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 Internet addiction (IA) has adverse effects on psychophysiological responses, interpersonal 
relationships, and academic and occupational performance. IA detection has received 
increasing attention. Although questionnaires enable long-term assessment (over 6 months) 
and physiological measurements to aid the short-term evaluation (over 2 min) of IA, the lack 
of algorithms results in an inability to detect IA in real time. A computer-aided system can 
address this problem. This study used the extended classifier system with continuous real-
coded variables (XCSR) for rule-based machine learning to classify IA risk. Chen Internet 
Addiction Scale (CIAS) items were verified and instantaneous respiratory features of IA were 
extracted with “don’t care” attribute values. The result demonstrated that the XCSR model 
achieved more than 95% classification accuracy. Using the “don’t care” attribute values, 
the CIAS items were reduced from 26 to 19, and the instantaneous frequency (IF) of 
respiratory muscle contractions, respiratory wall movements, and body movements were 
extracted as IA-related features. These findings suggested that the XCSR model is a 
potentially useful system for detecting IA. The modified 19-item CIAS and IF of respiration 
can be adopted to assist in the real-time detection of IA and explore the psychophysiological 
developments of IA users. In future studies, more samples must be collected to validate these 
findings and instantaneous physiological responses investigated with different window sizes 
while participants with IA engage in active online gameplay. 
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1. Introduction  
This paper constitutes a continuation of the work originally 

presented at the 2019 Genetic and Evolutionary Computation 
Conference [1]. The Internet has changed our daily lives 
profoundly over the last three decades. People now have easy 
access to the Internet by using desktops, smartphones, tablets, 
laptops, and other digital devices, through which they interact with 
friends, purchase products, play games, search for information, 
and send emails. Despite the convenience the Internet lends to our 
lives, some serious concerns remain.  

Some individuals intensely indulge in and depend on the 
Internet, which can lead to negative ramifications, such as 

estrangement from family and friends, impaired mental and 
physical health, and low academic and work performance [2, 3]. 
This condition has been termed Internet addiction (IA) [4], and it 
has various subtypes, including problematic online game addiction 
[5], problematic cellphone use [6], and social network mental 
disorder [7]. Scholars have reported that problematic game use in 
particular was associated with severe clinical impairment, and 
Internet gaming disorder (IGD) has been preliminarily listed in the 
Diagnostic and Statistical Manual of Mental Disorders (DSM), 
Fifth Edition [8]. A 2019 announcement by the World Health 
Organization recognized gaming disorder as a mental disorder [9]. 
The IA prevalence rate in Asia [3], Europe [10], and the United 
States [11] was 5.6%, 7.97%, and 8.1%, respectively, with the risk 
of developing IA increasing as a result of the 2019 coronavirus 
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disease pandemic [12, 13]. IA is a common behavioral addiction 
globally and continues to receive considerable attention. 

Psychological symptoms and physiological responses are key 
indicators for detecting addiction behavior. IA-related 
questionnaires are used to evaluate the symptoms of IA, but they 
have some limitations. First, different questionnaires must be 
designed that correspond to various cultures and environments 
worldwide. The question of how many psychological symptoms  
must be incorporated into an IA questionnaire remains debated. 
Second, questionnaires are typically adopted to assess Internet 
experiences over a long-term period (over 6 months) [2, 3, 5, 8, 9, 
14–18] and are not ideal for examining short-term or current 
experiences. Third, Internet users must spend time completing 
these questionnaires. Fourth, subjective experiences can affect the 
assessment of IA. Researchers can potentially observe the 
physiological responses of Internet users alongside questionnaires 
to assist in the assessment of IA risk. In such assessments, the 
major physiological signals are analyzed or calculated using 
descriptive statistics or generic mathematics [10, 19–23], although 
these algorithms may be insufficient to estimate the dynamical and 
instantaneous nature of physiological responses. Some studies 
have collected user behavior or social media and online gaming 
records to input into machine learning systems to identify 
addiction behaviors [7, 24–28]. However, this type of data 
collection is time consuming, and the real-time detection of IA 
presents a considerable challenge.  

The extended classifier system (XCS) method is a rule-based 
machine learning system that assumes an agent role to interact with 
the environment and produce the optimum policy [29]. The XCS 
method generates rules with each interaction, each in the form of 
an “IF condition THEN action.” The conditions in the rules employ 
coded symbols {0, 1, #}; the symbol # involves ignoring some 
values and is also referred to as the “don’t care” attribute. The XCS 
method is applied to manage binary problems, and when combined 
with the continuous real-coded variables (XCSR) method, it can 
solve real-value problems [30]. Unlike other machine learning 
systems, the learning process of the XCSR method can be observed 
directly, and the “don’t care” attribute can extract the main features 
for classification. Therefore, this study adopted the XCSR method 
as a computer-aided system to detect the risk of IA using Chen 
Internet Addiction Scale (CIAS) items [3] as input data. The XCSR 
method was then applied to verify the major psychological 
symptoms of IA from the CIAS data. To investigate the 
instantaneous physiological responses of IA, the ensemble 
empirical mode decomposition (EEMD) method [31] was used to 
decompose a physiological signal into instantaneous components, 
and the XCSR method was employed to extract the IA-related 
physiological features from these components. This study has two 
main contributions, namely the use of a rule-based machine 
learning system to classify the risk of IA, and the extraction of the 
major symptoms and instantaneous physiological features of IA 
from a questionnaire and from physiological components, 
respectively. These developments may be used to design a new 
short-form IA questionnaire and instantaneous physiological 
model to detect IA in real time. These extracted psychological 
symptoms and instantaneous responses can assist in exploring the 
developmental process of IA behavior.  

The organization of this paper is as follows: The Literature 
Review section outlines the psychological symptoms covered in 
the IA questionnaire, physiological responses of the IA group, and 
detection of behavioral addiction using machine learning systems. 
The Research Methodology section presents the overview of the 
XCSR and EEMD methods, and the Experiment section describes 
the design of experiment and data analysis. The Results section 
reveals the classification accuracy of the XCSR using the CIAS 
items and instantaneous physiological waveforms as input data, 
with the rate of non-“don’t care” values calculated for these input 
data. In the Discussion section, the study findings and limitations 
are discussed, and the Conclusion section summarizes the study. 

2. Literature Review 

2.1. IA questionnaires 

The design of IA questionnaires is based on substance abuse, 
substance dependence, and pathological gambling criteria from the 
DSM, Fourth Edition, IGD criteria from the DSM, Fifth Edition, 
and gaming disorder criteria from the International Classification 
of Diseases, Eleventh Revision. IA questionnaires cover various 
psychological symptoms (Table 1), including abandoning other 
activities (SA), craving (SC), compulsive symptoms (SCS), deceit or 
cover-up (SDC), health-related problems (SH), interpersonal 
problems (SI), mood modification (SMM), preoccupation or 
salience (SPS), school or occupational problems (SSO), tolerance 
(ST), time management problems (STM), and withdrawal symptoms 
(SWS). Researchers have debated how many psychological 
symptoms can be incorporated into an IA questionnaire. Young 
presented an eight-item IA diagnostic questionnaire that included 
SCS, SDC, SI/SSO, SMM, SPS, STM, ST, and SWS [2]. Griffiths proposed 
that SI/SH, SMM, SCS, SPS, ST, and SWS were the core components of 
addiction [32]. The IGD questionnaire comprises SA, SCS, SDC, SI, 
SMM, SPS, SSO, ST, and SWS [14], and the CIAS consists of SCS, SI/SH, 
ST, STM, and SWS [3]. Authors suggested that SI/SH, SMM, SCS, SSO, 
ST, SPS, and SWS be used to design a questionnaire [5]. Authors 
structured their IA questionnaire by using the psychological 
symptoms of SA, SC, SCS, SDC, SH/SSO, SI, SMM, SPS, ST, and SWS [9].  

IA questionnaires are typically translated into various 
languages or modified into suitable structures for application in 
different countries or areas. For example, Young’s IA Test is a 
well-known questionnaire for assessing IA risk [15]. Researchers 
in Germany converted this 20-item test into a 12-item short-form 
version [16]. Researchers also modified the nine IGD criteria 
outlined in the DSM, Fifth Edition, into a new nine-item short 
version for UK Internet users [17]. The CIAS is a common 
Chinese-language tool for evaluating IA symptoms [3]. 
Researchers in Hong Kong reduced the 26 items of the CIAS to 19 
[18]. The aforementioned studies have adopted factor analysis to 
extract the psychological symptoms of IA and confirm the 
reliability and validity of their new IA questionnaire versions [16–
18]. However, the factor analysis employed for extracting these 
symptoms used single-dimension calculations, and thus may be 
unable to analyze non-Markovian problems. Non-Markovian 
indicates that the optimum decision cannot be determined only 
from the current state, and memory is needed to assist decision-
making. In addition, current IA questionnaires are limited to 
assessing prolonged Internet use (over 6 months) after browsing 
Internet (also called narrative surveys). Few questionnaires 

http://www.astesj.com/


H.M. Chi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 203-212 (2021) 

www.astesj.com     205 

evaluate the current experiences of the Internet user during 
browsing Internet (also termed the experience sampling method). 
Therefore, the design of an IA questionnaire for the immediate 
detection of IA risk is a substantial challenge.  

Table 1: Psychological symptoms of IA  

Symptom Explanation 
SA stop or reduce take part in other activities due to using 

the Internet 
SC desire to use the Internet 
SCS try to stop or reduce Internet use repeatedly without 

success 
SDC lie about their amount of using the Internet 
SH produce psychosocial and physical problems due to 

overusing the Internet 
SI lose relationships due to overusing the Internet 
SMM use the Internet to escape from stress or relieve 

negative mood 
SPS always think about Internet activities or expect the 

next Internet activities 
SSO risk the educations or occupations due to overusing the 

Internet 
ST need to increase time spent on the Internet to achieve 

the same level of satisfaction as before 
STM reduce sleep and other activities to use the Internet 
SWS feel displeasure when stop or reduce using the Internet 

2.2. Physiological response of IA 

Individuals with IA experience dynamic emotional stimulation 
on the Internet and then regulate psychophysiological responses 
instantaneously. Cardiovascular, respiratory, body temperature, 
skin conductance, and other responses in IA have been observed 
for short periods. The aim of such monitoring is to provide 
additional data that can be analyzed with IA questionnaires. 
Relevant results indicated that the risk of IA was positively 
associated with respiratory responses during 6 min of Internet 
browsing but negatively related to peripheral temperature [19]. 
Compared with individuals with low-risk Internet addiction (LIA), 
individuals with high-risk Internet addiction (HIA) showed higher 
skin conductance responses after 15 min of Internet use [10]. The 
respiratory sinus arrhythmia responses of users with HIA while 
watching negative and positive videos of 2 to 3 min were lower 
than that of users with LIA [20]. The heart rate and systolic blood 
pressure of individuals with problematic Internet use both 
increased after 2 min of stopping Internet use [21]. When playing 
an online game for 5 min, the high-frequency heart rate variability 
and cardiopulmonary synchrony for problematic Internet users in 
an excessive online gaming group were lower than those of the 
healthy group [22]. Compared with 5 min of baseline values, the 
natural logarithm of high-frequency heart rate variability of 
gamers with IGD was lower during 5 min of online gaming with 
attention [23]. 

Among the physiological signals, respiration is the only one 
that reflects emotional responses and affects emotions, motivation, 
and other physiological signals. Patients with IA and anxiety 
disorder obtained alleviation for their addiction and anxiety 
symptoms after 10 weeks of cognitive-behavioral therapy with 
breathing exercises [33]. Mindful breathing has also been 

employed to assist gamers with IGD [34] and individuals with a 
gambling addiction [35] to relieve their desire to play. For 
physiological regulation, respiration is related to the vagus nerve, 
which modulates sympathetic and parasympathetic nervous 
system activities. Slow respiratory rates reduce sympathetic 
nervous activity or increase parasympathetic nervous activity. 
Inhalation and exhalation change the intrathoracic pressure, which 
in turn affects the heart rate and blood pressure. Individuals with 
high-risk IGD reduced their respiratory rates by using slow and 
deep breathing exercises while watching negative films [31]. 
Therefore, the respiration response is a key feature for detecting IA 
risk, and respiratory adjustments constitute a valuable means of 
affecting psychophysiological responses. 

The major IA-related features are generally extracted from 
physiological signals using descriptive statistics and generic 
mathematics methods. However, these methods are limited in 
analyzing physiological signals with dynamic and instantaneous 
changes and solving non-Markovian problems. The extraction of 
instantaneous physiological features and investigation of the 
relationship between each instantaneous physiological component 
are crucial for determining IA.  

2.3. IA detection using machine learning 

Some researchers have proposed machine learning models as 
computer-aided systems for detecting IA and extracting IA-related 
psychological and physiological features. Impulsive and 
compulsive symptoms were adopted to construct prediction 
models of problematic Internet use by employing naïve Bayes, 
random forest, and logistic regression methods [24]. Authors used 
a decision tree to determine IGD and extract the features of gaming 
cost, gaming time on weekdays and weekends, and offline gaming 
social, marriage, and self-perceptions [25]. In supervised machine 
learning, demographic information, gamer statistics, and self-
esteem scores were input to classify IGD [26]. Authors combined 
long short-term memory with an adversarial autoencoder to predict 
the gamer’s IGD risk using duration, costs, feelings of depressive 
responses, and contextual information in games as input data [27]. 
Social data from Facebook and Instagram were applied to detect 
problematic social network use by employing a support vector 
machine framework [7]. The aforementioned studies were required 
to collect data over a long period of time. Authors proposed that 
10- or 25-s biosignals, such as heart and respiratory rates, eye 
blinks, and saccadic movements, be input as variables into the 
support vector machine to determine the urge of an IGD group for 
gaming [28]. Although long-term and short-term information has 
been used to predict addiction, the lack of algorithms impedes the 
use of instantaneous physiological response measurements in IA 
detection. 

3. Research Methodology 

3.1. Empirical mode decomposition 

Empirical mode decomposition (EMD) [36] is an adaptive 
filter method applied to decompose nonlinear and nonstationary 
signals into oscillatory components from high to low frequencies; 
these components are also termed intrinsic mode functions (IMFs). 
The decomposition process of EMD is expressed in Algorithm 1. 
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Algorithm 1: Decomposition process of EMD 
Result:  
s1(t) ← s(t) 
c(t) ← s(t) 
while ci(t), i =1, 2, …, n do 
   \\ Sifting Process   
   if standard_deviation (c(t)) ≥ 0.02 then; % stop 

criterion 
  pmax ←aidentify_local_maxima(c(t))  
  pmin ←iidentify_local_minima(c(t)) 

emax(t) xncompute_upper_envelop(pmax) 
emin(t) npcompute_lower_envelop(pmin) 
m(t) ← (emax(t)+ emin(t))/2; % mean envelop 
c(t) ← c(t) – m(t) 

 

  end    
 IMFi(t) ← c(t)    
 si+1(t) 1 si(t) – IMFi(t)  
end    

 EMD, however, has boundary-effect and mode-mixing 
problems. Boundary-effect indicates IMF endpoint distortions. 
Mode mixing refers to different oscillatory waveforms being 
present in a single IMF. These two problems lead to difficult or 
erroneous interpretation of the physical meaning of the IMFs but 
can be resolved using the EEMD method [37]. The analysis 
process of EEMD involves the addition of Gaussian noise to the 
source signal; this noise-added signal is then decomposed using 
the sifting process of the EMD method. 

3.2. XCS 

 The XCS is a powerful machine learning model with high 
interpretability and flexibility. The interpretability of the XCS 
stems from the use of a set of collaborative rules known as a 
population set [P] to express the solution of the problem domain. 
The interpretation of each rule is the “IF condition THEN action,” 
with the condition part of each rule corresponding to the detected 
environmental state and coded with a ternary character {0, 1, #}. 
The # symbol is termed “don’t care,” which indicates that the 
corresponding environmental state can be ignored regardless of 
whether it is 0 or 1. The action part of each rule is the decision-
making that the XCS executes. If the output is a binary 
classification problem, the action can be encoded as a binary string 
{0, 1}. Furthermore, each rule contains the following three 
parameters to indicate the prediction and quality of each rule: 1) 
prediction, which is used to predict how much feedback can be 
obtained from the environment after the action is executed; 2) 
prediction error, which is used to calculate the error between the 
prediction and actual feedback; and 3) fitness, which is used to 
evaluate the accuracy and quality of the prediction. A modular 
architecture allows XCS to address many problem areas flexibly, 
including performance components, exploration components, and 
credit assignment. 

 The performance component is responsible for detecting the 
state of the environment and making decisions. First, the XCS 
converts the detected environmental state into a binary string. 
Second, the condition part of each rule in the [P] is compared with 
the environmental state, and the rule is moved to the matching set 
[M] only if the conditions of the rule match the environmental state. 

If [M] is empty, the XCS initiates the covering mechanism to 
generate new rules that satisfy the environmental state. Third, the 
XCS must select an action to execute according to the rules in [M]. 
The system uses rules with the same action in [M] to calculate the 
expected feedback of the action and form a prediction array [PA]. 
The XCS adopts two mechanisms, exploration and exploitation, to 
select the action. In the exploration mode, the expected feedback 
calculated by each action in [PA] is used as the probability of 
random selection; in the exploitation mode, the system directly 
selects the action with the greatest expected feedback. Fourth, the 
selected action is executed through the effector, and the rules in 
[M] that match the action move to the action set [A] to update the 
parameters. The XCS repeats these four steps until convergence or 
the maximum number of iterations has been reached. 

 The exploration components are used to assist the XCS in 
generating new rules to search for the optimum solution in the 
problem domain. Evolutionary computation (EC) introduces small 
random factors to gradually optimize the solution and is suitable 
for the exploration components of the XCS. Typically, the XCS 
adopts the genetic algorithm (GA) in EC as its exploration 
components. GA solves the optimization problem by simulating 
natural selection, heredity, crossover, and mutation mechanisms in 
evolutionary biology. In the XCS, the GA randomly selects two 
rules from [P] for inheritance based on the fitness of each rule as 
the probability. Subsequently, the GA performs crossover on each 
part of the condition in accordance with the two rules based on the 
probability χ and mutates each part with probability μ. The GA 
generates two new rules to replace the rules with lower fitness in 
[P] to assist the XCS in identifying the global optimum in the 
problem domain. 

 The credit assignment assigns and updates the parameters of 
the rules in [A]. The XCS uses the feedback from the environment 
to modify the prediction of each rule in [A] as a reference 
parameter for the next iteration. The modified technique uses the 
Widrow–Hoff delta rule, as described in Eq. (1), where p is the 
prediction of the rule, P is the actual feedback obtained from the 
environment, t is the current iteration number, and β is the learning 
rate (0 < β ≤ 1). The XCS can then use the absolute error to correct 
the prediction error of the rule, as detailed in Eq. (2), where ε 
denotes the prediction error. The last parameter fitness is used to 
evaluate the quality of the rule. The calculation of fitness is based 
on the relative accuracy of the rule in [A]. First, the XCS must 
calculate the accuracy kt of each rule in [A], as expressed in Eq. 
(3), where α controls the attenuation of the exponential function (0 
< α < 1), εt is the prediction error of the rule at time t, and ε0 is the 
tolerable error. Subsequently, the XCS calculates the relative 
accuracy kt’ of the rule compared with the other rules in [A], as 
described in Eq. (4). The system utilizes the relative accuracy kt’ 
as the fitness of the rule and employs the Widrow–Hoff delta rule 
to update, as detailed in Eq. (5), where F is the fitness of the rule. 

𝑝𝑝𝑡𝑡+1 = 𝑝𝑝𝑡𝑡 + 𝛽𝛽(𝑃𝑃𝑡𝑡 − 𝑝𝑝𝑡𝑡) (1) 

𝜀𝜀𝑡𝑡+1 = 𝜀𝜀𝑡𝑡+1 + 𝛽𝛽(|𝑃𝑃𝑡𝑡 − 𝑝𝑝𝑡𝑡| − 𝜀𝜀𝑡𝑡) (2) 

𝑘𝑘𝑡𝑡 = �exp �
(ln𝛼𝛼)(𝜀𝜀𝑡𝑡 − 𝜀𝜀0)

𝜀𝜀0
� , ε𝑡𝑡 > ε0

1, otherwise
 (3) 
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𝑘𝑘𝑡𝑡′ =
𝑘𝑘𝑡𝑡

∑ 𝑘𝑘𝑡𝑡𝑘𝑘𝑡𝑡∈[𝐴𝐴]
 (4) 

𝐹𝐹𝑡𝑡+1 = 𝐹𝐹𝑡𝑡 + 𝛽𝛽(𝑘𝑘𝑡𝑡′ − 𝐹𝐹𝑡𝑡) (5) 

 The XCS provides the rule with a numerosity parameter to 
record how many of the same rules are in [P] and uses a rule as a 
representative of these rules. Therefore, the same rules must only 
be matched once to maximize the computation speed. The 
subsumption mechanism is also added to assist in generating the 
most accurate and general rules. In the subsumption mechanism, 
one rule can subsume another rule, and the rule therefore 
undergoes a certain amount of training that strengthens its 
generalizability and accuracy. If rule ra can subsume another rule 
rb, rb is removed from [P], and the numerosity of ra increases by 
one. The subsumption mechanism usually acts on the GA and [A]. 

3.3. XCSR  

 The encoding method used in the condition of the rule can only 
process discrete variables. Wilson proposed to modify the ternary-
alphabet encoding of the condition into interval predicates to 
enable the XCS to process continuous variables [30]. The 
expression of interval predicates is 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑖𝑖), where inti is the 
rule condition that the ith interval predicate corresponds to the ith 
variable, ci is the central value of the range, and si refers to the size 
of the coverage boundary. Changing the expression of the 
condition modifies the mechanism of components, such as 
matching, covering, and the GA. For matching, assuming the ith 
variable is xi, if 𝑐𝑐𝑖𝑖 − 𝑠𝑠𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 < 𝑐𝑐𝑖𝑖 + 𝑠𝑠𝑖𝑖 , then the inti matches xi. For 
covering, the XCS generates a rule whose interval predicates cover 
all input variables. The generation method is to set ci to xi, and si is 
set to a random value between 0 and sr, where sr is defined by the 
user. For the GA, crossover exchanges the inti with probability χ; 
mutation adds a random value from 0 to sm to the range of inti with 
probability μ, where sm is defined by user. The remaining 
mechanism is the same as the XCS operation, with this modified 
version known as the XCSR. The modular structure allows the 
XCS to be flexibly modified to adapt to various problem domains. 

4. Experiment 

4.1. Design of experiment 

(1) Objective of this experiment 

The CIAS scores of participants with HIA and LIA were 
collected, and their respiratory signals were observed while they 
watched online game videos. This study was granted ethical 
approval by National Chiao Tung University (NCTU) Research 
Ethics Committee for Human Subject Protection (Approval 
Number: NCTU-REC-102-009-e).  

(2) Method 

To assess the risk of IA, we adopted the CIAS, which contains 
26 items, with each item ranked from 1 (strong disagreement) to 4 
(strong agreement) [3]. The total score of the CIAS ranged from 
26 to 104, with a score of 26 to 63 and 64 to 104 reflecting LIA 
and HIA, respectively. This study also adopted the IGD 
questionnaire to evaluate IGD risk; this questionnaire consists of 
nine items requiring yes or no responses [14]. The IGD 
questionnaire score ranged from 0 to 9, with 0 to 4 and 5 to 9 

representing non-IGD and IGD, respectively. The internal 
consistency of the CIAS and IGD questionnaires, as estimated 
using Cronbach’s α, was 0.94 and 0.81, respectively. The extent of 
participants' experience using computers and the Internet were 
recorded, and the Self-Assessment Manikin (SAM) was adopted 
to evaluate the emotions of participants. The SAM measures 
emotional valence and arousal on a 9-point Likert scale. A 5-point 
score on valence represents neutral emotion, and anything higher 
indicates positive emotions. Conversely, a score lower than 5 is 
indicative of negative emotions. Arousal was scored from 1 (no 
feeling) to 9 (strong feeling). To arouse a craving for gaming, 2 
min of online game videos were selected from League of Legends 
(LOL; Riot Games, Los Angeles, CA, USA), MapleStory (MS; 
Nexon, Seoul, South Korea), and Resident Evil (RE; Capcom, 
Osaka, Japan). Compared with the active stimuli of playing games, 
watching clips as passive stimuli may induce more physiological 
stability, potentially lowering the difference in psychological 
responses between participants. 

(3) Indices 

The 26-item scores of CIAS and instantaneous frequency (IF) 
of respiratory signal were used to detect the risk of IA. 

(4) Participant 

Participants aged 20–40 years and with no symptoms of 
depression and anxiety, and cardiovascular diseases were included 
in the study. Each participant provided written informed consent. 
A total of 50 participants (36 men and 14 women) were recruited 
from NCTU. 

(5) Procedure 

Each participant stared at a gray picture to familiarize 
themselves with the environment and relax physically at the 
beginning of the experiment. To induce a feeling of calm, the 
participant looked at a gray picture for 2 min before each video 
was played. For emotional stimuli, participants watched three 
videos (LOL, MS, and RE) in a random order. After each video, 
participants completed the SAM questionnaire, after which time 
the gray picture was displayed for another 2 min to allow the 
participant to recover from emotional arousal. During the 
experimental procedure, respiratory inductance plethysmography 
(RIPmate Inductance Belt, Ambu, Ballerup, Denmark) and 
electrocardiography (Ag/AgCl spot electrodes attached to the left 
and right subclavian and left lumber regions) were used to measure 
abdominal wall movement and electrocardiography signals, 
respectively. These signals were acquired through a DAQCard 
(USB 6218, NI, Austin, TX, USA) with a 1000 Hz sampling rate. 
To investigate instantaneous respiratory responses, this study only 
analyzed abdominal wall movement signals. 

4.2. Data analysis 

(1) Method 

The XCSR model was used to detect the risk of IA by using the 
CIAS data and the IF of respiration as the input features (Figure 
1). The abdominal movement signal was analyzed as the IF 
according to the signal processing step described in a previous 
study [36], including integral calculation, signal baseline 
correction, downsampling, signal decomposition, and 
transformation. 
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Figure 1: Data analysis procedure. 

For statistical calculation, the Mann–Whitney U test was 
performed to compare differences in the questionnaire data and 
average IF between the HIA with IGD and LIA with non-IGD 
groups. The statistical significance was set as p < 0.05. To assess 
the performance of the average IF of respiration in discriminating 
between HIA with IGD and LIA with non-IGD, the receiver 
operating characteristic curve (ROC) was calculated, and the area 
under the curve (AUC) of the ROC indicated the predictive 
accuracy. The AUC ranged from zero (reflecting incorrect 
prediction) to one (representing correct prediction); the AUC was 
0.7, indicating acceptable predictive power. 

(2) Procedure 

The integral calculation converted the abdominal movement 
signal into the volume change of the abdomen by using Simpson’s 
rule. The volume changes of the abdomen were then used to 
perform baseline correction using the linear fit. To investigate the 
frequency band of respiratory muscle contractions, the corrected 
signal was downsampled from a rate of 1000 to 50 Hz. 
Subsequently, the EEMD method was used to decompose the 
downsampled signal into eight IMFs. With reference to the 
frequency bandwidth [38], IMF1–IMF2, IMF3–IMF4, IMF5–IMF6, 
and IMF7–IMF8 represented the diaphragm, respiratory muscle 
cluster on the abdomen, respiratory wall movement on the 
abdomen, and body movement components, respectively. In the 
transformation step, each IMF was transformed into IF by using 
the normalized direct quadrature [39]. The average value of IF 
during the viewing of the LOL, MS, and RE videos was treated as 
the probability of crossover operation (χ) = 0.8, the probability of 
the instantaneous psychological features that were input into the 
XCSR model. 

Parameters in the XCSR were set as follows [29, 30, 40]: the 
population size (N) constituted 350 classifiers, probability of # (P#) 
= 0.33, initial rule ɛ = 0, initial rule p = 10, initial rule F = 10, 
learning rate (β) = 0.2, accuracy function (ɛ0) = 10, ν = 5, ɛ0 = 10, 
α = 0.1, ϕ = 0.1, mutation operation (μ) = 0.04, threshold parameter 
of the GA = 50, deletion thresholds of the GA = 20, and 
subsumption thresholds of the GA = 20; moreover, the reward 
setup for accurate prediction of HIA with IGD and LIA with non-
IGD was set as 1000, or otherwise 0. The iteration number of the 
XCSR method was 1950 for both the 26-item score in the CIAS 
and 24 IF values of respiration as input features. The moving 
average per 50 exploitations was used to calculate the 

classification accuracy of the XCSR. To verify the items in the 
CIAS and extract the crucial instantaneous respiratory components 
for detecting the IA risk, rules with a reward of 1000 in [P] were 
selected, and then the rate of non-“don’t care” values (“non-#”) in 
these rules was calculated. To effectively evaluate the training 
quality of the XCSR and avoid bias, 10-fold cross-validation was 
used. To eliminate the unevenness of the IF at different frequency 
bandwidths, the IF underwent min–max normalization. The XCSR 
does not update any parameters nor generate new rules for the 
testing data and only uses the exploitation mode when selecting 
and performing actions on this data. All data management, 
respiratory signal processing, and XCSR execution operation were 
conducted using LabVIEW (v.2021, NI, Austin, TX, USA). 

5. Results  

Of all participants, 34% were from the College of Electrical 
and Computer Engineering, 28% from the College of Computer 
Science, 14% from the College of Management, 8% from the 
College of Humanities and Social Sciences, 6% from the College 
of Hakka Studies, 6% from the College of Engineering, and 4% 
were from other departments. Participants were stratified into four 
groups according to their CIAS and IGD questionnaire scores, 
namely the LIA with non-IGD, LIA with IGD, HIA with non-IGD, 
and HIA with IGD groups. This study focused on investigating the 
psychological symptoms and physiological responses of the LIA 
with non-IGD and HIA with IGD groups only. Table 2 lists the 
demographic information and questionnaire responses of the two 
groups. No significant differences in age, computer and Internet 
use experience, or emotional valence and arousal were observed 
between the two groups. The total scores of the CIAS and IGD 
questionnaires of the HIA with IGD group were significantly 
higher than those of the LIA with non-IGD group. The emotional 
valence results indicated that the LOL and MS videos evoked 
positive emotions, whereas the RE video prompted negative 
emotions. 

Table 2: Demographic information and questionnaire responses 

 LIA with 
non-IGD 

HIGD with 
IGD 

Gender (men, women) 12, 9 14, 4 
Age (years old) 22.62 ± 1.79 23.67 ± 5.27 
Computer experience (year) 13.19 ± 2.71 12.44 ± 4.50 
Internet experience (year) 11.71 ± 2.63 10.89 ± 4.19 
CIAS  52.10 ± 8.03 79.33 ± 8.88** 
IGD questionnaire 1.48 ± 1.25 6.58 ± 1.54** 
SAM     valence_LOL 5.95 ± 1.32 6.61 ± 1.33 
              arousal_LOL 4.33 ± 2.01 5.28 ± 1.53 
              valence_MS 5.76 ± 1.79 5.56 ± 1.46 
              arousal_MS 4.33 ± 1.88 4.22 ± 1.73 
              valence_RE 3.90 ± 1.87 4.39 ± 1.61 
              arousal_RE 6.14 ± 1.80 5.78 ± 1.63 

** p < 0.01 in the Mann–Whitney U test 

The results of classification accuracy of the XCSR with an 
average of 30 repetitions using 26-item CIAS scores and 24 IFs of 
respiration in response to online video stimuli are illustrated in 
Figure 2 and Figure 3, respectively. The classification accuracy of 
the XCSR model was over 95%. Table 3 presents the mean ± 
standard deviation scores of each item in the CIAS for the two 
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groups and the “non-#” rate of each item. The score of each item 
for the HIA with IGD group was significantly higher than that of 
the LIA with non-IGD group. The “non-#” rate of the 11th, 14th, 
19th, and 22nd items in SCS; 12th, 13th, 15th, 17th, 18th, and 21st 
items in SI/SH; 6th item in ST; 1st, 8th, 23rd, and 25th items in STM; 
and 2nd, 4th, 10th, and 16th items in SW were higher than the 0.50 
value for the CIAS. The 10-fold cross-validation of the XCSR 
using the 26-item CIAS score and 24 IFs of respiration in response 
to online video stimuli is described in Table 4 and Table 5, 
respectively; the average accuracy of 10-fold cross-validation for 
the XCSR was 87% and 78%, respectively. Table 6 presents the 
mean ± standard deviation of the IFs of respiration of the two 
groups while watching the LOL, MS, and RE videos as well as the 
“non-#” rate of each IF of respiration. The IF2 of the HIA with IGD 
group while watching the RE video stimuli was significantly 
higher than that of the LIA with non-IGD group. Except for IF5 
during the MS video and IF5 and IF7 during the RE video, the “non-
#” rate of all IFs was higher than the 0.50 value. The ability to 
predict the risk of IA using IF values, as calculated with the AUC 
of the ROC, is detailed in Table 7. 

6. Discussion 

In this study, the XCSR method as a rule-based machine 
learning system was used to aid in detecting the risk of IA. The 
“don’t care” attribute of the XCSR was employed to verify the 
items of the CIAS and extract the instantaneous respiratory 
features for the classification of IA. The results demonstrated that 
the XCSR model could identify HIA with IGD group or LIA with 
non-IGD group with a classification accuracy of over 95%. The 
average accuracy of the 10-fold cross-validation was also over 
78%. Researchers have proposed that self-esteem scores [26], 

impulsive and compulsive symptoms [24], and physiological 
signals [28] can serve as the input variables of machine learning 
systems to predict behavioral addictions. Our findings suggested 
that the XCSR model is an appropriate computer-aided tool for 
detecting IA. The psychological symptoms in the CIAS and 
instantaneous respiratory responses are vital indexes for assessing 
risky Internet use.  

 
Figure 2: Classification accuracy of the XCSR with the CIAS data as the input 

feature. 

 
Figure 3: Classification accuracy of the XCSR with the IF of respiration data as 

the input feature. 

Table 3: Psychological symptoms in the CIAS and their corresponding items (modified from [1]) 

Symptom  item LIA with 
non-IGD 

HIA with 
IGD 

not # 
rate 

SCS 11. I unable control my impulse of Internet use 1.81 ± 0.68 2.89 ± 0.74** 0.58 
 14. When waking up every morning, my first thought is to use the Internet 2.00 ± 0.89 3.05 ± 0.78** 0.75 
 19. After stopping Internet use, I crave it again 2.33 ± 0.73 3.32 ± 0.58** 0.67 
 20. Without the Internet, my life would be joyless 1.76 ± 0.77 2.79 ± 0.85** 0.42 
 22. I try to spend less time on the Internet, but failure 2.14 ± 0.57 3.05 ± 0.71** 0.67 
SI/SH 7. Even if the Internet negatively affects my interpersonal relationships, my use remains unreduced 1.43 ± 0.60 3.21 ± 0.71** 0.42 
 12. I find that I reduce the time spent with friends due to the Internet 1.81 ± 0.51 2.95 ± 0.78** 0.67 
 13. I feel aches and soreness in the back or other discomfort due to Internet use 2.00 ± 0.84 3.11 ± 0.94** 0.92 
 15. Using Internet has negative effects on my education or work 1.86 ± 0.73 2.84 ± 0.60** 0.75 
 17. I reduced interaction with my family due to Internet use 1.76 ± 0.77 3.05 ± 0.85** 0.58 
 18. I reduce my recreational activities to use the Internet 2.00 ± 0.63 3.16 ± 0.83** 0.67 
 21. Using the Internet has negative effects on my health 2.10 ± 0.70 2.95 ± 0.78** 0.83 
ST 3. I perceive my Internet use as getting longer and longer 2.43 ± 0.51 3.05 ± 0.71** 0.50 
 6. I spend more time on the Internet than I originally intended 2.71 ± 0.64 3.53 ± 0.51** 0.58 
 9. I have spent more time on the Internet since last semester 2.00 ± 0.63 2.95 ± 0.71** 0.33 
 24. I need to increase the amount of time I use the Internet to achieve the same satisfaction as before 1.67 ± 0.48 2.63 ± 0.83** 0.42 
STM 1. I have been told more than once that I spend too much time on the Internet 2.48 ± 0.75 3.21 ± 0.79** 0.58 
 8. My sleep time is less than 4 hours from using the Internet 1.76 ± 0.89 3.16 ± 0.96** 0.67 
 23. I am used to reducing my sleep time to use the Internet 1.52 ± 0.75 2.79 ± 0.79** 0.67 
 25. I do not eat on time due to using the Internet 2.05 ± 0.80 2.84 ± 0.90** 0.58 
 26. I use the Internet all night, which causes daytime tiredness 2.33 ± 1.02 3.00 ± 0.58** 0.50 
SWS 2. I feel displeasure when I stop using the Internet for a period of time 2.05 ± 0.67 3.26 ± 0.73** 0.58 
 4. I feel restless and irritable when the Internet is unavailable 2.52 ± 0.87 3.37 ± 0.68** 0.75 
 5. I feel energetic upon using the Internet regardless of a fatiguing experience 1.62 ± 0.59 2.84 ± 0.76** 0.50 
 10. I feel distressed when stopping the Internet use for a period of time 1.57 ± 0.51 2.89 ± 0.74** 0.83 
 16. I feel like I am missing something when stopping the Internet use for a period of time 2.38 ± 0.97 3.37 ± 0.60* 0.75 
* p < 0.05 and ** p < 0.01 in the Mann–Whitney U test 
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The results indicated that the 11th, 14th, 19th, and 22nd items 
in SCS; 12th, 13th, 15th, 17th, 18th, and 21st items in SI/SH; 6th 
item in ST; 1st, 8th, 23rd, and 25th items in STM; and 2nd, 4th, 10th, 
and 16th items in SW were maintained in the CIAS item 
verification. This result, however, is inconsistent with that of other 
works. Authors modified the items in the CIAS for grade 7-to-13 
Hong Kong students, retaining the 14th and 20th items in SCS;  12th, 
13th, 15th, 17th, 18th, and 21st items in SI/SH; 3rd, 6th, 9th, and 
24th items in ST; 1st, 8th, 23rd, and 26th items in STM; and 2nd, 
5th, and 16th items in SW [18]. Authors changed the 26-item CIAS 
into a 10-item smartphone addiction inventory, retaining the 22nd 
item in SCS; 7th, 13th, and 15th items in SI/SH; 3rd, 6th, and 9th 
items in ST; 23rd item in STM; and 2nd and 4th items in SW for 
Taiwan students aged 18 to 31 years [41]. These inconsistent 
results are likely attributable to differences in age, country, 
analysis method, or assessment of psychological symptoms 
between studies. Our findings must be validated with more data. 

In this study, the “don’t care” rate of IF1‒IF8 of respiration 
during LOL video stimuli; IF1‒IF4 and IF6‒IF8 of respiration 
during MS video stimuli; and IF1‒IF4, IF6, and IF8 of respiration 
during RE video stimuli were lower than 0.50. IMF1–IMF2, IMF3–
IMF4, IMF5–IMF6, and IMF7–IMF8 represented the diaphragm, 
respiratory muscle cluster on the abdomen, respiratory wall 
movement on the abdomen, and body movement components, 
respectively [38]. The LOL and MS videos aroused positive 
emotions in the participants, whereas the RE video evoked 
negative emotions.  

Table 4: The 10-fold cross-validation of the XCSR with the CIAS data as the 
input feature 

Testing 1 2 3 4 5 
Accuracy 1.00 1.00 1.00 0.50 1.00 
Testing 6 7 8 9 10 

Accuracy 1.00 0.75 0.75 1.00 0.67 
Average accuracy 0.87 

Table 5: The 10-fold cross-validation of the XCSR with the IF of respiration data 
as the input feature 

Testing 1 2 3 4 5 
Accuracy 1.00 0.25 0.5 0.75 0.75 
Testing 6 7 8 9 10 

Accuracy 1.00 0.75 1.00 0.75 1.00 
Average accuracy 0.78 

Emotions affect respiratory responses, and respiratory 
muscular contraction and relaxation drive the thoracic and 
abdominal wall movements. Compared with the users with LIA, 
those with HIA exhibited a higher abdominal muscle contraction 
amplitude and lower abdominal wall movements whilestaring at 
positive or negative pictures of 3- to 12-s [42]. The respiratory 
responses positively related to the scores of the CIAS [19], and 
the respiratory rate was used to predict the craving of individuals 
with IGD to play online games [28]. Those with HIA are on the 
Internet excessively, which can cause aches and soreness in the 
back [2, 3] or hands; they may change their posture to relieve this 
pain. Therefore, we determined that the instantaneous responses 

of respiratory muscle clusters, respiratory wall movements, and 
body movements constitute potential biomedical indexes through 
which to observe the psychological reaction of the IA group, with 
the various emotional stimuli eliciting different respiratory 
responses. These responses can assist in detecting IA symptoms. 
We also demonstrated that IF2 during the RE video stimuli was an 
acceptable predictor of IA risk, which was calculated using the 
ROC. However, this finding was inconsistent with the feature 
extraction of the XCSR model and can be attributed to several 
possible explanations. The ROC employs conventional 
mathematical calculation, but the XCSR method observes the 
relationship between features using multiple dimension attributes. 
In addition, the sampling size and parameter setup of the XCSR 
may influence feature extraction. Therefore, future works should 
employ more data samples and test different parameters of the 
XCSR method. 

Table 6: Mean ± standard deviation of IF of respiration 

Feature LIA with 
non-IGD 

HIGD with 
IGD 

not #  
rate 

LOL IF1 12.21 ± 0.15 12.19 ± 0.19 0.61 
IF2 7.42 ± 0.27 7.32 ± 0.38 0.67 
IF3 3.64 ± 0.21 3.53 ± 0.33 0.64 
IF4 1.18 ± 0.20 1.16 ± 0.20 0.59 
IF5 0.35 ± 0.08 0.34 ± 0.07 0.64 
IF6 0.18 ± 0.03 0.18 ± 0.04 0.57 
IF7 0.08 ± 0.02 0.07 ± 0.02 0.59 
IF8 0.04 ± 0.01 0.04 ± 0.01 0.58 

MS IF1 12.21 ± 0.20 12.24 ± 0.15 0.72 
IF2 7.33 ± 0.29 7.33 ± 0.40 0.56 
IF3 3.55 ± 0.27 3.57 ± 0.38 0.58 
IF4 1.22 ± 0.28 1.31 ± 0.30 0.58 
IF5 0.35 ± 0.11 0.36 ± 0.13 0.49 
IF6 0.18 ± 0.04 0.18 ± 0.05 0.56 
IF7 0.08 ± 0.02 0.08 ± 0.03 0.54 
IF8 0.04 ± 0.01 0.04 ± 0.01 0.55 

RE IF1 12.31 ± 0.17 12.29 ± 0.14 0.63 
 IF2 7.74 ± 0.16 7.61 ± 0.28* 0.53 
 IF3 3.93 ± 0.16 3.81 ± 0.32 0.56 
 IF4 1.54 ± 0.28 1.45 ± 0.35 0.55 
 IF5 0.38 ± 0.09 0.41 ± 0.17 0.37 
 IF6 0.25 ± 0.06 0.21 ± 0.04 0.56 
 IF7 0.10 ± 0.02 0.10 ± 0.03 0.44 
 IF8 0.05 ± 0.01 0.05 ± 0.02 0.66 

* p < 0.05 in the Mann–Whitney U test 

This study has some limitations. First, the small sample size 
may lead to overfitting and affect the verification of items in a 
questionnaire or the feature extraction of physiological responses. 
Second, the parameter setup of the XCSR was based on empirical 
studies and must be tested with different values. Third, the 
physiological responses of participants while watching online 
game videos may differ from those actively playing online games. 
Fourth, we observed respiratory responses during 2 min of 
emotional stimuli. Future studies can investigate second-by-
second psychological responses under varying window sizes. Fifth, 
the unequal sample of men and women may affect the analysis of 
the XCSR. Notwithstanding these limitations, the XCSR model 
provides researchers with a computer-aided detection method for 
IA. The verification of items in a questionnaire can assist in the 
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design of a questionnaire for experience sampling method and the 
real-time detection of IA. The extraction of instantaneous 
respiratory features can provide psychological insight into the 
development of IA behavior. 

Table 7: Predictive accuracy for the IF value in individuals watching online 
game videos, calculated with the area under the curve (AUC) of the ROC  

Feature AUC p-value 95% confidence interval 
lower bound upper bound  

LOL IF1 0.52 0.82 0.33 0.71 
 IF2 0.52 0.80 0.33 0.71 
 IF3 0.58 0.41 0.39 0.76 
 IF4 0.53 0.74 0.35 0.72 
 IF5 0.56 0.55 0.37 0.74 
 IF6 0.49 0.96 0.31 0.68 
 IF7 0.63 0.17 0.45 0.81 
 IF8 0.51 0.96 0.32 0.69 
MS IF1 0.56 0.52 0.33 0.71 
 IF2 0.51 0.91 0.38 0.74 
 IF3 0.53 0.78 0.32 0.70 
 IF4 0.59 0.35 0.33 0.72 
 IF5 0.52 0.84 0.41 0.77 
 IF6 0.53 0.74 0.33 0.70 
 IF7 0.55 0.61 0.34 0.72 
 IF8 0.56 0.55 0.36 0.74 
RE IF1 0.54 0.63 0.36 0.73 
 IF2 0.70 0.03 0.51 0.89 
 IF3 0.67 0.07 0.48 0.86 
 IF4 0.64 0.14 0.45 0.82 
 IF5 0.52 0.87 0.32 0.71 
 IF6 0.67 0.07 0.50 0.84 
 IF7 0.58 0.41 0.39 0.76 
 IF8 0.52 0.82 0.33 0.71 

7. Conclusion  

This study aimed to detect IA using the XCSR model. This 
model was also applied to verify the items of the CIAS and extract 
instantaneous respiratory features. The XCSR achieved over 95% 
classification accuracy for both the CIAS data and IF of 
respiration during online game video stimuli. The average 
accuracy of the 10-fold cross-validation was also higher than 75% 
for both input data. Furthermore, using the XCSR model, the 
CIAS was modified from a 26-item to 19-item questionnaire and 
the IFs of respiratory muscle contractions on the abdomen, 
respiratory wall movements on the abdomen, and body 
movements were extracted as the IA-related features. The current 
findings indicated the suitability of the XCSR method as a 
computer-aided system for real-time IA detection. The extracted 
psychological symptoms and instantaneous respiratory responses 
are key features in determining the development of IA. Further 
studies should collect more samples to validate these findings; 
design experiments incorporating active gameplay stimuli; and 
measure the instantaneous psychophysiological responses per 
second under varying window sizes. 
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