect occurring
changes in data and supports the concept drift handling process
with good indicators at a given time.

5.3. Passive Combine–Merge Gaussian Mixture Model
(CMGMM) Adaptation Result

Table 4 lists the experimental results of the passive CMGMM
adaptation. The best performance in AB, GR, and R1 was obtained
with a cycle size of 50, and that in R2 was obtained with a cycle
size of 100. The best accuracies of AB, GR, R1, and R2 were
0.7152, 0.7139, 0.7323, and 0.7155, respectively.

Table 3: Experiment result of the CMGMM with the concept drift detector

Concept Drift Detector Accuracy F1 Number of Concept Drift
Detection

Sc1 Sc2 Sc3 Overall Sc1 Sc2 Sc3 Overall Sc1 Sc2 Sc3 Overall

AB

ADWIN 0.6989 0.6525 0.6214 0.6369 0.713 0.6495 0.6353 0.6599 83 89 85 85
HDDM_A 0.4157 0.4476 0.4345 0.4326 0.4586 0.4804 0.477 0.472 3287 3350 3359 3332
HDDM_W 0.4041 0.4455 0.4546 0.4347 0.4485 0.4902 0.5004 0.4797 489 413 409 437
KD3* 0.6469 0.6359 0.6331 0.6386 0.6476 0.6467 0.6395 0.6446 207 236 220 221
KSWIN 0.6611 0.6241 0.6345 0.6317 0.6722 0.6369 0.6411 0.6501 132 121 123 125
Without Detector 0.4121 0.4054 0.4095 0.4090 0.4235 0.4125 0.4095 0.4151

GR

ADWIN 0.6723 0.6341 0.6363 0.6475 0.6845 0.6506 0.6478 0.6609 92 81 83 85
HDDM_A 0.4134 0.4463 0.4311 0.4302 0.4580 0.4946 0.4701 0.4742 3306 3308 3265 3293
HDDM_W 0.4131 0.4497 0.4544 0.439 0.4524 0.487 0.4816 0.4736 0 409 401 270
KD3* 0.6999 0.6942 0.6879 0.694 0.7044 0.7004 0.6867 0.6971 190 218 221 209
KSWIN 0.6532 0.6241 0.618 0.6322 0.6631 0.6326 0.6204 0.6387 129 125 107 120
Without Detector 0.3554 0.3524 0.3489 0.3522 0.3571 0.3542 0.3501 0.3538

R1

ADWIN 0.7222 0.6948 0.6568 0.6912 0.7393 0.6981 0.6333 0.6902 78 83 87 82
HDDM_A 0.4721 0.5204 0.4896 0.494 0.5206 0.5566 0.5392 0.5388 3154 3258 3201 3204
HDDM_W 0.4847 0.4815 0.5068 0.491 0.5305 0.5215 0.5357 0.5292 0 662 647 436
KD3* 0.7373 0.7334 0.7239 0.7315 0.7389 0.7341 0.7247 0.7325 208 201 204 204
KSWIN 0.7818 0.7351 0.7357 0.7508 0.7876 0.7404 0.7416 0.7565 142 135 126 134
Without Detector 0.4512 0.4458 0.4257 0.4409 0.4512 0.4458 0.4257 0.4409

R2

ADWIN 0.7353 0.7066 0.7089 0.7169 0.7398 0.7131 0.7163 0.723 75 86 82 81
HDDM_A 0.5919 0.6034 0.6259 0.607 0.6369 0.6398 0.6658 0.6475 3052 2957 3017 3008
HDDM_W 0.5789 0.5996 0.5875 0.5886 0.6369 0.6398 0.6658 0.6475 759 604 543 635
KD3* 0.7321 0.7325 0.7227 0.7291 0.7352 0.7315 0.7221 0.7296 195 207 205 202
KSWIN 0.6914 0.6964 0.677 0.6882 0.6977 0.6976 0.6811 0.6921 156 143 141 146
Without Detector 0.4254 0.4205 0.3985 0.4148 0.4279 0.4198 0.3968 0.4148

O
ve

ra
ll

ADWIN 0.7072 0.6720 0.6559 0.6731 0.7191 0.6778 0.6581 0.6835 82 84 84 83
HDDM_A 0.4733 0.5044 0.4953 0.4910 0.5185 0.5428 0.5380 0.5331 3199 3218 3210 3209
HDDM_W 0.4702 0.4941 0.5008 0.4883 0.5170 0.5346 0.5458 0.5325 312 522 500 444
KD3* 0.7041 0.6990 0.6919 0.6983 0.7065 0.7031 0.6932 0.7009 200 215 212 209
KSWIN 0.6969 0.6699 0.6663 0.6757 0.7051 0.6768 0.6710 0.6843 139 131 124 131
Without Detector 0.4110 0.4060 0.3956 0.4042 0.4149 0.4080 0.3955 0.4061

 (*) Proposed method

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 175

Table 4: The experiment result of CMGMM without concept drift detector

Concept
Drift
Types

Cycle
Size

Accuracy

Sc1 Sc2 Sc3 Average

AB

25 0.6290 0.6236 0.6256 0.6260
50 0.7122 0.7159 0.7177 0.7152

100 0.6285 0.5925 0.5955 0.6055
150 0.6361 0.5776 0.5851 0.5996
200 0.5580 0.5059 0.5119 0.5252

GR

25 0.6294 0.6232 0.6004 0.6176
50 0.7133 0.7169 0.7115 0.7139

100 0.6173 0.5887 0.6089 0.6049
150 0.6371 0.5818 0.5797 0.5995
200 0.5334 0.5094 0.5076 0.5168

R1

25 0.6186 0.5799 0.5608 0.5864
50 0.7235 0.7320 0.7416 0.7323

100 0.7211 0.7105 0.6988 0.7101
150 0.7332 0.7086 0.7120 0.7179
200 0.6639 0.7018 0.7146 0.6934

R2

25 0.5133 0.5444 0.5669 0.5415
50 0.7396 0.6991 0.7011 0.7132

100 0.7431 0.7012 0.7023 0.7155
150 0.6865 0.6639 0.6803 0.6769
200 0.6502 0.6011 0.6089 0.6200

Similar to active adaptation, R1 and R2 showed good
performances compared to AB and GR, but better performances in
passive adaptation. Although R1 exhibited the best adaptation at
cycle size 50, it also showed good result at cycle sizes 100 and 150.
If you consider the time and the computing resources used, then
cycle sizes 100 and 150 are recommended.

In passive adaptation, the cycle size is vital in achieving a good
performance. This cycle size determines the adequacy of the data
for adaptation. If the cycle size is too short, the number of data
adapted is small, leading to overfitting problems.

5.4. Suggestions and Limitations

The experiment results showed that the combination of
CMGMM and KD3 has a higher number of adaptations compared
to that of ADWIN and KSWIN due to the selection of KD3
hyperparameters that are sensitive to accommodating GR and AB.
When the number of adaptations is increased, then in certain cases,
such as GR and AB, the accuracy is improved, albeit with a higher
computing cost. The advantage of KD3 compared to the other
methods is that it could be applied in multi-dimensional probability
distribution; hence, it is more flexible to apply in other models and
cases.

In cases where the time or location of the concept drift can be
predicted, the use of a passive adaptation strategy is more
beneficial and has a lower computational cost than the active
strategy. However, if the adaptation cycle is too far from the
concept drift, then the model performance will decrease over time.

6. Conclusion

This paper presented KD3 hyperparameter optimization and
the CMGMM performance evaluation in four types of concept
drift. All concept drift types had optimum hyperparameter
configurations. AB and GR showed similar patterns that required
a smaller α value than the recurring concept drift. In this type of

concept drift, concepts continuously appear; hence, a sensitive drift
detector is needed to update the model early or have a high-
frequency model adaptation. However, in recurring concepts, the
new concept may be repeated in the future; thus, a lower-frequency
adaptation shows a better performance.

The evaluation results demonstrated that the proposed
algorithms work well in detecting and adapting to four types of
concept drift and three scenarios. Overall, the CMGMM works
better in R1 and R2 than in AB and GR because it is designed to
preserve old concepts to preserve previously learned knowledge.
Component pruning is only performed on components with a
minimal impact on the prediction.

In the active adaptation strategy, the proposed combined
method of CMGMM and KD3 outperformed two of four other
combination methods in GR and R1. These methods showed the
most stable performance among Sc1, Sc2, and Sc3 in all concept
drift types. Furthermore, ADWIN showed the best results on AB.
This algorithm is efficient in computing resources, but less stable
in more challenging scenarios, such as Sc2 and Sc3. KSWIN
showed the best results in recurring drift and good performance
for all concept drift types. HDDM overdetected or failed to detect
the concept drift and was not suitable in this case.

In the passive adaptation strategy, a short or long adaptation
cycle could reduce the performance, and a short cycle size makes
the adaptation less effective. A short cycle could disrupt the model
component because the model is trained with insufficient data,
leading to an underfitting problem.

In AB and GR, the model requires a high-frequency adaptation
to maintain the performance; therefore, sensitive hyperparameters
or a short cycle size is required. Based on the experimental results,
the passive method is more suitable in these concept drift types.
However, the computational costs are higher than those of the
active method. Furthermore, in recurring drift scenarios, a less-
sensitive hyperparameter, or a moderate cycle size is needed. The
active method is recommended for recurring drift types
considering the computation cost and better accuracy in
experiments.

As part of our future work, we plan to improve the proposed
KD3 concept drift detection algorithm to achieve adaptive weight,
reduce the kernel density computation, and optimize the number
of data points considered when detecting the concept drift and
decreasing the computation time.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number
JP20K12079.

References
[1] R. Elwell, R. Polikar, “Incremental Learning of Concept Drift in

Nonstationary Environments,” IEEE Transactions on Neural Networks,
22(10), 1517–1531, 2011, doi:10.1109/TNN.2011.2160459.

[2] S. Ntalampiras, “Automatic analysis of audiostreams in the concept drift
environment,” in 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, 2016,
doi:10.1109/MLSP.2016.7738905.

http://www.astesj.com/

I. Daqiqil ID et al./Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 167-176 (2021)

www.astesj.com 176

[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, “A Survey
on Concept Drift Adaptation,” ACM Computing Surveys, 46(4), 1–37, 2014,
doi:10.1145/2523813.

[4] T.R. Hoens, R. Polikar, N. V. Chawla, “Learning from Streaming Data with
Concept Drift and Imbalance: An Overview,” Progress in Artificial
Intelligence, 1(1), 89–101, 2012, doi:10.1007/s13748-011-0008-0.

[5] I. Žliobaitė, “Learning under Concept Drift: an Overview,” 1–36, 2010,
doi:10.1002/sam.

[6] C. Chen, C. Wang, J. Hou, M. Qi, J. Dai, Y. Zhang, P. Zhang, “Improving
Accuracy of Evolving GMM under GPGPU-Friendly Block-Evolutionary
Pattern,” International Journal of Pattern Recognition and Artificial
Intelligence, 34(3), 1–34, 2020, doi:10.1142/S0218001420500068.

[7] I.D. Id, M. Abe, S. Hara, “Concept Drift Adaptation for Acoustic Scene
Classifier based on Gaussian Mixture Model,” in IEEE Region 10 Annual
International Conference, Proceedings/TENCON, IEEE, Osaka: 450–455,
2020, doi:10.1109/TENCON50793.2020.9293766.

[8] J.M. Acevedo-Valle, K. Trejo, C. Angulo, “Multivariate regression with
incremental learning of Gaussian mixture models,” Frontiers in Artificial
Intelligence and Applications, 300, 196–205, 2017, doi:10.3233/978-1-
61499-806-8-196.

[9] A. Bifet, R. Gavaldà, “Learning from Time-changing Data with Adaptive
Windowing,” Proceedings of the 7th SIAM International Conference on
Data Mining, (April), 443–448, 2007, doi:10.1137/1.9781611972771.42.

[10] I. Frías-Blanco, J. Del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno,
A. Ortiz-Díaz, Y. Caballero-Mota, “Online and Non-Parametric Drift
Detection Methods Based on Hoeffding’s Bounds,” IEEE Transactions on
Knowledge and Data Engineering, 27(3), 810–823, 2015,
doi:10.1109/TKDE.2014.2345382.

[11] I.D. Id, M. Abe, S. Hara, “Evaluation of Concept Drift Adaptation for
Acoustic Scene Classifier Based on Kernel Density Drift Detection and
Combine Merge Gaussian Mixture Model,” in 2021 Spring meeting of the
Acoustical Society of Japan, 2021.

[12] J. Montiel, J. Read, A. Bifet, T. Abdessalem, “Scikit-multiflow: A Multi-
output Streaming Framework,” Journal of Machine Learning Research, 19,
1–5, 2018, doi:10.5555/3291125.3309634.

[13] G.I. Webb, R. Hyde, H. Cao, H.L. Nguyen, F. Petitjean, “Characterizing
Concept Drift,” Data Mining and Knowledge Discovery, 30(4), 964–994,
2016, doi:10.1007/s10618-015-0448-4.

[14] T. Zhang, J. Liang, B. Ding, “Acoustic scene classification using deep CNN
with fine-resolution feature,” Expert Systems with Applications, 143(1),
113067, 2020, doi:10.1016/j.eswa.2019.113067.

[15] A. Tsymbal, “The Problem of Concept Drift: Definitions and Related Work,”
2004.

[16] E.S. Page, “Continuous Inspection Schemes,” Biometrika, 41(1/2), 100,
1954, doi:10.2307/2333009.

[17] Y. Yuan, Z. Wang, W. Wang, “Unsupervised concept drift detection based
on multi-scale slide windows,” Ad Hoc Networks, 111, 102325, 2021,
doi:10.1016/j.adhoc.2020.102325.

[18] C. Raab, M. Heusinger, F.M. Schleif, “Reactive Soft Prototype Computing
for Concept Drift Streams,” Neurocomputing, 2020,
doi:10.1016/j.neucom.2019.11.111.

[19] A.R. Runnalls, “Kullback-Leibler Approach to Gaussian Mixture Reduction,”
IEEE Transactions on Aerospace and Electronic Systems, 43(3), 989–999,
2007, doi:10.1109/TAES.2007.4383588.

[20] A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), 39(1), 1–38, 1977.

[21] A.D.R. McQuarrie, C.-L. Tsai, Regression and Time Series Model Selection,
WORLD SCIENTIFIC, 1998, doi:10.1142/3573.

[22] P. Pal Singh, “An Approach to Extract Feature using MFCC,” IOSR Journal
of Engineering, 4(8), 21–25, 2014, doi:10.9790/3021-04812125.

[23] C. Fraley, “How Many Clusters? Which Clustering Method? Answers Via
Model-Based Cluster Analysis,” The Computer Journal, 41(8), 578–588,
1998, doi:10.1093/comjnl/41.8.578.

[24] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The
Annals of Mathematical Statistics, 33(3), 1065–1076, 1962,
doi:10.1214/aoms/1177704472.

[25] J.L. Williams, P.S. Maybeck, “Cost-function-based Gaussian mixture
reduction for target tracking,” Proceedings of the 6th International
Conference on Information Fusion, 2, 1047–1054, 2003,
doi:10.1109/ICIF.2003.177354.

[26] A. Mesaros, T. Heittola, T. Virtanen, TUT Acoustic scenes 2017,
Development dataset, 2017, doi:10.5281/ZENODO.400515.

[27] J. Salamon, C. Jacoby, J.P. Bello, “A Dataset and Taxonomy for Urban
Sound Research,” MM 2014 - Proceedings of the 2014 ACM Conference on

Multimedia, (November), 1041–1044, 2014, doi:10.1145/2647868.2655045.
[28] BBC, BBC Sound Effects, https://sound-effects.bbcrewind.co.uk/search,

Mar. 2019.

http://www.astesj.com/

	2. Related Work
	2.1. Concept Drift in Audio Scenes
	2.2. Concept Drift Detection Methods
	2.3. Merging Gaussian Mixture Component
	2.4. Kullback–Leibler (KL) Dissimilarity

	3. Proposed Method
	3.1. Feature Extraction
	3.2. Model Training
	3.3. Concept Drift Detection
	3.4. Model Adaptation

	4. Experiment
	4.1. Datasets
	4.2. Experimental Setup

	5. Experiment Result
	5.1. Hyperparameter Optimization
	5.2. Active Combine–Merge Gaussian Mixture Model (CMGMM) Adaptation Result
	Performance of the combine–merge Gaussian mixture model (CMGMM) and kernel density drift detection (KD3)
	Performance of the combine–merge Gaussian mixture model (CMGMM) and Hoeffding’s bounds-based method (HDDM)
	Performance of the combine–merge Gaussian mixture model (CMGMM) and KSWIN

	5.3. Passive Combine–Merge Gaussian Mixture Model (CMGMM) Adaptation Result
	5.4. Suggestions and Limitations

	6. Conclusion
	Conflict of Interest
	Acknowledgment

	References

