
Advances in Science, Technology and Engineering Systems Journal
Vol. 6, No. 6, 60-65 (2021)

www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

ASTES Journal
ISSN: 2415-6698

Modelling and Testing Services with Continuous Time SRML
Ning Yu, Martin Wirsing*

Institute for Informatics, LMU Munich, 80538 Munich, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 31 July, 2021
Accepted: 26 October, 2021
Online: 20 November, 2021

Keywords:
continuous time SRML
Service-Oriented Hybrid
Doubly Labelled Transition
System
differential equations
traffic control system

The SENSORIA Reference Modeling Language (SRML) aims at modelling composite services
at a high level. Continuous time SRML extends SRML so that it can model services whose
components can perform both discrete processes and continuous processes. In order to show
how continuous time SRML is applied, in this paper, we systematically introduce our study on
continuous time SRML in the following approach: First we introduce the theoretical foundation
of continuous time SRML, the Service-Oriented Hybrid Doubly Labeled Transition Systems.
This is the semantic domain over which continuous time SRML is defined and interpreted. Then
we design a case study of a traffic control system. In the case study, we illustrate the scenario of
the system, explain the continuous time SRML model of the system, and show how to transform
the model to a kind of Deterministic Finite Automata that can be used for testing and verification.
Finally, we show our idea of testing our model with the IBM WebSphere Process Server. With
this approach, we come to a conclusion that continuous time SRML can be used to model certain
systems in the real-world, and can be tested with proper tools.

1 Introduction

Service-Oriented Computing (SOC) [1] is a paradigm for distributed
computing, in which computation units are abstracted as services.
The SENSORIA Reference Modelling Language (SRML) [2, 3]
has been developed in the IST-FET integrated project SENSORIA
[4], and it is a prototype domain-specific language for abstracting
service-oriented systems at a high level abstraction. Hybrid systems
arise in embedded control when discrete components are coupled
with continuous components. Continuous time SRML [5] is an
extension of SRML, and it aims at abstracting service-oriented sys-
tems in which hybrid systems are embedded. That is: the discrete
components and continuous components are abstracted as compo-
nents of services. Being different from SRML, continuous time
SRML can be used to formally model services, whose components
can perform both discrete processes and continuous processes that
can be describe by differential equations.

In [6], we introduced the application of continuous time SRML
through the case study of a Traffic Control System. In this paper,
we give a novel systematic presentation of our approach from the
semantic domain of continuous time SRML, to the case study, and fi-
nally to the test environment. Continuous time SRML is interpreted
over Service-Oriented Hybrid Doubly Labeled Transition Systems
[5] (SO-HL2TS). This kind of transition systems extends Service-
Oriented Doubly Labeled Transition Systems [7] (SO-L2TS), so

that each state of a SO-L2TS is lifted to a function mapping a time
interval to an infinite trace of state, over which the differential
equations in continuous time SRML can be interpreted. Our ap-
proach includes two parts: specifying the system with continuous
time SRML modules, and transforming the modules to a hybrid
automaton-like Deterministic Finite Automaton (DFA). In order to
test the system module, we combine IBM Websphere Integration
Designer [8] (WID) and Matlab to form the test environment. WID
is used to implement the continuous time SRML module, and Mat-
lab [9] is used to compute the variables controlled by differential
equations. Thus, the main contribution of this paper is to provide a
way to test or verify the complex systems (like the Traffic Control
System) that is specified with continuous time SRML.

This paper is arranged as follows: In Section 2, we introduce
the related work such as hybrid automata, model checking tools and
the early research of this topic. In Section 3, we introduce HL2TS,
the semantic domain of continuous time SRML. In Section 4, we
show the case study of the traffic control system. In Section 5, we
introduce the testing environment and show the idea of implement-
ing the traffic control system. In Section 6, we make a conclusion
of this paper and introduce our future work.

*Corresponding Author: Martin Wirsing, Oettingenstraße 67,80538 Munich (Germany), +49 89 2180 9154 & wirsing@pst.ifi.lmu.de

www.astesj.com
https://dx.doi.org/10.25046/aj060609

60

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj060609

N. Yu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 60-65 (2021)

2 Related work

SRML is brought forward in [7], and it is used to model impor-
tant properties of services and the business conversations within
and among services in SOC. A service specified with SRML can
only perform discrete activities. Continuous time SRML extends
the semantic domain and syntax of SRML, such that it could ex-
press differential equations which represents the continuous process
performed by services. This essential property of continuous time
SRML enables it be able to model the combination of service-
oriented systems and hybrid systems. We will introduce this in
Section 3.

Hybrid automata [10] are formal models for hybrid systems.
They abstract hybrid systems with graphs and workable representa-
tions. A hybrid automaton consists of a set of variables, a control
graph, some essential conditions and a set of events. These com-
positions match the compositions of a service component that is
specified with continuous time SRML. Thus, a service specified by
continuous time SRML can be transformed to a hybrid automata-
like DFA, this will be introduced in Section 4. Hybrid automata
are interpreted over timed transition systems, while continuous time
SRML is interpreted over SO-HL2TS. Timed transition systems
abstract the duration of a continuous process as a parameter of a
transition. In this way, it is simple and clear for abstracting continu-
ous processes. SO-HL2TS specify continuous processes as traces
of infinite states with definite initial states and finial states. This
enables us to know the values of all the variable of an arbitrary state.

In [11], the author provides another way for modelling hybrid
systems. In that paper, continuous processes are also interpreted
over traces of states. This is the original idea from which the traces
of states in SO-HL2TS come. But in [11], discrete processes are not
modelled between traces of states. In [12], the author also provides
rule schemata for verifying the hybrid systems. Moreover, based on
this work, a model checking tools for hybrid systems, KeYmaera
X, is brought forward in [13]. In [14], provides an approach for
simulating embedded systems with Real-Time Maude. Compared
with our approach for testing, this can be another way to test the
traffic control model, but the interactions of a service would not be
implemented as easy and explicate as that in WID.

3 Continuous time SRML and its seman-
tic domain

Continuous time SRML models composite services, whose elemen-
tary components may involve in continuous time executions. The
services in continuous time SRML are represented with service
modules. A service module is composed of service components,
external service interfaces and internal wires linking between them.
In Figure 1, we see the compositions of a service module. In the
service module, SC is a service component, EX-P is an external
service interface (provides-interface), every EX-R is an external
service interface (requires-interface), and every IW is an internal
wire.

Figure 1: A service module of continuous time SRML

In a service module of continuous time SRML, a service compo-
nent is specified with a business role, an external service interface is
specified with a business protocol, and an internal wire is specified
with a connector. The full syntax of continuous time SRML can be
found in [5], and they are interpreted over SO-HL2TSs.

SO-HL2TSs are extensions of HL2TSs [5, 15] such that they
enrich HL2TSs with service-oriented features. HL2TSs extends the
L2TS [16] in that it defines a set of functions Σ. These functions
map from the real number domain to the state domain of the HL2TS
and can be used to interpret the continuous processes described by
differential equations. The following definition of HL2TS is from
[5, 15].

Definition 1 (Hybrid Doubly Labeled Transition System) A
Hybrid Doubly Labeled Transition System (HL2TS) is a tuple

〈S , s0,Σ, Act,R, AP, L〉

where:

• S is a set of states;

• s0 ∈ S is the initial state;

• Σ is a set of functions and for every function σ ∈ Σ there is
rσ ∈ R and rσ ≥ 0, such that σ : [0, rσ]→ S ;

• Act is a finite set of observable actions;

• R ⊆ {σ(rσ) : σ ∈ Σ} × 2Act × {σ(0) : σ ∈ Σ} is the transi-
tion relation. A transition σ(rσ)

α
−→ σ′(0) with α ⊂ Act, is

denoted by (σ(rσ), α, σ′(0)) ∈ R ;

• AP is a set of atomic propositions;

• L : S → 2AP is a labeling function such that L(s) is the subset
of all atomic propositions that are true in state s.

In Definition 1, the set S of state can be finite or infinite; for
every σ ∈ Σ, the real number rσ is unique, and function σ on the
interval [0, rσ] represents the prolongation of states in the contin-
uous process with the duration rσ; function L is a state labeling
function that defines which propositions are true in each state, and
these propositions are from the fixed set of atomic propositions AP.

In order to add service-oriented features to HL2TSs, we re-
fine HL2TSs with Service-Oriented Transition Systems (SO-TSs)

www.astesj.com 61

http://www.astesj.com

N. Yu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 60-65 (2021)

[2]. SO-TSs are used that models the communications in service-
oriented systems during the computing processes. In a SO-TS,
states and transitions are labelled with certain sub-sets of events
that appear in the computing processes. With such refinements, we
can obtain SO-HL2TSs. The following definition of SO-HL2TSs is
from [5, 15].

Definition 2 (Service-Oriented Hybrid L2TS) A Service-
Oriented Hybrid L2TS (SO-HL2TS) that refines a SO-TS 〈S ,→
, s0,G〉 is a tuple

〈S , s0,Σ, Act,R, AP, L,T IME〉

where:

• Act = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪ {e¿ : e ∈ E};

• R ⊆ {σ(rσ) : σ ∈ Σ} × 2Act × {σ(0) : σ ∈ Σ} is such that:,

σ(rσ)→ σ′(0) iff (σ(rσ), α, σ′(0)) ∈ R for some α ∈ 2Act

• AP = Act ∪ PLG;

• For every σ ∈ Σ and every ζ ∈ [0, rσ], L : S → 2AP is such
that:

L(σ(ζ)) = {e!, e¡, e?, e¿ : e ∈ HS Tσ(ζ)} ∪ PLGσ(ζ)

In Definition 2, the set Act is refined with the sets of events that
are published (denoted by e!), delivered (denoted by e¡), executed
(denoted by e?)and discarded (denoted by e¿) respectively, E is the
set of all the events. The set AP of atomic propositions is labelled
with the set of actions and the set of pledges that associate with
every interaction (the propositions that hold during the time when
the interaction is valid). Every state is labelled with the actions
whose associating events are from the history of the events of that
state, and the pledges that hold in the state. We also specify the time
in each state with the function T IME. The full definition can be
seen in [5]

When applying a function σ ∈ Σ to its interval [0, rσ], we obtain
a infinite trace of states σ0, . . . , σrσ . By connecting traces of states
with possible actions, paths of states are formed. Because a trace
of states represent the evolution of a continuous process, actions
which represent the discrete processes can only take place at the
initial and finial states of each trace. Thus, a transition in a path only
exists between the last state of one trace and the first state of another
trace. This can be seen in the definition of transition relation R in
Definition 2. The following definition of traces and paths of states
is from [5, 15].

Definition 3 (Paths of SO-HL2TSs) Given a SO-HL2TS m =

〈S , s0,Σ, Act,R, AP, L,T IME,Π〉, paths of m are defined as follows:

• For every σ ∈ Σ, σ(0) . . . σ(rσ) denotes the trace of states of
σ where σ(0) is the first state of the trace and σ(rσ) is the
last state of the trace. σ(0) . . . σ(rσ) includes all the states in
the set {σ(ξ)|0 ≤ ξ ≤ rσ}, which can be finite or infinite.

• ρ = (σ1(0) . . . σ1(rσ1), σ2(0) . . . σ2(rσ2), . . .) is a path of m
if there exists an α ∈ 2Act such that for every σi(rσi) and
σi+1(0) with i ∈ N, there exists an α ∈ 2Act such that
(σi(rσi), α, σi+1(0)) ∈ R;

• The states in a path are ordered lexicographically such that,
for every i, j = 1, 2, . . . and ζ ∈ [0, rσi], ξ ∈ [0, rσ j], there is
σi(ζ) ≺ σ j(ξ) iff either i < j, or i = j and ζ < ξ;

• For the states in a path, there is:

– for every i, j = 1, 2, . . . and ζ ∈ [0, rσi], ξ ∈ [0, rσ j],
there is T IMEσi(ζ) ≤ T IMEσ j(ξ) if i < j, and
T IMEσi(ζ) < T IMEσ j(ξ) if i = j and ζ < ξ;

In particular, if T IMEσi(rσi) < T IMEσi+1(0) then the transition
(σi(rσi), α, σi+1(0)) takes time, otherwise if T IMEσi(rσi) =

T IMEσi+1(0) the transition is executed in zero time;

• A path ρ terminates if it is a finite sequence
σ1(0) . . . σ1(rσ1), . . . , σn(0) . . . σn(rσn). In such case the
first state of the trace σ1(0) is denoted by f irstρ and the last
state σn(rσn) is denoted by lastρ;

• The concatenation of traces ρ1 = (σ1(0) . . . σ1(rσ1), σ2(0) . . .
σ2(rσ2), . . .) and ρ2 = (ς1(0) . . . ς1(rς1), ς2(0) . . . ς2(rς2), . . .),
denoted by ρ1 ◦ ρ2, is defined as follows:

– ρ1 ◦ ρ2 = (σ1(0) . . . σ1(rσ1), . . . , σn(0) . . . σn(rσn),
ς1(0) . . . ς1(rς1) . . .) iff ρ1 terminates at σn(rσn) and
(σn(rσn), α, ς0(0)) ∈ R;

– ρ1 ◦ ρ2 = ρ1 iff ρ1 does not terminate;

– ρ1 ◦ ρ2 is not defined in other cases;

• λ is an empty hybrid trace such that for any arbitrary hybrid
trace ρ, ρ ◦ λ = λ ◦ ρ = ρ.

The full semantics of continuous time SRML is defined based
on Definition 2 and Definition 3, and can be found in [5].

4 Traffic control system and the transfor-
mation process

In order to show the application of continuous time SRML, we de-
sign a case study of a traffic control system to control the self-driving
trains. A traffic control system includes a local traffic control center,
a built-in intelligent driving system on a self-driving train, and a
monitoring center. Suppose depending on the data obtained from
the sensors on the train and the built-in intelligent driving system,
the self-driving train can move on their own in most of the driving
time without communicating to the outside. But when approaching
train stations, they need to get additional information from the local
traffic control center, e.g. to know if the station is free, in order to
guarantee safe driving. In addition, the monitoring center needs
to know the status of the train in some condition, so that they can
react in time if the train is not driving safely. In our case study, we
show in a traffic control system, how the intelligent driving system
on a self-driving train communicates with the local traffic control
center and the monitoring center when the train is approaching a
train station. The control scheme of the intelligent driving system
is adapted from the model of a train system in [17], which extends
ETCS [18] level 3 for rail-road crossings.

www.astesj.com 62

http://www.astesj.com

N. Yu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 60-65 (2021)

Figure 2: A brief scenario of the traffic control system

Figure 3: Business Role IDS

Figure 2 shows a brief view of the scenario. In this figure, we
assume that the train station is at point c, and on reaching point a,
the train moves with a constant speed v0. When the train reaches
point a, as it needs to move at a lower speed, the intelligent driving
system sends a request to the local traffic control center, to ask
with which speed the train can move on. Based on the condition of
the current traffic condition, the local traffic control center replies
with the value of the proper speed. On receiving this message, the
intelligent driving system sets a constant speed v1 of this value to
the train. If the local traffic control center finds the traffic is lighter
and the train can move with a higher speed, it sends a message to
the intelligent driving system with the value of the higher speed.
On receiving this message, if the train hasn’t passed point b, the
intelligent driving system sends another request to the local traffic
control center, to ask with which lower speed it can move on in the
future. Before the train reaches point b, this process can repeat for
several times. When the train reaches point b, the intelligent driving

system sends a request to the local traffic control center, to ask with
which deceleration the train can brake. Based on the condition of
the current traffic condition, the local traffic control center replies
with the value of the proper deceleration. On receiving this message,
the intelligent driving system sets the deceleration of the train to
the required deceleration. After the train brakes, if the intelligent
driving system receives the request from the monitoring center, it
sends the current condition (position, speed, deceleration, and so
on) of the train to the monitoring center.

We abstract the whole system with continuous time SRML as a
traffic control service module, and abstract the intelligent Driving
System with business role IDS, the Local Traffic Control Center with
business protocol TCC, and the Monitoring Center with business
protocol MOC. In this paper, we concentrate on the computational
reality of a service module, and ignore the interactions caused by
communications with the outside parties at the service interfaces,
thus, we only make study to the business role IDS.

A business role includes a set of interactions and an orchestration
in which these interactions are organized. An interaction consists of
a type (e.g. s&r) and a name (e.g. VControl) and attributes of event
types (e.g. receive) and parameters (e.g. newSpeed:speed). With
this structure, we can specify events that associate with an inter-
action (e.g. VControl receive), and parameters that associate with
an event (e.g. VControl receive.newSpeed). An orchestration of a
business role includes a set of variables that is local to the service
component abstracted by the business role, a set of initial values of
the variables that identifies the initial state of the service component,
and a set of transitions that model the activities performed by the
service component. A transition consists of a trigger, a guard and
an effect. A trigger is an event or a state condition that specifies
the condition for the transition to occur. A guard is a condition that
identifies the states in which the transition can occur. An effect is
the proposition that is true in the state that follows the state specified
by the guard condition, and represents the effect of the transition. In
the declaration of a transition, we don’t model the actions caused
by the transition (e.g. the assignments of local variables) because
they are not considered in the verification procedure.

Figure 3 shows the specification of business role IDS. IDS con-
tains four interactions and four transition rules. Interaction VCon-
trol denotes the communication between IDS and TCC: when the
train reaches point a, the IDS sends a request to TCC to ask for a
lower speed, and it can receive the reply from TCC with parameter
newSpeed when the train is between point a and point b, the value of
newSpeed is then assigned to local variable v1; interaction VMoveOn
denotes the communication between IDS and TCC: when the train
is between point a and point b and the traffic is lighter, IDS can
receive a message from TCC with parameter newSpeed, indicating
that the train can move with a higher speed, the value of newSpeed
is then assigned to local variable v0; interaction Brake denotes the
communication between IDS and TCC: when the train reaches point
b, the IDS sends a request to TCC to ask for a braking deceleration,
and it can receive the reply from TCC with parameter dec when
the train is after point b, the value of dec is then assigned to local
variable B; interaction BrakeInfo denotes the communication be-
tween IDS and MOC: when the train is between point b and point
c, and it brakes, IDS can receive a request from MOC asking the
current position of the train and the current time, and it replies to

www.astesj.com 63

http://www.astesj.com

N. Yu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 60-65 (2021)

MOC with parameter currPos and currTime, which take the values
of local variable C and t respectively. Transition Nego describes
that the train changes its speed from v0 to v1 when it receives the
slow down message from the local traffic control center; transition
Cont describes that the train changes its speed from v1 to v0 when it
receives the speed up message from the local traffic control center;
transition Corr describes that the train brakes with the deceleration
B when it receives the braking message from the local traffic control
center; transition Stop describes that the train receives the request
message from the monitoring center, and replies with its current
position and the current time. In business roles, the continuous time
executions are specified in the form of differential equations. (e.g.
dC = v0 in Figure 3). In general, in continuous time SRML, the n
th derivative of variable a to time variable t, ∂na

∂tn , is denoted by dna.
The formal semantics of business roles can be found in [5].

Next we take transition Nego as an example to illustrate how
a transition in IDS can be interpreted over a SO-HL2TSs: Sup-
pose a SO-HL2TSs h = 〈S , s0,Σ, Act,R, AP, L,T IME,Π〉 satisfies
IDS (the satisfaction of a business role over a SO-HL2TS can be
found in [5]), σ(rσ)

α
−→ σ′(0) is a transition in h (σ,σ′ ∈ Σ and

α ∈ Act), if VControl receive ∈ α and σ(rσ) |= dC = v0, then
σ′(0) · · ·σ′(rσ′) |= dC = v1. Particularly, formula dC = v1 rep-
resents the differential equation ∂C

∂t = v1 , where t denotes the
continuous time variable. Such a formula expresses that variable
C changes according to the differential equation ∂C

∂t = v1 along the
trace σ′(0) · · ·σ′(rσ′) of h.

In order to be able to test or verify the Traffic-Control module
that is explained in this section, we show how to transform the
business role IDS to a hybrid automata-like DFA. A Deterministic
Finite Automata (DFA) [19] consumes a string of input symbols
over a set of states, and it operates as follows: when inputting a
symbol, the DFA transits from one state to another state, and it does
the transitions until all input symbols have been consumed. In a
business role, if we take the trigger and guard of every transition as
an input symbol, and label the effect of every transition to a state,
then we can construct a DFA based on the business role. According
to the scenario of the traffic control system and the specification of
business role IDS, we can construct the DFA shown in Figure 4.

Figure 4: The DFA for business role IDS

5 The testing environment
IBM WebSphere Process Server (WPS) is an integration platform
for Service Oriented Architecture (SOA), and supports the Service
Component Architecture (SCA) programming model. As a process
engine, WPS provides a hosting environment for business processes
and several Web-based applications. These features of WPS match
the structure and the requirements of continuous time SRML mod-
ules, so we choose WPS as the basic testing environment.

As the implementing tools, we combine WID with Matlab. In
WID, an assembly editor is the central panel where service modules
are built by creating and linking services components and service
interfaces. A service component is specified with an implemen-
tation, some interfaces defining the inputs, outputs and faults of
the service component, and zero or several references which de-
note the interface of other service components connecting to this
service component. Service components can be implemented in
various types, such as Java objects, business processes, and business
state machines. We choose business state machines to implement
our Traffic-Control module, because from Figure 5, we find that
the hybrid automaton based DFA can be mapped to WID business
state machines almost directly. Figure 5 shows the mapping rela-
tions between a continuous time SRML module and a WPS service
module.

Figure 5: Mappings from continuous time SRML module to WPS service module

In a service component, the continuous processes described
with differential equations can be directly implemented with Java
code when there are exact solutions of the differential equations.
Otherwise, we need to solve the differential equations numerically.

www.astesj.com 64

http://www.astesj.com

N. Yu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 6, 60-65 (2021)

In such case, we combine WID with Matlab to achieve our goal.
Matlab [9] is a multi-paradigm numerical computing environment,
and it allows interfacing with programs written in languages such
as C, C++ and Java. In the latest versions of Matlab, there is a
function to wrap programs to Java packages. This function enables
us to write Matlab programs to solve the differential equations in the
service components in WID, and pass the solutions to the service
components by importing the programs packed into Java packages
to WID. We’ll continue to do the implementation and testing in our
future work.

6 Conclusion and future work
In this paper, we give a complete introduction to continuous time
SRML, including the semantic domain of continuous time SRML,
the application of continuous time SRML, and the testing environ-
ment. Continuous time SRML abstracts hybrid system-embedded
service-oriented systems at a high level. The semantic foundation
of continuous time SRML is SO-HL2TS, over which this modelling
language is interpreted. The transitions of SO-HL2TSs enable con-
tinuous time SRML to model the communications between services
or within a service; and the traces of states of SO-HL2TSs enable
continuous time SRML to model the continuous processes per-
formed by service components. Systems modelled with continuous
time SRML can be transformed to hybrid automata-like DFA for
testing and verification. This can be demonstrated by the case study
of the Traffic Control System. By combining IBM WID and Matlab,
we are able to implement the hybrid automata-like DFA.

In our future work, we will show the implementation of the hy-
brid automata-like DFA for the Traffic Control model, and provide
the result of testing. We will also try to verify the Traffic Control
system with KeYmaera X, which is a newly developed model check-
ing tool for hybrid systems. For the transformation presented in
Section 4, we are also working on a systematic approach so that
this can be done automatically by programs. Further, we will try
to enrich continuous time SRML with the expressions of actions,
so that models specified with continuous time SRML match the
business state machines of IBM WID better.

References
[1] D. Georgakopoulos, M. Papazoglou, Service-Oriented Computing, The MIT

Press, Cambridge, Massachusetts, 2009.

[2] J. Fiadeiro, A. Lopes, J. Abreu, “A formal model for service-oriented in-
teractions,” Science of Computer Programming, 77, 577–608, 2012, doi:
10.1016/j.scico.2011.12.003.

[3] J. Fiadeiro, A. Lopes, L. Bocchi, J. Abreu, “The Sensoria Reference Mod-
elling Language,” Lecture Notes in Computer Science, 6582, 61–114, 2011,
doi:10.1007/978-3-642-20401-2 5.

[4] M. Wirsing, M. Hölzl, Rigorous Software Engineering for Service-Oriented
Systems, Springer, 2011.

[5] N. Yu, Injecting Continuous Time Execution into Service-Oriented Computing,
Munich University , Ph.D. thesis, 2016.

[6] N. Yu, M. Wirsing, “The Application of Continuous Time SRML,” in Proceed-
ings of 2020 ICICSE&ICACTE, 99–103, 2020, doi:10.1145/3424311.3424316.

[7] J. Abreu, Modelling Business Conversations in Service Component Architec-
tures,University of Leicester, Ph.D. thesis, 2009.

[8] IBM, IBM Integration Designer V8.5.5 documentation,
https://www.ibm.com/support/knowledgecenter/SSTLXK 8.5.5/com.ibm.wbpm.
wid.main.doc/kc-welcome.html, 2014.

[9] MathWorks, https://www.mathworks.com/,2014-2021.

[10] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of 11th
Annual IEEE Symposium on Logic in Computer Science, 1996, doi:10.1109/

LICS.1996.561342.

[11] K. Cordwell, A. Platzer, “Towards Physical Hybrid Systems,” in Proceedings
of International Conference on Automated Deduction, CADE’19, 216–232,
2019, doi:10.1007/978-3-030-29436-6 13.

[12] A. Platzer, Logical Foundation of Cyber-Physical Systems, Springer,Cham,
2018.

[13] A. Platzer, KeYmaeraX: An aXiomatic Tactical Theorem Prover for Hybrid
Systems, http://www.ls.cs.cmu.edu/KeYmaeraX/index.html, 2021.

[14] M. Fadlisyah, E. Ábrahám, P. C. Lepri, D. Ölveczky, “A Rewriting-Logic-
Based technique for modelling Thermal Systems,” in Proceedings of First Inter-
national Workshop on Rewriting Techniques for Real-Time Systems, PTRTS
2010, 82–100, 2010, doi:10.4204/EPTCS.36.5.

[15] N. Yu, M. Wirsing, “A SOC-Based Formal Specification and Verification
of Hybrid Systems,” in Proceedings of the 22nd International Workshop
on Algebraic Development Techniques (WADT2014), 151–169, 2015, doi:
10.1007/978-3-319-28114-8 9.

[16] R. De Nicola, F. Vaandrager, “Three Logics for Branching Bisimulation,” Jour-
nal of the ACM, 42(2), 458–487, 1995, doi:10.1145/201019.201032.

[17] A. Platzer, J. Ousel, “European Train Control System: A Case Study in
Formal Verification,” in Proceedings of 11th International Conference on
Formal Engineering Methods (ICFEM 2009), 246–265, 2009, doi:10.1007/

978-3-642-10373-5 13.

[18] The Worldwide Railway Organization (UIC), The European Train Control Sys-
tem, https://uic.org/etcs#Standards-and-Specifications, 2015.

[19] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata The-
ory, Languages, and Computation (3rd Edition)., Addison-Wesley Longman
publishing Co., Inc., USA., 2006.

www.astesj.com 65

http://www.astesj.com

	Introduction
	Related work
	Continuous time SRML and its semantic domain
	Traffic control system and the transformation process
	The testing environment
	Conclusion and future work

