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 We develop a resolution of the Richards equation for the porous media of variable 
saturation by a finite element method. A formulation of interstitial pressure head and 
volumetric water content is used. A good conservation of the global and local mass is 
obtained. Some applications in the case of heterogeneous media are presented. These are 
examples which make it possible to demonstrate the capillary barrier effect. Keywords:  

Heterogeneous porous media 
Variable saturation 
Finite elements  
Capillary barrier 

 

 

1. Introduction    

The study of the flow of fluids in porous media of variable 
saturations is of practical interest in many fields, in agriculture, 
civil engineering as well as environment. Control of the movement 
of fluids in industrial waste, tailings and municipal waste sites 
requires a thorough knowledge of the dynamics of these fluids; 
either to assess the extent of the damage, or to design retention or 
containment structures or to implement a rehabilitation strategy. 

It is not always technically easy to represent the physical reality 
of these problems in the laboratory or to design models at a 
reasonable cost. The mathematical and numerical modeling of the 
flow of fluids in porous media has for some decades made 
considerable progress in the wake of the rapid development of the 
means of calculation. The flow is modeled by nonlinear partial 
differential equations. These equations rarely have analytical 
solutions, or at the cost of simplifications which make the model 
without practical interest. It is rather by the various numerical 
approximation methods that these equations are solved. The 
nonlinear character of the properties of the porous media of 
variable saturation, the high heterogeneity of these media and the 
mixed nature of certain boundary conditions such as those 
prevailing on the soil-atmosphere interface, make the problem 
singularly difficult and require the implementation of robust and 
efficient approximation methods. 

In this study, we propose a mixed formulation in volumetric 
water content and in interstitial pressure head. The time 

discretization is performed with an implicit Euler scheme with 
variable time step. In space, a finite element method is used. The 
nonlinear problem is solved by the method of successive iterations. 
Although the method is of the first order, taking into account the 
variations of the volumetric water content in the iterative scheme 
makes it possible to obtain the convergence with a good 
conservation of the mass. 

As applications, we first propose the study of the classic 
problem of infiltrations of water in a very dry environment. It is a 
question of testing the convergence and the robustness of the 
proposed method in comparison with the results of the literature. 
Subsequently, the case of flow in a heterogeneous medium is 
examined. We study more precisely the flow of water in a medium 
formed of several layers of materials of different textures. The flow 
conditions through these layers are often complex due mainly to 
the non-linear behavior of the various hydraulic variables of the 
medium and their discontinuity in the passage from one layer to 
the other. Due to the contrast of the saturation state between the 
layers, a capillary barrier effect occurs at their interface. This can 
greatly reduce the movement of fluids (water and air) between 
layers. This mechanical phenomenon has been extensively 
exploited in the design of recovery systems for storage sites of 
various types of waste (industrial, mining, domestic, etc.). These 
systems contribute to the isolation of these releases from their 
immediate environment by restricting the movement of water and 
oxygen. The general characteristics of multi-layer barriers have 
been dealt with extensively in the mining and geotechnical 
literature see [1-4]. 
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2. Equations of flow 
Unsaturated subsurface media are triphase: the medium 

skeleton is the solid phase, water and air form the liquid and 
gaseous phases, respectively. When the skeleton is assumed to be 
rigid and immobile, and air is at atmospheric pressure, the flow of 
water is governed by Richards' equation [5] . It is a simple 
(seemingly) equation model describing the evolution of volumetric 
water content in unsaturated soils. The Richards equation is 
obtained from the law of conservation of the mass of water and a 
law of behavior, the law of Darcy [6]. The Richards equation in a 
mixed formulation, volumetric water content and interstitial 
pressure head, is: 

�

∂θ
∂t

+ ∇ ∙ u = f  

 in Ω                                                      (2.1)
u = −K(∇h + ∇z)  

 

Where Ω  is a domain of the plane ℝ2  (or the space ℝ3 ) 
representing (geometrically) the porous medium, θ  is the 
volumetric water content ([L3 L−3] dimensionless), u is the Darcy 
velocity [L T−1], h is the interstitial pressure head [L], f is a source 
function [T−1]  and z  is the elevation [L] . K  is the hydraulic 
conductivity tensor [L T−1] of the medium that is written in the 
form: 

K = KA K = KA ks kr 

Where KA  is the anisotropy tensor, K  is the hydraulic 
conductivity, ks  is the hydraulic conductivity of the medium at 
water saturation and kr is the relative conductivity. 

To the equation (2.1) are associated constitutive relationships 
between the volumetric water content and the interstitial pressure 
head on the one hand, and between the hydraulic conductivity and 
the interstitial pressure head on the other hand. These are empirical 
relationships such as those proposed by [7], Van Genuchten  at 
1980: 

θ(h) =

⎩
⎨

⎧θr +
θs − θr

[1 + |αh|n]m h < 0  

                                     (2.2)
θs h ≥ 0  

 

and 

K(h) = �
ks kr                         h < 0  

                                       (2.3)
ks                        h ≥ 0  

 

with: 

kr = Sc1 2⁄  �1 − �1 − Sc1 m⁄ �
m
�
2

,     m = 1 −
1
n

   for n

> 1,     and     Sc =
θ − θr
θs − θr

 

Where: 𝜃𝜃𝑟𝑟  is the residual water content and 𝜃𝜃𝑠𝑠  is the water 
content at saturation. 

Note 1: 

In the literature, the Richards equation is also written and 
studied in a so-called interstitial pressure formulation. To obtain 
this formulation, we put: C(h) = ∂θ

∂h
, thus equation (2.1) becomes: 

�
C(h)

∂θ
∂t

+ ∇ ∙ u = f  

      in Ω
u = −K(∇h + ∇z)  

 

where: C(h) is the hydraulic capacity function of the medium. 
In order to solve mathematically the partial differential equation 
(2.1), it is associated with initial and boundary conditions. 

Initial conditions 

We suppose that: 

h(x, z, 0) = h0(x, z)                    in Ω 

where: h0 is a given function on Ω. 

Boundary conditions 

We can associate to the equation (2.1) several types of 
boundary conditions according to the physical model studied: 

Dirichlet boundary conditions 

ℎ(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = ℎ𝐷𝐷(𝑥𝑥, 𝑧𝑧, 𝑡𝑡)                    on Γ𝐷𝐷 × R+ 

Neumann boundary conditions 

−[K(∇h + ∇z)] ∙ n = σn(x, z, t)              on ΓN × R+ 

Gradient boundary conditions 

−[K ∇h)] ∙ n = σG(x, z, t)                     on ΓG × R+ 

where: ΓD, ΓN and ΓG are respectively parts of the boundary of 
the domain Ω and hD, σn and σG are given functions and n is the 
normal external to ΓN  and ΓG . In flow models across soils of 
varying saturation, boundary conditions are not reduced to the 
previous types. Non-standard conditions are imposed as seepage 
boundary conditions, atmospheric boundary conditions, and free 
drainage boundary conditions. 

The seepage boundary conditions consist in imposing the 
interstitial pressure head at atmospheric pressure on parts ΓS , a 
priori unknown, of a surface, subject to a potential seepage. 

h = 0                  on ΓS × R+ 

The atmospheric boundary conditions are applied to the 
surface of the soil to take into account the physical phenomena of 
precipitation and evaporation on the surface Γ𝐴𝐴. These conditions 
must respect the constraints of the state of saturation or not of the 
soil in the vicinity of the surface in the form of the two inequalities: 

|K(∇h + ∇z) ∙ n| ≤ ES                         on ΓA × R+ 

and 

hA ≤ h ≤ 0                                      on ΓA × R+ 

where: ES is the maximum potential flux on the surface and hA 
is the minimum pressure head under current soil conditions. 

The boundary conditions of free drainage consist in imposing 
the Neumann condition with: σG(x, z, t) = 0.  

3. Discretization 

There is a vast literature on the numerical study of the Richards 
equation, both with the finite difference method and with finite 
element method see [8-15]. 
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The finite element method has the advantage of taking into 
account general boundary conditions and allows to study the 
equation of the flow in complex geometries. In addition, the finite 
element method is flexible and practical. 

The main difficulty of the numerical resolution of the Richards 
equation is its nonlinearity in h by the volumetric water content 
θ(h) and the hydraulic conductivity K(h) on the one hand, and the 
discontinuities due to heterogeneity of the environment on the 
other hand. Numerical methods present convergence difficulties as 
soon as these functions undergo sudden transitions in the vicinity 
of certain values of the interstitial pressure head. This is the case, 
for example, during the propagation of the wetting front in dry soil. 
The solutions exhibit instabilities with bad mass conservation see 
[9, 16, 17]. 

In the literature, the Richards equation is written and 
discretized under three types of formulations: in h, in θ and in h 
and θ. These formulations are formally identical, but sometimes 
produce different numerical results [18-20]. The formulation in h 
does not ensure a good conservation of the mass unless we 
consider a fine mesh and a small time step. The formulation in θ 
gives a very good conservation of the mass [9], but it does not 
make it possible to treat correctly the flow in the saturated zones, 
because the equation degenerates. The so-called mixed form in h 
and θ, for its part, ensures a good approximation of the solution 
and a better conservation of the mass. A discussion of this subject 
in the one-dimensional case is found in [9], [18]. The choice of 
iterative methods, such as Newton-Raphson or the method of 
successive approximations (Picard) as well as their various 
variants, also depends on the considerations of the cost in 
computation time. 

In this section, we study the approximation of the solutions of 
the Richards equation. We use a finite difference scheme for time 
discretization with a variable time step. On each time step, we 
obtain a nonlinear stationary problem, which is solved after 
linearization by an iterative method. At each iteration, a linear 
problem is solved by a standard finite element method. 

3.1.  Time discretization    

In the following, we present the time discretization of the 
Richards equation in the so-called mixed form h and θ: 

                            
∂θ
∂t
− ∇ ∙ [K(h)(∇h + ∇z)] = f                       (3.1) 

We denote by ∆t the time step and by t0, t1, … , tn, tn+1, … the 
points of the discretization, with tn+1 = tn + ∆t. We also denote 
by hn, θn and fn respectively the values of h, θ and f at time tn, ie 
hn = h(∙, tn) , θn = θ(h(∙, tn))  and fn = f(∙, tn) . The 
discretization of (3.1) by the implicit Euler scheme leads us to 
solve the nonlinear problem, finding hn+1 satisfying: 

⎩
⎪
⎨

⎪
⎧θ

n+1 − θn

∆t − ∇ ∙ �K�hn+1� �∇hn+1 + ∇z�� = fn+1    in Ω  

hn+1(x, z) = hD(x, z, tn+1)                                        on ΓD     (3.2)
−K�hn+1� �∇hn+1 + ∇z� ∙ n = σN(x, z, tn+1)         on ΓN  

 

To be able to write an iterative scheme of successive 
approximations of this problem, we must first linearize the 
function θ(h). If we denote by hn+1,ϑ, hn+1,ϑ+1 the  ϑ + 1  th and 

ϑ  th approximation of hn+1 , we then write using the Taylor 
formula : 

θn+1,ϑ+1 − θn+1,ϑ = θ�hn+1,ϑ+1� −  θ�hn+1,ϑ�

≈
dθ
dh

�hn+1,ϑ� �hn+1,ϑ+1 −  hn+1,ϑ�        (3.3) 

or 

θn+1,ϑ+1 − θn+1,ϑ = θ�hn+1,ϑ+1� −  θ�hn+1,ϑ�
≈ C�hn+1,ϑ� �hn+1,ϑ+1 −  hn+1,ϑ�       (3.4) 

The linearization of (3.2) is written in the form 

⎩
⎨

⎧ 𝐂𝐂(𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝)
𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝+𝟏𝟏 −  𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝

∆𝐭𝐭 − 𝛁𝛁 ∙ [𝐊𝐊(𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝) (𝛁𝛁𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝+𝟏𝟏 + 𝛁𝛁𝛁𝛁)] = 𝐟𝐟𝐧𝐧+𝟏𝟏 −
𝛉𝛉𝐧𝐧+𝟏𝟏,𝛝𝛝 −  𝛉𝛉𝐧𝐧

∆𝐭𝐭 𝐢𝐢𝐢𝐢 𝛀𝛀  

𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝+𝟏𝟏(𝐱𝐱, 𝐳𝐳) = 𝐡𝐡𝐃𝐃(𝐱𝐱, 𝐳𝐳, 𝐭𝐭𝐧𝐧+𝟏𝟏)                                                                                                            𝐨𝐨𝐨𝐨 𝚪𝚪𝐃𝐃 (𝟑𝟑.𝟓𝟓)
−𝐊𝐊(𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝) (𝛁𝛁𝐡𝐡𝐧𝐧+𝟏𝟏,𝛝𝛝+𝟏𝟏 + 𝛁𝛁𝛁𝛁) ∙ 𝐧𝐧 = 𝛔𝛔𝐍𝐍(𝐱𝐱, 𝐳𝐳, 𝐭𝐭𝐧𝐧+𝟏𝟏)                                                                        𝐨𝐨𝐨𝐨 𝚪𝚪𝐍𝐍  

 

The iterative process (3.5) is called by some authors a method 
of modified Picard iterations  [9, 18]. 

Note 2: 

In the equation (3.2) we could have linearized the function 
K(hn+1), as we did for θ(hn+1), by writing its Taylor expansion to 
the order 1 in the neighborhood of a given approximation hn+1,ϑ, 
which will naturally involve the derived from dK/dh. This would 
lead to an iterative second order scheme of the Newton type. From 
this point of view, scheme (3.5) appears in fact as an 
approximation of Newton's method. The use of the Newton 
method is advantageous in the case of very dry soils where it 
converges faster, but with a higher cost [18]. 

3.2. Finite element discretization   

We decompose the domain of the flow Ω into a finite number 
of elements. The approximate resolution of (3.5) by the finite 
element method in a standard Galerkin type formulation consists 
in determining the solution hn+1,ϑ+1 in the form: 

hn+1,ϑ+1 = �φj hj
n+1,ϑ+1

nn

j=1

 

Where: nn  denotes the number of interpolation nodes, 
{φ1, … ,φnn} are the basic functions of the Lagrange interpolation 
space, and hj

n+1,ϑ+1 is the degree of freedom of hi
n+1,ϑ+1 at the jth 

node. Galerkin's method amounts to writing that hi
n+1,ϑ+1 verifies 

(3.5) in the weak sense, that is, the integral identity: 

� �C�hn+1,ϑ�
hn+1,ϑ+1 −  hn+1,ϑ

∆t
φi + K�hn+1,ϑ� ∇hn+1,ϑ+1 ∙ ∇φi

 

Ω

+ K�hn+1,ϑ� ∇z ∙ ∇φi +
θn+1,ϑ −  θn

∆t
φi − fn+1φi� dΩ

= � σN φi dΓ
 

ΓN
                                                                        (3.6) 

for any basic function φi. 

By introducing the explicit form of the terms of identity (3.6), 
we obtain the linear systems. 

�
[Mn+1]
Δt

+ [An+1]�  �hn+1,ϑ+1� = {Qn+1} 
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where: [Mn+1] is the mass matrix given by: 

Mij
n+1 = � C�hn+1,ϑ� φi φj dΩ

 

Ω
 

 [An+1] is the stiffness matrix 

Aij
n+1 = �K�hn+1,ϑ� ∇φi ∙  ∇φj dΩ

 

Ω
 

end the vector Qn+1 is given by 

Qij
n+1 = ��fn+1φi − K�hn+1,ϑ� ∇z ∙ ∇φi � dΩ

 

Ω

+  
1
∆t
��C�hn+1,ϑ��hn+1,ϑ� − θn+1,ϑ

 

Ω

+  θn� φi dΩ + � σN φi dΓ
 

ΓN
  

for : i, j =  1, nn. 

We have thus reduced the approximation of the problem (2.1) 
to the resolution of a linear system of type (3.7) on each time step. 

Resolution algorithm 

1. Given tmax  the maximum time of the simulation, and 
∆tmin ≤ ∆t ≤ ∆tmax the interval of the time steps 

2. Given N the maximum number of non-linear iterations 

3. Given ε and δ respectively the tolerances on the interstitial 
pressure head and the volumetric water content 

4. Loop on the time steps: t = t n+1 , tn+2 , … , tmax 

5. Loop on non-linear iterations: ϑ = 0, 1, … , N      

                                  For  ϑ = 0, put hn+1,0 = hn      

6. Calculate hn+1,ϑ+1 solution of the linear system �[Mn+1]
Δt

+

[An+1]�  �hn+1,ϑ+1� = {Qn+1}      

7. If �hn+1,ϑ+1 − hn+1,ϑ� ≤ ε and  �θn+1,ϑ+1 − θn+1,ϑ� ≤ δ     

                         Convergence achieved on non-linear iterations       

                         To pose : hn+1 = hn+1,ϑ+1     

                         Return to step 3 with t = tn+2    

8. If the maximum number of iterations on N is reached  

                                 Convergence not achieved in N iterations 

                                  Reduce time step 

                                  Return to step 3 with t = tn+1  

Note: 

The test on θ (step (7)) allows a better control of the volumetric 
water content and ensures a better convergence and conservation 
of the mass. 

3.3. Linear system resolution 
The linear system obtained in (3.7) is of the form: Ax = b, 

where A is a symmetric and definite positive sparse matrix N × N, 

and b is a vector of ℝN  given, x is the unknown vector of ℝN . 
When Matrix A  is small, the system can be solved by a direct 
method such as the Gauss or Choleski elimination method. If, on 
the other hand, A is large, it is more advantageous to use iterative 
methods such as the conjugate gradient method or the 
preconditioned conjugate gradient method. In our case, we use the 
conjugate gradient method preconditioned by incomplete LU 
factorization [21]. 

4. Numerical simulations 

In this section, some examples of flow tests in porous media 
are presented. The main aim is to demonstrate the effectiveness of 
the formulation used and the robustness of the finite element 
method. This is particularly illustrated in the case of water 
infiltration in very dry porous media as well as in the case of 
drainage in heterogeneous media. 

4.1. Infiltration in a homogeneous column 

The classical problem of infiltration of water into a 
homogeneous porous column is considered. This example has 
been widely used by several authors to validate their numerical 
methods for solving flow problems in porous media of variable 
saturation. See [9, 18, 20, 22, 23, 24]. The hydraulic properties of 
the medium are: 

θr θs α ks (cm/s) 

0,102 0,368 0,0335 0,00922 

Figures 1 and 2 show the characteristics of the medium, θ(h) 
and K(h). 

 
Figure 1: Hydraulic conductivity 

 
Figure 2: Volumetric water content 

In this first test, the height of the column is L = 30 cm. The 
initial condition is h(. ,0) = − 1 000 cm , while the boundary 
conditions are h(L, t) = − 75 cm at the surface of the column and 
h(. ,0) = − 1 000 cm on its base. The simulation time is 6 hours. 
A regular mesh has been produced with the height of the elements 
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∆z = 0,25 cm. It has been used with several time steps, from the 
finest ∆t = 0,1 s to the widest 50 s ≤ ∆t ≤ 500 s. The solutions 
obtained are quite comparable to those of Lehmann in [18], and to 
the semi-analytical solution of Philip [25] as well as those obtained 
by [9]. We also considered a fine mesh with elements of size ∆z =
0,1 cm and a time step ∆t = 0,1 s. This mesh was used to calculate 
the comparison solution. In the case of the fine mesh and the small 
time step, the same results are obtained with a good conservation 
of the mass. In figures 3 and 4, the curves of the interstitial pressure 
head and the curves of the volumetric water content as a function 
of the elevation for a regular mesh, whereas in figures 5 and 6 the 
same representations in the case of fine mesh. 

 
Figure 3: Interstitial pressure head 

(regular mesh ∆z = 0,25 cm) 

 
Figure 4: Interstitial pressure head 

(regular mesh ∆z = 0,25 cm) 

 
Figure 5: Interstitial pressure head 

(fine mesh ∆z = 0,1 cm) 

 
Figure 6: Volumetric water content 

(fine mesh ∆z = 0,1 cm) 

Figure 7 shows the curve of the interstitial pressure head as a 
function of the calculated elevation and the curve of the semi-
analytical solution of Philip [25]. 

 
Figure 7: Interstitial pressure head (regular mesh, fine mesh and Philip [25]) 

4.2. Infiltration in a heterogeneous (multilayer) column 

An example given by Lehman in [18]. It is a heterogeneous 
column of height L = 180 cm. In this example, it is sought to test 
the hydraulic behavior of a heterogeneous medium with boundary 
conditions relating to a wetting and drainage cycle. The porous 
medium consists of three layers each 60 cm thick. The hydraulic 
parameters of the first and the third layer (Berino loamy fine sand) 
and those of the second layer (Glendale clay loam) are given by: 

Table 1: Hydraulic parameters of the first and the third layer 

 Berino loamy fine sand Glendale clay loam 

θr 0,0286 0,1060 

θs 0,3658 0,4686 

α cm−1 0,0280 0,0104 

n 2,239 1,3954 

ks (cm/j) 541 13,1 

The characteristics of the medium, θ(h) and K(h) are shown in 
figures 8 and 9. 
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       Figure 8: Hydraulic conductivity 

             
      Figure 9: Volumetric water content 

At the top of the column, atmospheric boundary conditions are 
predicted with precipitation and evaporation, figure 10. 

     
Figure 10: Precipitation and Evaporation 

Free drainage conditions are imposed at the bottom of the 
column. Two types of tests were carried out: a first test with the 
initially wet medium and a second initially dry test. 

     
Figure 11: Interstitial pressure head 

(fine mesh h(∙ ,0) = −100 cm) 

I) Initially wet medium 

The initial interstitial pressure head is taken as h(. ,0) =
−100 cm. We first considered a regular mesh, with the height of 
elements ∆z = 5,0 cm. For the time steps, 0,01 ≤ ∆t ≤ 1,0 was 

used. Thereafter, a mesh with element height ∆z = 1,0 cm was 
used. In both cases, we find the same results as Lehman and al. 
[18], figures 11 and 12. In figure 12, it is noted that the middle 
layer has been saturated rapidly, while the top and bottom layers 
desaturate. Thus we are in the presence of an effect of capillary 
barrier between layers. 

 
Figure 12: Volumetric water content 

(fine mesh h(∙ ,0) = −100 cm) 

II) Initially dry medium 

For this test, it is assumed that the three media are initially very 
dry. The initial interstitial pressure head is taken as h(. ,0) =
−10 000 cm and as a time step, successively ∆t = 0,1 days and 
∆t = 1,0 days. To obtain good convergence, we have considered 
the fine mesh (∆z = 1,0 cm) associated with a rather small time 
step (∆t = 0,0001 days). Figures 13 and 14 shows the interstitial 
pressure head and the volumetric water content. As in the previous 
case, a capillary barrier effect is highlighted. Although the medium 
was initially dry h = −10 000 cm, the layer of fine material in the 
middle of the column saturates quite rapidly, while that of the top 
remains slightly saturated and that of the bottom always dry, figure 
14. 

 
Figure 13: Interstitial pressure head 

(fine mesh h(∙ ,0) = −10 000 cm) 

 
Figure 14: Volumetric water content 

(fine mesh h(∙ ,0) = −10 000 cm) 
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4.3. Drainage in a heterogeneous column (dry barriers) 

This is an example of covers with capillary barrier effects from 
the authors' work in  [26]. An initially saturated multilayer medium 
is drained. The layers are of materials with highly contrasted 
hydraulic properties. The values of the parameters characterizing 
the covering materials are: 

 Sand Unreactive mining 
rejection 

θr 0,0490 0,0456 

θs 0,39 0,41 

α cm−1 0,0290 0,0017 

n 10,2100 2,1366 

ks (cm/j) 2,10x10-2 6,58x10-5 

The geometry is a vertical column of height 𝑛𝑛 = 110 cm 
containing a layer of unreactive mining rejection (fine silty 
material) 60 cm thick confined between two layers of sand (coarse 
material) 30 cm thick for the bottom layer and of 20 cm thick for 
the top layer. The medium was initially saturated (the interstitial 
pressure head was zero everywhere), thereafter a free drainage 
condition was imposed at the base of the column. The simulation 
is 60 days. Both layers of sand drain very quickly, figure 15. On 
the second day, the water content and pressure curves stabilized. 
The volumetric water content of the fine layer remains 
substantially at its saturation value, figure 16. 

 
Figure 15. Interstitial pressure head 

 
Figure 16. Volumetric water content 

5.  Conclusion 

A finite element method has been developed for calculating the 
distribution of the interstitial pressure head and the volumetric 
water content in a water flow through a heterogeneous porous 
medium such as soil with variable saturation and initially dry. In 
the resolution, boundary conditions close to the actual conditions 

are taken into account. In particular, mixed-type conditions 
corresponding to atmospheric conditions on the soil surface. 
Conventional flow tests in the columns have proved the robustness 
and stability of the method with good conservation of the mass. 
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