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 The data distribution used in model training is assumed to be similar with that when the 
model is applied. However, in some applications, data distributions may change over time. 
This situation is called the concept drift, which might decrease the model performance 
because the model is trained and evaluated in different distributions. To solve this problem 
for scene audio classification, this study proposes the kernel density drift detection (KD3) 
algorithm to detect the concept drift and the combine–merge Gaussian mixture model 
(CMGMM) algorithm to adapt to the concept drift. The strength of the CMGMM algorithm 
is its ability to perform adaptation and continuously learn from stream data with a local 
replacement strategy that enables it to preserve previously learned knowledge and avoid 
catastrophic forgetting. KD3 plays an essential role in detecting the concept drift and 
supplying adaptation data to the CMGMM. Their performance is evaluated for four types of 
concept drift with three systematically generated scenarios. The CMGMM is evaluated with 
and without the concept drift detector. In summary, the combination of the CMGMM and 
KD3 outperforms two of four other combination methods and shows its best performance at 
a recurring concept drift. 
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1. Introduction 

Human–computer interaction through audition requires 
devices to recognize the environment using acoustic sound 
analysis. One of the primary research topics in this area is acoustic 
scene classification (ASC), which attempts to classify digital audio 
signals into mutually exclusive scene categories. ASC is an 
important area of study covering various applications, including 
smart homes, context-aware audio services, security surveillance, 
mobile robot navigation, and wildlife monitoring in natural 
habitats. Machine audition applications have a high potential to 
lead to more innovative context-aware services. 

We intend to develop an ASC system for environmental or 
scene audio in specific locations (i.e., beach, shop, bus station, and 
airport) with different acoustic characteristics. The scene audio 
contains an ensemble of background and foreground sounds. One 
of the most important aspects of the audio scene in real life is the 
concept drift [1], whose data distribution might evolve or change 
in the future. For example, the foreground event sounds in a bus 
station, such as an ambulance siren, wind noise, and rustling 
sounds, might change because of the physical environment, human 
activities, or nature [2]. These changes cause the acoustic data 

distributions to change, potentially causing a lower performance in 
the trained model [3]. 

The simplest solutions for handling the abovementioned 
problems to maintain the model performance are periodic 
retraining and redeployment of the model. Nevertheless, these 
solutions can be time consuming and costly. Moreover, the 
decision for the frequency of retraining and redeployment is a 
difficult task. Another promising approach is to use an evolving or 
incremental learning method [4], [5], where the model is updated 
when a new subset of data arrives [6]. Each iteration is considered 
as an incremental step toward revisiting the current model. 

In this study, we propose a combine–merge Gaussian mixture 
model (CMGMM) and kernel density drift detection (KD3) to 
solve the concept drift problem [7]. The CMGMM is an algorithm 
based on the Gaussian mixture model (GMM) that adapts to the 
concept drift by adding or modifying its components to 
accommodate the emerging concept drift. The algorithm’s 
advantages are adaptation and continuous learning from stream 
data with a local replacement strategy to preserve previously 
learned knowledge and avoid catastrophic forgetting. 

In [7], we compared the CMGMM to the incremental GMM 
(IGMM) [8] and KD3 to adaptive windowing (ADWIN) [9] and 
HDMM [10] in two approaches, namely the active and passive 
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approaches. In the active approach, the concept drift is detected 
using a specific algorithm, then adapts the model. In the passive 
approach, the model is continuously adapted at a specific fixed 
interval. The result is that the combination of CMGMM and KD3 
outperforms other combinations in two of three evaluation 
scenarios. 

The work described herein extends and improves that of 
previous publications [7,11] in the following respects: 

• The algorithm has been modified to use component pruning 
to overcome the overfitting problem and support the Scikit-
Multiflow Framework [12]. 

• The KD3 hyperparameter is optimized, and the algorithm is 
evaluated using prequential evaluation for better results and 
online performance monitoring in several concept drift types 
and scenarios. 

The rest of this paper is organized as follows: Section 2 
presents the related work of this research and the fundamental 
equations used in our proposed solutions; Section 3 describes the 
proposed CMGMM and KD3; Section 4 outlines the experimental 
setup; Section 5 discusses the experimental results; and finally, 
Section 6 provides our conclusions. 

2. Related Work 

This section provides a brief overview of the related work on 
the concept drift and the fundamental theory used in the proposed 
method. 

2.1. Concept Drift in Audio Scenes 

A concept is defined as a set of object instances [13]. 
Probabilistically, a concept is defined using prior class 
probabilities 𝑝𝑝(𝑦𝑦) and class conditional probabilities 𝑝𝑝(𝑋𝑋|𝑦𝑦) [4]. 
𝑝𝑝(𝑦𝑦)  and 𝑝𝑝(𝑋𝑋|𝑦𝑦)  determine the joint distribution 𝑝𝑝(𝑋𝑋, 𝑦𝑦)  [3]; 
hence, a concept is defined as the joint probability distribution of 
a set of input features 𝑋𝑋 and the corresponding label 𝑦𝑦 in dataset 
𝔇𝔇. In this paper, 𝑋𝑋 is an acoustic scene sound defined as a mixture 
of specific event sounds (𝑥𝑥�) perceived and defined by humans [14], 
and 𝑦𝑦 is the label of 𝑋𝑋. 𝑋𝑋 has numerous types of acoustic event 
sounds and background noises 𝑥𝑥�  that often overlap with each 
other. In other words, the relationship between of 𝑋𝑋  and 𝑥𝑥� 
determines 𝑝𝑝(𝑋𝑋, 𝑦𝑦) , 𝑋𝑋 ∈ (𝑥𝑥�1, 𝑥𝑥�2, 𝑥𝑥�3, . 𝑥𝑥�𝑖𝑖 , ) , where 𝑖𝑖  denotes the 
number of 𝑥𝑥� in 𝑋𝑋. 

In the future, the relationship of 𝑥𝑥� in 𝑋𝑋 might change, which 
then changes the relationship of 𝑝𝑝(𝑋𝑋, 𝑦𝑦). For example, another 
event sound might appear, or some existing event sounds may 
disappear. This situation is called the concept drift, which is 
expressed as follows: 

∃𝑋𝑋: 𝑝𝑝𝑤𝑤0(𝑋𝑋, 𝑦𝑦)  ≠ 𝑝𝑝𝑤𝑤𝑛𝑛(𝑋𝑋, 𝑦𝑦). (1) 

Eq. (1) and Figure 1 describe concept drift as the change in the 
joint probability distribution between two-time windows, 𝑤𝑤0 
and 𝑤𝑤𝑛𝑛. Models built on previous data at 𝑤𝑤0 might not be suitable 
for predicting new incoming data at 𝑤𝑤𝑛𝑛 . This change may be 
caused by a change not only in the number of 𝑥𝑥�, but also in the 
underlying data distribution of 𝑥𝑥� . These changes require model 
adaptation because the model's error may no longer be acceptable 
with the new data distribution [15]. 

 
Figure 1: Illustration of the concept drifts in an acoustic scene audio at a park 

The change in the incoming data at 𝑤𝑤𝑛𝑛 depends on a variety of 
different internal or external influences (e.g., event sounds that 
exist in a park depending on the season). The initial data recorded 
in the winter may only consist of people talking, bird calls, and 
dogs barking. However, the event sounds change in the summer, 
and new event sounds, such as insect and wind sounds, emerge. 

2.2. Concept Drift Detection Methods 

Several methods have been proposed to detect concept drifts 
from a data stream. This study focuses on window-based methods 
that use fixed windows as a reference for summarizing previous 
information. This approach has more accurate results than other 
more straightforward methods, such as cumulative sum [16]. 
However, the computational time and space used are higher [17]. 
This approach usually utilizes statistical tests or mathematical 
inequalities to compute the change in data. Some of the state-of-
the-art methods used in this paper is presented below: 

• ADWIN is a sliding window-based concept drift detection 
algorithm. The size of ADWIN windows 𝑆𝑆𝑆𝑆  might change 
depending on the instance in the distribution. Its size increases 
when the instance in the stream continues in the same 
distribution. 𝑆𝑆𝑆𝑆 shrinks when distribution changes occur [9]. 
ADWIN detects concept drifts when the averages between 
these windows are higher than a given threshold. 

• The HDDM is a concept drift detection algorithm based on 
fixed windows and probability inequalities [10]. The author 
proposes two types of HDDM, namely HDDMA and 
HDDMW. The HDDMA uses moving averages, whereas the 
HDDMW uses weighted moving averages to detect the concept 
drift. The HDDMA is suitable for detecting the abrupt concept 
drift, whereas the HDDMW is suitable for detecting the 
gradual concept drift. 

• KSWIN [18] is a window-based concept drift detection method 
that utilizes the Kolmogorov–Smirnov statistic test (KS-Test) 
to compare the distances of two distributions. This test is a non-
parametric test that does not require any assumptions about the 
underlying data distribution. 

 Each method has its optimal hyperparameters, which differ 
based on the datasets used and the type of drift in those datasets. 

2.3. Merging Gaussian Mixture Component 

A component of a Gaussian distribution is represented by 
(𝑤𝑤, 𝜇𝜇,𝑃𝑃) and {(𝑤𝑤1, 𝜇𝜇1,𝑃𝑃1), (𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2), … (𝑤𝑤𝑛𝑛 , 𝜇𝜇𝑛𝑛,𝑃𝑃𝑛𝑛)} to denote 
a mixture of 𝑛𝑛 Gaussian components, where 𝑤𝑤, 𝜇𝜇, and 𝑃𝑃 are the 
weight or prior probability, distribution means, and covariance 
matrix, respectively. This mixture must satisfy 𝑤𝑤1 + 𝑤𝑤2 + ⋯+
𝑤𝑤𝑛𝑛 = 1 and has the pdf defined in Eq. (2). 

http://www.astesj.com/
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𝑓𝑓(𝑋𝑋) = ∑ 𝑤𝑤𝑖𝑖𝑁𝑁(𝑥𝑥;𝑛𝑛
𝑖𝑖=1 𝜇𝜇𝑖𝑖 ,𝑃𝑃𝑖𝑖), (2) 

where, 

𝑁𝑁(𝑥𝑥;𝜇𝜇𝑖𝑖 ,𝑃𝑃𝑖𝑖) = 1

�(2𝜋𝜋)𝑑𝑑 det  𝑃𝑃𝑖𝑖
𝑒𝑒�−

1
2(𝑥𝑥−𝜇𝜇𝑖𝑖)𝑇𝑇𝑃𝑃𝑖𝑖

−1(𝑥𝑥−𝜇𝜇𝑖𝑖)�. (3) 

Suppose we wish to merge two Gaussian components 
�(𝑤𝑤𝑖𝑖 , 𝜇𝜇𝑖𝑖,𝑃𝑃𝑖𝑖), �𝑤𝑤𝑗𝑗 , 𝜇𝜇𝑗𝑗 ,𝑃𝑃𝑗𝑗��,  where 𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗  ≤ 1 , and approximate 
the result as a single Gaussian. The new Gaussian candidate 
(𝑤𝑤𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖) must preserve the zeroth-, first-, and second-order 
moments of the original Gaussian. The moment-preserving merge 
is shown in Eqs. (4)–(6). 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗  (4) 

𝜇𝜇𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗
𝜇𝜇𝑖𝑖 +

𝑤𝑤𝑗𝑗
𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗

𝜇𝜇𝑗𝑗  (5) 

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗
𝑃𝑃𝑖𝑖 +

𝑤𝑤𝑗𝑗
𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗

𝑃𝑃𝑗𝑗

+
𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗  

�𝑤𝑤𝑖𝑖 + 𝑤𝑤𝑗𝑗�
2 �𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗�

𝑇𝑇
 

(6) 

2.4. Kullback–Leibler (KL) Dissimilarity 

Kullback–Leibler (KL) discrimination, known as KL 
divergence or relative entropy, is a tool for measuring the 
discrepancy between two probability distributions. The KL 
discrimination between 𝑓𝑓(𝑥𝑥), a probability distribution for random 
variables 𝑋𝑋  and 𝑔𝑔(𝑥𝑥) , another probability distribution is the 
expected value of the log-likelihood ratio. The KL divergence of 
𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) is defined in Eq. (7), where ℜ𝑑𝑑 is the sample space 
of the random variable 𝑋𝑋. 

𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓,𝑔𝑔) = � 𝑓𝑓(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑.

ℜ𝑑𝑑
 (7) 

Based on Eq. (7), KL is not a perfect distance metric because 
it is asymmetric 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔) ≠  𝑑𝑑𝐾𝐾𝐾𝐾(𝑔𝑔, 𝑓𝑓) and does not satisfy the 
triangle inequality, 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔) + 𝑑𝑑𝐾𝐾𝐾𝐾(𝑔𝑔, ℎ)  ≥  𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, ℎ) . 
However, we can use it as metric distance because the KL 
discrimination of two probability distributions is larger than zero, 
𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑔𝑔)  ≥ 0 , and the discrimination of the identical two 
probability distributions is zero, 𝑑𝑑𝐾𝐾𝐾𝐾(𝑓𝑓, 𝑓𝑓) = 0. 

Accordingly, we apply the KL dissimilarity by computing the 
Kullback–Leibler discrimination upper bound of the post-merge 
mixture with respect to the pre-merge mixture. In the case of the 
Gaussian mixture, where 𝑓𝑓(𝑥𝑥)  = 𝑁𝑁(𝑤𝑤1 , 𝜇𝜇1,𝑃𝑃1),𝑔𝑔(𝑥𝑥)  =
 𝑁𝑁(𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2)  and 𝑤𝑤1 + 𝑤𝑤2 < 1 , the KL dissimilarity between 
𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) is shown in Eq. (8). 

𝑑𝑑𝐾𝐾𝐾𝐾({(𝑤𝑤1, 𝜇𝜇1,𝑃𝑃1)}, {(𝑤𝑤2, 𝜇𝜇2,𝑃𝑃2)}).

=
1
2
�𝑡𝑡𝑡𝑡( 𝑃𝑃2−1[𝑃𝑃1 − 𝑃𝑃2

+ (𝜇𝜇1 − 𝜇𝜇2)(𝜇𝜇1 − 𝜇𝜇2)𝑇𝑇])

+ 𝑙𝑙𝑙𝑙𝑙𝑙
det (𝑃𝑃2)
det (𝑃𝑃1)

� 

(8) 

                                                           
1https://github.com/ibnudaqiqil/CMGMM 

Please refer to [19] for more details about the KL dissimilarity 
of the Gaussian distributions. 

3. Proposed Method 

This study extends the combine–merge Gaussian mixture 
model (CMGMM) [7] to classify audio scenes in concept drift 
situations. The CMGMM was developed based on the GMM 
algorithm that can incrementally adapt to the new identified 
component. This algorithm can add new components as new 
concepts and update existing components as a response to the 
change of the current existing concept in the current data. The 
CMGMM implementation is available in our public repository1, 
with the algorithm pipeline shown in Figure 2. 

 
Figure 2: Combine–merge Gaussian mixture model (CMGMM) general 

workflow 

In the training process, we extract the feature of the scene audio 
from the training dataset D0 and train an optimal model Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . 
We use the Expectation maximization (EM) [20] algorithm to train 
the model and the Bayesian information criterion (BIC) [21] to 
select the best model. 

In the incremental process, the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 performance is 
observed through the prediction likelihood. When KD3 detects a 
significant likelihood change, the model activates the concept drift 
adaptation process. The concept drift adaptation process then 
begins by creating a local model Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 from the new coming 
data. Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the new concepts or concept updates in 
the incoming data. Finally, we combine the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
components to include any new concepts from Μ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 that may 
not exist in the Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  at the initial training and merge similar 
components to update the existing component in Μ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . 

The CMGMM pipeline process is detailed in the subsections 
that follow. 

3.1. Feature Extraction 

Feature extraction is the first step of both the training and 
incremental processes. In this research, we use normalized Mel-
frequency cepstral coefficients (MFCCs) that represent the short-
term power spectrum of audio in the frequency domain of the Mel 
scale. MFCCs are commonly used as features in audio processing 
and speech recognition. The first step is pre-emphasis for 
enhancing the quantity of energy in high frequencies. The next step 
is windowing the signal and computing the fast Fourier 
transformation to transform the sample from the time domain to 
the frequency domain. Subsequently, the frequencies are wrapped 
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on a Mel scale, and the inverse DCT is applied [22]. Finally, each 
of the MFCCs is normalized using mean and variance 
normalization based on Eq. (9): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝜇𝜇)
𝑆𝑆

, (9) 

where, 𝜇𝜇 and 𝑆𝑆 denote the mean and the standard deviation of the 
training samples, respectively. 

3.2. Model Training 

The training process is intended to build a set of models from 
the training dataset 𝐷𝐷0  containing training data 𝑥𝑥 =
{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, where 𝑥𝑥𝑛𝑛 denotes the MFCC vector. The models 
are trained 𝑄𝑄 times using the EM algorithm. For each training 
cycle, a different number of components 𝐾𝐾 ranging from Kmin to 
Kmax is used, where 𝑄𝑄 = Kmax − Kmin. Consequently, a set of models 
ℳ = �ℳ1,ℳ2,ℳ3, . ,ℳ𝑄𝑄 �  is obtained based on the different 
numbers of components. 

The next step is model selection using the BIC. In [23], the BIC 
value of a model ℳ𝐾𝐾  trained over the dataset X with K 
components, BIC(X, 𝑀𝑀𝐾𝐾), is defined as follows: 

 𝐵𝐵𝐵𝐵𝐵𝐵(𝑋𝑋,𝑀𝑀𝑘𝑘) ≡ − 2 log 𝐿𝐿(𝑋𝑋,𝑀𝑀𝐾𝐾) + 𝑣𝑣 log𝑁𝑁 ,     (10) 

where, L denotes the model likelihood; 𝑣𝑣 denotes the degree of 
freedom of the model parameters; and 𝑁𝑁 denotes the number of 
training data points. The model with the lowest BIC value is 
selected because it maximizes the log-likelihood [6]. Algorithm 1 
presents the steps of the learning process. 

Algorithm 1: Training the Optimal Model 
Input: Initial Dataset Dinit, Minimum Component Number 

Kmin, and Maximum Component Number Kmax 
Result: Best GMM Model 
BICbest = ∞ 
for Kmin to Kmax do 
 Mcandidate= EMTrain(Dinit, k) 

BICcandidate = ComputeBIC (Dinit, Mcandidate) 
 if BICcandidate < BICbest then 
  Mbest = Mcandidate 
 end 
end 
return Mbest 

3.3. Concept Drift Detection 

We propose Kernel Density Drift Detection (KD3) to detect the 
concept drift. KD3 is a window-based algorithm for concept drift 
detection. It works based on estimating the window density using 
the Kernel Density Estimation (KDE) or the Parzen’s window 
[24]. The KDE is a non-parametric probability density estimator 
that automatically estimates the shape of the data density without 
assuming the underlying distribution. The concept drift can be 
detected by comparing the probability functions between these 
windows. The greater the variation between the windows, the more 
evidence obtained for the concept drifts. Aside from detecting 
concept drifts, KD3 also collects data for adaptation (Ddrift) by 
identifying a warning zone when data begin to show indications of 
concept drift. 

KD3 requires three hyperparameters, namely α, β, and ℎ , 
which denote the margins for detecting the concept drift and 

accumulating the density distance and the window length, 
respectively. α is used to determine the threshold of the density 
variation in the concept drift, while β is employed to determine the 
threshold of the density variation in the warning zone. Therefore, 
α must be greater than β. KD3 accepts a set of likelihood windows 
𝑧𝑧𝑐𝑐  as input. 𝑧𝑧𝑐𝑐  is the current likelihood window that contains a 
sequence of log-likelihood ℓ  from the model prediction, 𝑧𝑧𝑐𝑐 = 
{ℓ1, ℓ2, ℓ3, … , ℓℎ}. 

First, this algorithm aims to estimate the density (𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘) of the 
current 𝑧𝑧𝑐𝑐  and previous  𝑧𝑧𝑐𝑐−1  windows. Let ℓ𝑛𝑛  be the latest 
generated ℓ . Let 𝑧𝑧𝑐𝑐  contain the ℎ -latest ℓ  from ℓ𝑛𝑛 , 𝑧𝑧𝑐𝑐 ∈
[ℓ𝑛𝑛−ℎ, ℓ𝑛𝑛], and let  𝑧𝑧𝑐𝑐−1 contain the ℎ-latest ℓ from ℓ𝑛𝑛−ℎ, 𝑧𝑧𝑐𝑐−1 ∈
[ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛−ℎ]. To detect a concept drift, the distance 𝑑̀𝑑𝑡𝑡 between 
𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘 of 𝑧𝑧𝑐𝑐 and 𝑧𝑧𝑐𝑐−1 is computed using Eq. (11) within the bounds 
of 𝑏𝑏1 and 𝑏𝑏2. The bounds are computed based on the maximum 
and minimum values of the joined ℓ of 𝑧𝑧𝑐𝑐 and 𝑧𝑧𝑐𝑐−1. 

𝑑̀𝑑𝑡𝑡 =
1
2

 � |𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘(𝑧𝑧𝑐𝑐) − 𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘(𝑧𝑧𝑐𝑐−1)|
𝑏𝑏2

𝑏𝑏1

 𝑑𝑑𝑑𝑑, where (11) 

𝑧𝑧𝑐𝑐 ∈ [ℓ𝑛𝑛−ℎ, ℓ𝑛𝑛],  𝑧𝑧𝑐𝑐−1 ∈ [ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛−ℎ],  

𝑏𝑏1 = min(ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛) , 𝑏𝑏2 = max(ℓ𝑛𝑛−2ℎ, ℓ𝑛𝑛).  

Finally, the algorithm compares 𝑑̀𝑑𝑡𝑡  to α and β.hen 𝑑̀𝑑𝑡𝑡 >  β. 
Suppose that the accumulative distance is equal to or greater than 
α. In that case, the algorithm sends the collected data to the model 
for adaptation. Figure 3 and Algorithm 2 illustrate the detailed 
KD3 process. 

 
Figure 3: Illustration of the Kernel density drift detection (KD3) concept 

Algorithm 2: Detecting the Concept Drift 
Input: Set of t likelihood ℓ, drift margin α, warning margin β (α 

> β), window length ℎ, 
Result: Drift Concept Signal, Drifted Dataset (Ddrift) 
Window1 = ℓ[𝑐𝑐 − ℎ: 𝑐𝑐]; 
Window2 = ℓ[𝑐𝑐 − 2ℎ: 𝑐𝑐 − ℎ]; 
Bmin, Bmax = CalculateWindowBound(ℓ[𝑐𝑐 − 2ℎ: 𝑐𝑐]); 
KDE1 = EstimateKDE(Window1) 
KDE2 = EstimateKDE(Window2) 
diff = distance(KDE1, KDE2, Bmin, Bmax) 
if (diff ≥ α) then 
 resetWarningZoneData() 

return true, [𝑐𝑐 − ℎ: 𝑐𝑐] 
end 
if (diff ≥ β) then 
 accumulativeWarning += diff 
 if (accumulativeWarning ≥ α) then 
  resetWarningZoneData(); 
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  return true, [𝑐𝑐 − ℎ: 𝑐𝑐] 
 end 

return false, [𝑐𝑐 − ℎ: 𝑐𝑐] 
end 
return false, null 

3.4. Model Adaptation 

Model adaptation aims to revise the current model upon newly 
incoming data that might contain new concepts or concept 
changes. The result of this adaptation is an adapted weighted 
mixture component that respects the original mixture.  

The model adaptation method starts by training a new model 
𝑀𝑀drift from data drifts Ddrift using Algorithm 1, and then combining 
the existing model ℳ. Consequently, the newly adapted model ℳ 
accommodates the new concept represented by the components in 
ℳdrift. The next step is to calculate the pairwise distance between 
the components in ℳ  using KL discrimination. The KL 
discrimination formula (Eq. (8)) enables us to set an upper bound 
on the discrimination of the mixture before and after the merging 
process. According to this formula, components with low weights 
means close to their variances, and similar covariance matrices are 
selected for merging. When two components are merged, the 
moment-preserving merging method [25] is used to preserve the 
mean and the covariance of the overall mixture (Eqs. (4)–(6)). 
Figure 4 illustrates the CMGM adaptation process. 

 
Figure 4: Illustration of the combine–merge Gaussian mixture model (CMGMM) 

adaptation process 

As a result, the reduction process generates a set of merged 
models ℳmerge. To select the best ℳmerge model, the accumulative 
BIC is computed by combining sampling data from ℳcurr. Ddrift 
then computes the BIC value using Eq. (10). The smaller the value 
of the accumulative BIC, the better the newly adapted model. 

Based on [7] and [11], the CMGMM tends to increase the 
number of components because it combines and merges them. This 
mechanism leads to an overfitting problem because the adaptation 
frequency increases due to the sensitive KD3 hyperparameter. 

To maintain the compactness of the CMGMM and avoid 
overfitting, we design a strategy to merge statistically equivalent 
components into one component, then prune the inactive 
components. The inactive components are identified by the 

proximity of the ratio of 𝑤𝑤2 and P2 of the merged component to 
zero. In practice, components with 𝑤𝑤 that are very close to zero are 
ignored by the model, whereas those with a large covariance tend 
to overlap with other components. Algorithm 3 presents in detail 
the steps of the proposed CMGMM-based method. 

Algorithm 3: Model adaptation 
Input: Current Model 𝑀𝑀, Drifted Dataset Ddrift 
Result: Adapted Model  
𝑀𝑀drift = findBestGMM(Ddrift) 
𝑀𝑀combine = CombineGMMComponent(𝑀𝑀drift, 𝑀𝑀) 
distanceMatrix = KLDissimalarity(𝑀𝑀combine) 
ds = Ddrift + 𝑀𝑀.generateData() 
nCompmin = 𝑀𝑀.number_component 
nCompmax = 𝑀𝑀combine.number_component 
BICbest = ∞ 
for targetComponent = nCompmin to nCompmax  
 𝑀𝑀merge = mergeComponent(target, distanceMatrix)  
 if useComponentPrune then 
  ComponentPrune(𝑀𝑀merge) 
 End 
 BICcandidate = ComputeBIC (𝑀𝑀merge, ds) 
 if BICcandidate < BICbest then 
  Mbest = Mmerge 
 End 
end 
return Mbest 

4. Experiment 

This section provides information about the datasets and 
experimental setup used in this study to train, optimize, and 
evaluate the proposed method. 

4.1. Datasets 

We used three types of datasets in this experiment, that is, 
training, optimization, and evaluation. The training dataset 
consisted of audio signals extracted with a 10-seconds window 
from 15 scenes in the TUT Acoustic Scenes 2017 [26] and TAU 
Urban Acoustic Scenes 2019 datasets [26]. The scenes were home, 
airport, beach, office, cafe, grocery store, bus, tram, metro, city 
center, residential area, street pedestrian, and shopping mall. 

To simulate the concept drift in the datasets, the optimization 
and evaluation datasets were generated by overlay new additional 
event sounds from and UrbanSound8K datasets [27] and the BBC 
Sound Class Library [28]. When the sounds were added, the 
numbers of additions (1–10), positions in the time axis (0–9000 
ms), and loudness (−20,0) of the sounds were randomly changed 
at random. In total, the dataset had 46 new event classes and 371 
added event sounds. 

We generated four concept drift types with three scenarios. The 
four types of concept drift are as follows: 

• abrupt concept drift (AB), where ongoing concepts are 
replaced with new concepts at a particular time; 

• gradual concept drift (GR), where new concepts are added to 
an ongoing concept at a particular time; 
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• recurring concept drift type 1 (R1), where an ongoing 
concept is replaced at a particular time with concepts that 
previously appeared; and 

• recurring concept drift type 2 (R2), where concepts that 
previously appeared are added to an ongoing concept at a 
particular time. 

Figure 5 illustrates the scenario generation. The three scenarios 
were designed to have different data distribution complexities. The 
scenario details are described below: 

• Scenario 1 (Sc1): A unique event sounds from a specific 
event sounds is repeatedly introduced with a random number 
of times, gain, and timing. For example, in the airport scene, 
unique sounds representing the airplane sound, crowd 
background, and construction site are overlaid with a random 
number of times (1–10), position (0–9000 ms), and loudness 
(−20,0). 

• Scenario 2 (Sc2): Several event sounds are randomly 
selected from a set of the same sound labels in Sc1 and added 
using the same rule as Sc1. 

• Scenario3 (Sc3): This scenario differs from Sc1 and Sc2 in 
that event sounds coexist among scenes. For example, a set 
of rain sounds exists in other scenes (e.g., beach, city center, 
and forest paths). The methods of selection and addition are 
the same as those in Sc2. 

 
Figure 5: Concept drift scenario 

Table 1 shows a list of event sounds that appear at scene types 
in every concept drift scenario. The mutually exclusive event 
sounds appear in all scenarios, but coexisting sounds only appear 
for Sc3. 

Table 1: Setting of the novel sounds in scene audio for Sc1, Sc2, and Sc3 

Scene Mutually Exclusive 
Sounds in Sc1, Sc2, and 

Sc3 

Additional Coexisting 
Sounds in Sc3 

Airport Helicopter, crowd, and 
construction site 

Airplane, footsteps, and 
children playing 

Beach People swimming, footsteps 
on the sand, and rain 

Teenage crowd, dog, and 
birds 

Bus Car horn, engine, and city 
car 

Kitchenware, phone 
ringing, children playing, 
and teenage crowd 

                                                           
2https://bit.ly/CMGMM_Dataset 

Café 
/restaurant 

Washing machine, food 
mixer, and kitchenware  

Phone ringing, children 
playing, and teenage 
crowd 

City center Sound of bird, ambulance, 
and wind 

Footsteps, phone ringing, 
and children playing 

Grocery 
store 

Footsteps, children playing, 
and shopping cart 

Vacuum cleaner, phone 
ringing, and footstep 

Home Frying, door, and vacuum 
cleaner 

Clock and phone ringing 

Metro 
station 

Siren, road car, and thunder Footsteps, crowd, and 
wind 

Office Typing, phone ringing, and 
sneeze 

Broom, camera, and 
footsteps 

Public 
square 

People running, music, and 
airplane 

Birds, rain, and teenagers 
talking 

Residential 
area 

Wind, camera, and cat Birds, sneeze, and clock 

Shopping 
mall 

Clock, camera, and teenage 
crowd 

Children playing, phone 
ringing, dog 

Street 
pedestrian 

Dog, bicycle, and bird Footsteps and children 
playing 

Street traffic Motorcycle, horn, and train Siren, airplane, and bell 
Tram Coughing, bell, and 

footsteps on the pavement 
Teenage crowd and 
children playing 

Finally, we have one training dataset, four optimization 
datasets, and 12 evaluation datasets in this experiment. Each 
training dataset contained 3,000 scene audio, while the 
optimization and evaluation dataset contained 15,000 scene audio. 
The datasets are available in our repository2. 

4.2. Experimental Setup 

The CMGMM accuracy was evaluated under four concept drift 
types in three scenarios (i.e., Sc1, Sc2, and Sc3). The evaluations 
are performed using the two following approaches: 

• Active CMGMM adaptation: In this approach, the CMGMM 
actively detects the concept drift using a certain method and 
only adapts the model when the concept drift is detected. In 
this study, we compared KD3 to ADWIN [9], HDDMA, 
HDDMW [10], and KSWIN [18]. 

• Passive CMGMM adaptation: In this approach, the CMGMM 
adapts as soon as a particular datum is received without 
requiring the explicit prior detection of the concept drift. 
Several adaptation cycle sizes were tested, that is, 25, 50, 100, 
150, and 200. 

5. Experiment Result 

The experimental result of the proposed method are presented 
herein. 

5.1. Hyperparameter Optimization 

The first step in this experiment is the systematic optimization 
of the KD3 hyperparameter. We used the grid-search method using 
a combination of hyperparameters α from 0.1 to 0.001, β from 
0.0001 to 0.000001, and ɦ from 45 to 300. We prepared a particular 
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dataset for the KD3 hyperparameter optimization in four types of 
concept drift. 

In [11], we reported that hyperparameters β and ɦ did not have 
a significant effect on accuracy. Therefore, during the initial step, 
we observed the performance change according to β and ɦ. Figure 
6 shows the average accuracy in all concept drift types according 
to hyperparameters β and ɦ. In this experiment, the best β and ɦ 
were set at 0.0001 and 45, respectively. 

 
Figure 6: Result of hyperparameters β and ɦ in four types of concept drift 

Table 2 lists the experimental results of α in the optimization 
dataset in four types of concept drift. Based on this experiment, 
every concept drift type has its respective hyperparameter α 
according to the concept drift characteristics. AB and GR have 
similar characteristics. There are no repeating concepts in the 
future; hence, a more sensitive concept drift detector than R1 and 
R2 is required. 

Table 2: KD3 hyperparameter optimization result 

Concept 
Drift Types 

Hyperparameter α (β = 0.001, ɦ = 45) 
α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001 

AB 0.6568 0.7113 0.7069 0.7137 0.7066 
GR 0.6007 0.6173 0.7050 0.6922 0.7002 
R1 0.7332 0.7232 0.7158 0.7054 0.6927 
R2 0.7268 0.7133 0.7228 0.7090 0.6823 

Overall 0.6793 0.6912 0.7126 0.7050 0.6950 

In AB and GR, a sensitive hyperparameter α accelerated the 
update frequency. In the experimental result for these types of 
concept drifts, a high adaptation frequency reduced the loss 
received. However, a less-sensitive hyperparameter showed a 
better result in recurring concept drifts, where an old concept 
reappears in the future. A less-sensitive hyperparameter α provided 
the model with longer data compared to the sensitive 
hyperparameter. 

We also selected the overall hyperparameter setting based on 
this experiment. The overall hyperparameter was selected from the 
best average performance of the hyperparameter optimization (α = 
0.01, β = 0.001, and ɦ = 45). We used this hyperparameter for 
further CMGMM and KD3 evaluations. 

5.2. Active Combine–Merge Gaussian Mixture Model (CMGMM) 
Adaptation Result 

Table 3 presents the experimental results of the active 
CMGMM adaptation. In general, the model performance without 
a concept drift detector is low in all concept drift types and 

scenarios. The adaptations of the CMGMM on R1 and R2 showed 
better accuracy than those on AB and GR. On average, AB 
exhibited the lowest accuracy, while R2 showed the highest 
accuracy. This high accuracy on recurring was caused by the 
CMGMM being designed to preserve the old concept, even though 
the new concept is adapted in the model. Thus, the model can 
recognize the previously learned concept if it is repeated in the 
future. 

The CMGMM experiment result depicted that KD3 
outperformed other combinations in two of the four concept drift 
types in GR and R2. Meanwhile, ADWIN showed the best 
accuracy in AB. KSWIN demonstrated the best accuracy in R1, 
whereas HDDM was unsuitable for this case. Despite getting the 
highest overall accuracy score, the combination of the CMGMM 
and KD3 needed more frequent adaptations than ADWIN and 
KSWIN. In contrast, both HDDM-based methods showed worse 
performances compared to all others. HDDMA overdetected the 
concept drift in all concept drift types for more than 3000 times in 
GR. 

The abovementioned results illustrated that the concept drift 
detector plays a vital role in the concept drift adaptation. The 
model performance decreased over time if the drift detector failed 
to detect or delay detecting or over detecting the concept drift. 

Performance of the combine–merge Gaussian mixture model 
(CMGMM) and kernel density drift detection (KD3) 

KD3 showed the best average accuracy of 0.6983 compared to 
ADWIN, KSWIN, and HDMM with 209 adaptations. This 
combination also showed its best results on R2 with 0.7321 
accuracy, followed by R1 with 0.7373 accuracy, GR with 0.6999 
accuracy, and AB with accuracy 0.6469. Furthermore, this 
combination was the most stable in all scenarios. The maximum 
performance decrements in AB, GR, R1, and R2 were 1.38%, 
1.2%, 1.34%, and 0.94%, respectively. 

Despite achieving a good performance in all concept drift 
types, the number of concept drifts detected in this combination 
was higher than ADWIN and KSWIN. The most significant 
number of adaptations occurred in AB. The disadvantage of a high 
number of adaptations is the higher computation time required to 
finish the task and possible overfitting. In this case, the higher 
numbers of adaptations in AB and GR are obtained because the 
concept constantly changes over time, and the learned concept 
becomes obsolete in the future; hence, the higher the adaptation, 
the better the performance. 

Performance of the combine–merge Gaussian mixture model 
(CMGMM) and ADWIN 

In general, the combination of CMGMM and ADWIN showed 
a good performance in every concept drift type, especially on the 
abrupt datasets, where this combination showed its best 
performance. The overall accuracy was 0.6371 with 83 times of 
adaptation. The overall accuracies of this combination in AB, GR, 
R1, and R2 were 0.6369, 0.6475, 0.6912, and 0.7169, respectively. 
Furthermore, this combination had the advantage of a small 
number of adaptations in all concept drift types. Hence, ADWIN 
showed an effective performance in using resources and had a 
reasonably good performance. This combination performed very 
well on Sc1, but showed a performance drop in Sc2 and Sc3. For 
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example, the accuracies of AB, GR, R1, and R2 decreased in Sc3 
by 4.64%, 3.82%, 2.74%, and 287%, respectively. 

Performance of the combine–merge Gaussian mixture model 
(CMGMM) and Hoeffding’s bounds-based method (HDDM) 

In this experiment, both Hoeffding's inequality-based 
algorithms showed underperformance results for all concept drift 
types. Both algorithms were less effective in detecting the concept 
drift in this case. The overall accuracies of HDDMA in AB, GR, 
R1, and R2 were 0.4326, 0.4302, 0.494, and 0.607, respectively. 
The number of HDDMA adaptations exceeded 3000 times of 
adaptation. This high adaptation process was ineffective because 
the amount of trained data for each adaptation was too small. This 
condition led to an overfitting and decreased the model 
performance. 

HDDM W also experienced the same problem. In some cases, 
HDDMA failed to detect the drift concepts, such as GR, R1, and 
R2 in Sc1. The overall accuracies of this HDDMW in AB, GR, R1, 
and R2 were 0.4347, 0.439, 0.491, and 0.5886, respectively. 

Performance of the combine–merge Gaussian mixture model 
(CMGMM) and KSWIN 

The combination of CMGMM and KSWIN showed the best 
performance in R1, with an overall accuracy of 0.750 with 134 
adaptations. The accuracies of this combination in AB, GR, R1, 
and R2 were 0.6317, 0.6322, 0.7508, and 0.6882, respectively. On 
average, KSWIN required eight to nine adaptations per scene in all 
dataset types. This algorithm seems able to detect occurring 
changes in data and supports the concept drift handling process 
with good indicators at a given time. 

5.3. Passive Combine–Merge Gaussian Mixture Model 
(CMGMM) Adaptation Result 

Table 4 lists the experimental results of the passive CMGMM 
adaptation. The best performance in AB, GR, and R1 was obtained 
with a cycle size of 50, and that in R2 was obtained with a cycle 
size of 100. The best accuracies of AB, GR, R1, and R2 were 
0.7152, 0.7139, 0.7323, and 0.7155, respectively. 

 

Table 3: Experiment result of the CMGMM with the concept drift detector 

Concept Drift Detector Accuracy F1 Number of Concept Drift 
Detection 

Sc1 Sc2 Sc3 Overall Sc1 Sc2 Sc3 Overall Sc1 Sc2 Sc3 Overall 

AB 

ADWIN 0.6989 0.6525 0.6214 0.6369 0.713 0.6495 0.6353 0.6599 83 89 85 85 
HDDM_A 0.4157 0.4476 0.4345 0.4326 0.4586 0.4804 0.477 0.472 3287 3350 3359 3332 
HDDM_W 0.4041 0.4455 0.4546 0.4347 0.4485 0.4902 0.5004 0.4797 489 413 409 437 
KD3*  0.6469 0.6359 0.6331 0.6386 0.6476 0.6467 0.6395 0.6446 207 236 220 221 
KSWIN 0.6611 0.6241 0.6345 0.6317 0.6722 0.6369 0.6411 0.6501 132 121 123 125 
Without Detector 0.4121 0.4054 0.4095 0.4090 0.4235 0.4125 0.4095 0.4151   

GR 

ADWIN 0.6723 0.6341 0.6363 0.6475 0.6845 0.6506 0.6478 0.6609 92 81 83 85 
HDDM_A 0.4134 0.4463 0.4311 0.4302 0.4580 0.4946 0.4701 0.4742 3306 3308 3265 3293 
HDDM_W 0.4131 0.4497 0.4544 0.439 0.4524 0.487 0.4816 0.4736 0 409 401 270 
KD3* 0.6999 0.6942 0.6879 0.694 0.7044 0.7004 0.6867 0.6971 190 218 221 209 
KSWIN 0.6532 0.6241 0.618 0.6322 0.6631 0.6326 0.6204 0.6387 129 125 107 120 
Without Detector 0.3554 0.3524 0.3489 0.3522 0.3571 0.3542 0.3501 0.3538   

R1 

ADWIN 0.7222 0.6948 0.6568 0.6912 0.7393 0.6981 0.6333 0.6902 78 83 87 82 
HDDM_A 0.4721 0.5204 0.4896 0.494 0.5206 0.5566 0.5392 0.5388 3154 3258 3201 3204 
HDDM_W 0.4847 0.4815 0.5068 0.491 0.5305 0.5215 0.5357 0.5292 0 662 647 436 
KD3* 0.7373 0.7334 0.7239 0.7315 0.7389 0.7341 0.7247 0.7325 208 201 204 204 
KSWIN 0.7818 0.7351 0.7357 0.7508 0.7876 0.7404 0.7416 0.7565 142 135 126 134 
Without Detector 0.4512 0.4458 0.4257 0.4409 0.4512 0.4458 0.4257 0.4409   

R2 

ADWIN 0.7353 0.7066 0.7089 0.7169 0.7398 0.7131 0.7163 0.723 75 86 82 81 
HDDM_A 0.5919 0.6034 0.6259 0.607 0.6369 0.6398 0.6658 0.6475 3052 2957 3017 3008 
HDDM_W 0.5789 0.5996 0.5875 0.5886 0.6369 0.6398 0.6658 0.6475 759 604 543 635 
KD3* 0.7321 0.7325 0.7227 0.7291 0.7352 0.7315 0.7221 0.7296 195 207 205 202 
KSWIN 0.6914 0.6964 0.677 0.6882 0.6977 0.6976 0.6811 0.6921 156 143 141 146 
Without Detector 0.4254 0.4205 0.3985 0.4148 0.4279 0.4198 0.3968 0.4148   

O
ve

ra
ll 

ADWIN 0.7072 0.6720 0.6559 0.6731 0.7191 0.6778 0.6581 0.6835 82 84 84 83 
HDDM_A 0.4733 0.5044 0.4953 0.4910 0.5185 0.5428 0.5380 0.5331 3199 3218 3210 3209 
HDDM_W 0.4702 0.4941 0.5008 0.4883 0.5170 0.5346 0.5458 0.5325 312 522 500 444 
KD3* 0.7041 0.6990 0.6919 0.6983 0.7065 0.7031 0.6932 0.7009 200 215 212 209 
KSWIN 0.6969 0.6699 0.6663 0.6757 0.7051 0.6768 0.6710 0.6843 139 131 124 131 
Without Detector 0.4110 0.4060 0.3956 0.4042 0.4149 0.4080 0.3955 0.4061   

    (*) Proposed method 
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Table 4: The experiment result of CMGMM without concept drift detector 

Concept 
Drift 
Types 

Cycle 
Size 

Accuracy 

Sc1 Sc2 Sc3 Average 

AB 

25 0.6290 0.6236 0.6256 0.6260 
50 0.7122 0.7159 0.7177 0.7152 

100 0.6285 0.5925 0.5955 0.6055 
150 0.6361 0.5776 0.5851 0.5996 
200 0.5580 0.5059 0.5119 0.5252 

GR 

25 0.6294 0.6232 0.6004 0.6176 
50 0.7133 0.7169 0.7115 0.7139 

100 0.6173 0.5887 0.6089 0.6049 
150 0.6371 0.5818 0.5797 0.5995 
200 0.5334 0.5094 0.5076 0.5168 

R1 

25 0.6186 0.5799 0.5608 0.5864 
50 0.7235 0.7320 0.7416 0.7323 

100 0.7211 0.7105 0.6988 0.7101 
150 0.7332 0.7086 0.7120 0.7179 
200 0.6639 0.7018 0.7146 0.6934 

R2 

25 0.5133 0.5444 0.5669 0.5415 
50 0.7396 0.6991 0.7011 0.7132 

100 0.7431 0.7012 0.7023 0.7155 
150 0.6865 0.6639 0.6803 0.6769 
200 0.6502 0.6011 0.6089 0.6200 

Similar to active adaptation, R1 and R2 showed good 
performances compared to AB and GR, but better performances in 
passive adaptation. Although R1 exhibited the best adaptation at 
cycle size 50, it also showed good result at cycle sizes 100 and 150. 
If you consider the time and the computing resources used, then 
cycle sizes 100 and 150 are recommended. 

In passive adaptation, the cycle size is vital in achieving a good 
performance. This cycle size determines the adequacy of the data 
for adaptation. If the cycle size is too short, the number of data 
adapted is small, leading to overfitting problems. 

5.4. Suggestions and Limitations 

The experiment results showed that the combination of 
CMGMM and KD3 has a higher number of adaptations compared 
to that of ADWIN and KSWIN due to the selection of KD3 
hyperparameters that are sensitive to accommodating GR and AB. 
When the number of adaptations is increased, then in certain cases, 
such as GR and AB, the accuracy is improved, albeit with a higher 
computing cost. The advantage of KD3 compared to the other 
methods is that it could be applied in multi-dimensional probability 
distribution; hence, it is more flexible to apply in other models and 
cases. 

In cases where the time or location of the concept drift can be 
predicted, the use of a passive adaptation strategy is more 
beneficial and has a lower computational cost than the active 
strategy. However, if the adaptation cycle is too far from the 
concept drift, then the model performance will decrease over time. 

6. Conclusion 

This paper presented KD3 hyperparameter optimization and 
the CMGMM performance evaluation in four types of concept 
drift. All concept drift types had optimum hyperparameter 
configurations. AB and GR showed similar patterns that required 
a smaller α value than the recurring concept drift. In this type of 

concept drift, concepts continuously appear; hence, a sensitive drift 
detector is needed to update the model early or have a high-
frequency model adaptation. However, in recurring concepts, the 
new concept may be repeated in the future; thus, a lower-frequency 
adaptation shows a better performance. 

The evaluation results demonstrated that the proposed 
algorithms work well in detecting and adapting to four types of 
concept drift and three scenarios. Overall, the CMGMM works 
better in R1 and R2 than in AB and GR because it is designed to 
preserve old concepts to preserve previously learned knowledge. 
Component pruning is only performed on components with a 
minimal impact on the prediction. 

In the active adaptation strategy, the proposed combined 
method of CMGMM and KD3 outperformed two of four other 
combination methods in GR and R1. These methods showed the 
most stable performance among Sc1, Sc2, and Sc3 in all concept 
drift types. Furthermore, ADWIN showed the best results on AB. 
This algorithm is efficient in computing resources, but less stable 
in more challenging scenarios, such as Sc2 and Sc3. KSWIN 
showed the best results in recurring drift and good performance 
for all concept drift types. HDDM overdetected or failed to detect 
the concept drift and was not suitable in this case. 

In the passive adaptation strategy, a short or long adaptation 
cycle could reduce the performance, and a short cycle size makes 
the adaptation less effective. A short cycle could disrupt the model 
component because the model is trained with insufficient data, 
leading to an underfitting problem. 

In AB and GR, the model requires a high-frequency adaptation 
to maintain the performance; therefore, sensitive hyperparameters 
or a short cycle size is required. Based on the experimental results, 
the passive method is more suitable in these concept drift types. 
However, the computational costs are higher than those of the 
active method. Furthermore, in recurring drift scenarios, a less-
sensitive hyperparameter, or a moderate cycle size is needed. The 
active method is recommended for recurring drift types 
considering the computation cost and better accuracy in 
experiments. 

As part of our future work, we plan to improve the proposed 
KD3 concept drift detection algorithm to achieve adaptive weight, 
reduce the kernel density computation, and optimize the number 
of data points considered when detecting the concept drift and 
decreasing the computation time. 
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