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 This paper describes what can be accomplished by understanding sound environments. 
Understanding sound environments is achieved by extracting the features of the sound and 
visualizing the features. The visualization is realized by converting the three features, 
namely, loudness, continuity, and pitch, into RGB values and expressing the sound with 
color, where the color is painted in the estimated direction of the sound. The three features 
can distinguish falling objects within a building and roughly estimate the direction of the 
generated sounds. The effectiveness of the proposed sound visualization was confirmed using 
the sounds of cans and stones falling in a building; hence, it is shown that the proposed 
visualization method will be useful for monitoring the collapse of buildings by sound. 
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1. Introduction  

Techniques for understanding environments are used to obtain 
sensor-related information in environmental measurements. For 
example, in terms of monitoring buildings, the analysis of camera 
and accelerometer sensor data is used to understand the current 
state of the building and the differences from its past state (e.g., 
[1]). A camera can capture images of an entire building, and an 
accelerometer can detect building vibrations. However, the camera 
only detects events within its field of view and the accelerometer 
only detects vibrations in its surroundings. Further, these sensors 
can only be installed in the monitoring area, thereby providing 
limited coverage, since it is difficult and risky to install sensors 
under collapse risk. Alternatively, sounds can reach sensors such 
as microphones for detection. Moreover, if a microphone array is 
used as the sound sensor, the sound source direction can be 
estimated. Therefore, sound sensors can allow more flexible 
monitoring of  buildings than cameras and accelerometers. 

Considering the benefits of sound sensing, we propose a 
method for analyzing environmental sounds aiming to evaluate the 

difference from the past state of buildings, which is called building 
health monitoring, by extracting their features and estimating the 
direction of sound sources. As precursory sounds often occur 
before building collapse, such sounds may be detected and 
characterized by extracting sound features. 

Aiming to perform building health monitoring, a visualization 
method for sound features based on sound localization to facilitate 
analysis has been introduced. In most cases, sound monitoring is 
simply performed by recognizing measured environmental sounds 
for applications, such as elderly people (e.g., [2], and references 
therein). On the other hand, the proposed method can provide 
awareness of changes in buildings by providing a visual 
representation of environmental sounds. The sound features of 
loudness, continuity, and pitch are considered. These features are 
quantified using spectrograms and chromagrams. Then, a visual 
representation of the sound features along with their estimated 
source position are obtained. The proposed visualization technique 
was evaluated using experimental sound signal data generated at a 
building in Gunkanjima (Hashima), Japan. Our method is a novel 
paradigm for sound monitoring and a novel contribution to 
building health monitoring. 

 

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Mitsuru Kawamoto, Kashiwa II Campus, University of 
Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, +81 3 3599 8543 & 
m.kawamoto@aist.go.jp. 
†A preliminary version of this paper was presented at DCOSS2020. 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 01-06 (2021) 

www.astesj.com   

Special Issue on Innovation in Computing, Engineering Science & Technology 

https://dx.doi.org/10.25046/aj060601  

http://www.astesj.com/
mailto:m.kawamoto@aist.go.jp
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060601


M. Kawamoto et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 01-06 (2021) 

www.astesj.com     2 

2. Materials and Methods 

2.1. Data Acquisition 

We evaluate the proposed visualization technique which can be 
used for building health monitoring, using measurements obtained 
from a sound sensor (microphone array). Figure 1 shows 
Gunkanjima (Hashima), a World Heritage site in Nagasaki, Japan. 
The microphone array is installed as shown in Figure 2 on the 
second floor of building No. 30 (enclosed in black circle of Figure 
1(a)) of Gunkanjima. The method is applied to verify the feasibility 
of determining the building status by analyzing environmental 
sounds. Building No. 30 is the oldest reinforced concrete building 
in Japan and is at risk of collapsing. The microphone array is 
comprised of 16 microphones (each arrow in the righthand side of 
Figure 2 shows a cluster of four microphones). 

 
(a) 

 

(b) 

Figure 1: (a) Bird’s eye view and (b) cityscape of Gunkanjima, Japan 

 
Figure 2: Microphone array installed in Building No. 30 of Gunkanjima (Hashima 

Island), Japan. 

2.2. Sound Model of an Array with M Microphones 

The sounds measured with the microphone array (Figure 2) are 
analyzed in the frequency domain. Then, taking the short-time 
Fourier transform of each microphone input at time t, the following 
model is obtained [3]: 

y(t,ω) = A(t,ω)s(t,ω) + n(t,ω), (1) 

where y(t,ω) = [Y1(t,ω), …, YM(t,ω)]T is the input vector of the 
microphone array, with m-th element Ym(t,ω) of the vector, at time 
t and frequency ω; M (= 16) denotes the number of microphones 
in the array; and the superscript T denotes the transpose. 
Additionally, A(t,ω) is a matrix of transfer function vectors defined 
as 

    A(ω) = [a1(ω), …, aL(ω)], (2) 

where s(t,ω) = [S1(t,ω), …, SL(t,ω)]T is the source spectrum vector 
of the L sound sources in the measurement environment and n(t,ω) 
= [N1(t,ω), …, NM(t,ω)]T, a background noise spectrum vector, 
carries the assumption of following a zero-mean Gaussian 
distribution. We assume ai(ω) = [A1i(ω),…AMi(ω)]T to be a transfer 
function that can be premeasured using time-stretched pulses [4]. 
We design time-stretched pulses to measure the impulse response, 
and the energy of the impulse signal is dispersed over time using a 
filter [4]. This filter is used to advance (or delay) the phase in 
proportion to the square of the frequency. Therefore, ai(ω) can be 
obtained by applying the inverse of the filter to the time-stretched 
pulse response. 

2.3. Sound Source Features 

In building health monitoring, it is necessary to detect the 
location, magnitude, and duration of an eventual collapse. Hence, 
the loudness, continuity, and pitch features are extracted from the 
sounds observed by the microphone array. To visualize the sound 
features, a color map is drawn at the estimated sound locations to 
analyze the types of generated sounds. The proposed method for 
the building health monitoring displays information in the color 
map, which we call a sound map. 

 
Figure 3: Sample environmental sound. 

The observed environmental sounds are divided into 1-second 
segments, as illustrated in Figure 3. The short-time Fourier 
transform is applied to each segment to determine the loudness, 
continuity, and pitch, as detailed below. 

1) Loudness Feature 

Loudness is important to characterize environmental sounds 
during building collapse. This information is represented by a 
sonogram, which we obtain via the MATLAB Music Analysis 
toolbox [5]. The estimation of the loudness per frequency band is 
performed using auditory models and the function ma_sone in the 
MATLAB toolbox, where the specific loudness sensation (in 
sones) per critical band (in Bark scale) is calculated in six steps. 1) 
The fast Fourier transform is used to calculate the power spectrum 
of the audio signal. 2) According to the Bark scale [6], the 
frequencies are bundled into 20 critical bands. 3) The spectral 
masking effects are calculated as in [7]. 4) The loudness is 
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calculated in decibels relative to the threshold of hearing (decibels 
with respect to sound pressure level—dB-SPL). 5) From the dB-
SPL values, equal loudness levels in unit phones are calculated. 6) 
The loudness is calculated in sones based on [8]. (Regarding detail 
of the six steps, see [9]). Figure 4 shows the sonogram in the Bark 
scale of the sound depicted in Figure 3. 

 
Figure 4: Sonogram in Bark scale of the sound in Figure 3. 

The frequency histogram of the sonogram is also computed [5], 
and the histogram is resampled to 8 bits using the magnitude 
relation for the median of the histogram. The score expressing the 
information can then be obtained by converting each 8-bit value 
into the corresponding decimal value. An environmental sound 
with several variations in loudness sensation per frequency band is 
indicated by a higher score. 

2) Continuity Feature 

We use pitch variations of environmental sounds with respect 
to time t to measure the continuity of sounds. Therefore, continuity 
is expressed as a score obtained from a feature representing the 
pitch variation of the environmental sound.  

 
Figure 5: Chromagram of the sound in Figure 3 

The corresponding chromagram, like the one shown in 
Figure 5, can be calculated using pitch features as those illustrated 
in Figure 3 by applying the method in [10]. Namely, we use the 
MATLAB Chroma toolbox to calculate the chromagram [11]. 
Subsequently, a differential chromagram is determined from the 
initial chromagram (Figure 5) using command diff in MATLAB, 
and the discrete cosine transform is applied to the differential 
chromagram (Figure 6). Based on this result, a time-domain 
histogram is then calculated. Continuity information is thus 
represented by a score obtained from the time-domain histogram 
in a method analogous to that used to obtain the loudness. 

 
Figure 6: Differential chromagram after applying discrete cosine transform for the 

sound in Figure 3. 

The histogram represents the variation of keys over time t. 
Therefore, a low score suggests that key variations of the 
environmental sound do not occur frequently, that is, the sound has 
low continuity. Conversely, a high score indicates frequent key 
variations of the environmental sound, indicating high continuity. 
As environmental sounds contain various keys, we use this score 
to represent continuity. 

3) Pitch Feature 

Pitch information is represented by the corresponding score, 
which is used to determine the type of environmental sound. 

The spectrogram of the sound depicted in Figure 3 is shown in 
Figure 7. Edge extraction is applied to the spectrogram allowing 
the calculation of the number of pixels in its frequency feature 
areas and centroid frequencies. The improved affinity propagation 
method [12] is used to categorize the detected frequency 
characteristic areas of the spectrogram. More details on affinity 
propagation can be found in [13] and [14]. 

Each centroid frequency obtained by improved affinity 
propagation is classified into low-, medium-, or high-frequency 
groups. Then, a frequency group histogram can be established. The 
pitch is obtained from the histogram as a score, for which the 
calculation details can be found in [15]. A low score indicates a 
low dominant frequency of the environmental sound, whereas a 
high score indicates the presence of various frequency 
components. 

http://www.astesj.com/
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Figure 7: Spectrogram of the sound in Figure 3. 

2.4. Sound Localization 
Various methods for estimating sound source directions has 

been proposed (e.g., [16], [17], [18]) . In this paper, using A(ω) 
obtained from (2), the MUSIC [19] is used to estimate the locations 
of sound sources. Details about the estimation of virtual 3D sound 
source positions can be found in [10]. 

2.5. Sound Map from Features 

The loudness, continuity, and pitch scores are used to construct 
a sound map by representing the three scores in a red–green–blue 
color model. The obtained colors are then overlaid on the estimated 
sound source positions. Therefore, unlike conventional sound 
visualization methods such as power spectrum, the proposed sound 
map reflects not only the pitch but also the loudness and continuity 
of the sound in a color model, thus establishing a novel 
representation. 

3. Experimental Results 
3.1. Experimental Setup 

The effectiveness of the proposed method is evaluated by using 
the sounds of falling cans and stones measured by the microphone 
array installed as shown in Figure 2.  

 
Figure 8: Experimental scenario using falling cans and stones that hit the 

second floor of the building as sound sources 

The three hitting points for evaluation are marked with an X in 
Figure 8 and are located on the 2nd floor of the building. The cans 

are dropped from the 4th and 6th floors of the building to 
investigate the difference in the sound features caused by the drop 
height. Figure 8 also shows the placement of the microphone array 
and the person in charge of dropping the cans and stones. 

3.2. Sound Maps 

Figure 9 shows the sound maps obtained from the sound 
sources generated by cans (Figure 9(a)) and stones (Figure 9(b)) 
hitting on the second floor. The color differences mainly 
correspond to loudness and continuity, as listed in Table 1, where 
each feature score is the average across nine trials. There is also a 
difference in pitch. Hence, the sounds of hitting stones have more 
frequency components than those of hitting cans. The three 
extracted features allow to distinguish differences in objects that 
cause sudden sounds, and Figure 9 also demonstrates the correct 
localization of the sound sources. 

 
(a) 

 
(b) 

Figure 9: Sound maps of sound sources generated by (a) cans and (b) stones 
hitting the 2nd floor of the building. The red circle indicates the position of the 

microphone array. 

http://www.astesj.com/
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Table 1: The averages of loudness, continuity, and pitch scores for the sounds 
generated by falling cans and stones hitting on second floor of the building. 

 

 
(a) 

 
(b) 

Figure 10: Sound maps of the sound sources of dropping cans at the (a) 4th and 
(b) 6th floors of the building. 

Therefore, if there are frequency differences in sounds 
generated before and after a building collapses, the three features, 
especially the pitch, can be used to detect them. 

Figs. 10 shows the sound maps of the dropping cans from the 
fourth (Figure 10(a)) and sixth (Figure 10(b)) floors of the 
building, respectively, averaged across three trials. The X marks 
in Figure 11 show the corresponding dropping points for the maps 
in Figure 10. As expected, the colors on the estimated directions 
of the sound sources for both floors are similar. 

 
(a) 

 
(b) 

Figure 11: Dropping points of cans (X marks) from the (a) 4th and (b) 6th floors 
of the building. 

Table 2: Averages of loudness, continuity, and pitch scores for the generated 
sounds of falling cans at the 4th and 6th floors of the building. 

 

 

 

 

 

 

The colors of the sound maps in Figs. 10(a) and (b) reflect the 
difference in floors and are mainly related to variations in the 
continuity score, as listed in Table 2. 

The experimental results indicate the feasibility of using the 
proposed method for visualizing sound features in a building 
health monitoring system that can roughly determine the locations 
and types of environmental sounds in buildings. 

4. Discussion and Conclusions 

Figure 12 shows snapshots of building 30 before (Figure 12(a)) 
and after (Figure 12(b)) a floor collapse (red area). These snapshots 
illustrate the difficulty in determining the collapse through the use 
of images from cameras. Thus, the use of sounds may allow 
effective monitoring of buildings such as those in Gunkanjima, 
which is an uninhabited island. 

 

 Loudness 
score 

Continuity 
score 

Pitch 
score 

Can 158.2 107.3 19.2 

Stone 115.3 179.8.8 32.2 

Floor Loudness 
score 

Continuity 
score 

Pitch 
score 

2 240.0 113.7 25.0 

4 240.0 84.3 16.3 

6 245.3 28.3 26.0 
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(a) 

 
(b) 

Figure 12: Building No. 30 (a) before and (b) after the collapse of the floor (red 
area). 

We propose a method of visualizing sounds which can be used 
for implementing building health monitoring by calculating the 
direction and features of environmental sounds. The proposed 
visualization technique of sound features considering sound 
localization relies on sound maps that reflect the loudness, 
continuity, and pitch of multiple sounds. 

Experiments considering falling cans and stones were 
considered to simulate sounds of a collapsing building. The 
experimental results suggest that, using the proposed method, 
collapsing floors and walls attributable to the damage and 
deterioration of buildings can be localized. Moreover, the 
mechanism of building collapse may be analyzed and clarified by 
using the proposed method. 

The proposed method for building health monitoring using the 
sound measurement will be used to continuously monitor building 
No. 30 of Gunkanjima, Japan, and the building monitoring data 
will be collected. In addition, we will further improve the accuracy 
of sound localization. 
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