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We prove an existence result of entropy solutions for the nonlinear
parabolic problems: ∂b(x,u)

∂t +A(u)−div(Φ(x, t,u))+H(x, t,u,∇u) = f , and
A(u) = −div(a(x, t,u,∇u)) is a Leary-Lions operator defined on the inho-
mogeneous Musielak-Orlicz space, the term Φ(x, t,u) is a Crathéodory
function assumed to be continuous on u and satisfy only the growth con-
dition Φ(x, t,u) ≤ c(x, t)M−1

M(x,α0u), prescribed by Musielak-Orlicz
functions M and M which inhomogeneous and not satisfy ∆2-condition,
H(x, t,u,∇u) is a Crathéodory function not satisfies neither the sign
condition or coercivity and f ∈ L1(QT ).

1 Introduction

Let Ω be a bounded open set of IRN (N ≥ 2), T is a
positive real number, and QT = Ω × (0,T ). Consider
the following nonlinear Dirichlet equation:

∂b(x,u)
∂t +A(u)− div(Φ(x, t,u)) +H(x, t,u,∇u) = f ,

u(x, t) = 0 on ∂Ω× (0,T ),
b(x,u)(t = 0) = b(x,u0) in Ω.

(1)
where A(u) = −div(a(x, t,u,∇u)) is a Leary-Lions oper-
ator defined on the inhomogeneous Musielak-Orlicz-
Sobolev space W 1,x

0 LM(QT ), M is a Musielak-Orlicz-
function related to the growths of the Carathéodory
functions a(x, t,u,∇u), Φ(x, t,u) and H(x, t,u,∇u) (see
assumptions (12), (15) and (16). b : Ω × IR→ IR is a
Carathéodory function such that for every x ∈Ω, b(x, .)
is a strictly increasing C1(IR)-function, the data f and
b(.,u0) in L1(QT ) and L1(Ω) respectively.
Starting with the prototype equation:

∂u
∂t
−4p(u) + div(c(., t)|u|γ−1u) + b|∇u|δ = f , inQT .

In the Classical Sobolev-spaces, the authors in [1] have
proved the existence of weak solutions, with c(., .) ≡ 0.
For c(., .) ∈ L2(QT ) and p = 2, in [2] have proved the
existence of entropy solutions, recently in [3] have
proved an existence results of renormalized solutions

in the case where p ≥ 2 and c(., .) ∈ Lr (QT ) with r > N+p
p−1 ,

and by in [4] for more general parabolic term. For the
elliptic version of the problem (1), more results are
obtained see e.g. [5-7].

In the degenerate Sobolev-spaces an existence
results is shown in [8] without sign condition in
H(x, t,u,∇u).

In the Orlicz-Sobolev spaces, the existence of en-
tropy solutions of the problem (1) in [9] is proved
where H(x, t,u,∇u) ≡ 0 and the growth of the first
lower order Φ prescribed by an isotropic N-function
P with (P ≺≺M). To our knowledge, differential equa-
tions in general MusielakSobolev spaces have been
studied rarely see [10-14], then our aim in this paper
is to overcome some difficulties encountered in these
spaces and to generalize the result of [4, 9, 15, 16], and
we prove an existence result of entropy solution for
the obstacle parabolic problem (1), with less restrictive
growth, and no coercivity condition in the first lower
order term Φ , and without sign condition in the second
lower order H, in the framework of inhomogeneous
Orlicz-Sobolev spaces W 1,x

0 LM (QT ), and N-function M,
defining space does not satisfy the 42-condition.

This paper is organized as follows. In section 2,
we recall some definitions, properties and technical
lemmas about Musielak Orlicz Sobolev , In section 3
is devoted to specify the assumptions on b,Φ , f , u0,
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giving the definition of a entropy solution of (1) and
we establish the existence of such a solution Theorem
4. In section 4, we give the proof of Theorem 4.

2 Musielak-Orlicz space and a
technical lemma

In this part we will define the musielak-Orlicz function
which control the growth of our operator.

2.1 Musielak-Orlicz function

Let Ω be an open subset of IRN (N ≥ 2), and let M be a
real-valued function defined in Ω× IR+ and satisfying
conditions:
(Φ1):M(x, .) is an N-function for all x ∈Ω (i.e. convex,
non-decreasing, continuous, M(x,0) = 0 ,
M(x,0) > 0 for t > 0, limt→0 supx∈Ω

M(x,t)
t = 0 and

limt→∞ infx∈Ω
M(x,t)
t =∞).

(Φ2):M(., t) is a measurable function for all t ≥ 0.
A function M which satisfies the conditions Φ1 and

Φ2 is called a Musielak-Orlicz function. For a Musielak-
Orlicz function M we put Mx(t) = M(x, t) and we as-
sociate its non-negative reciprocal function M−1

x , with
respect to t, that is M−1

x (M(x, t)) = M(x,M−1
x (t)) = t.

Let M and P be two Musielak-Orlicz functions, we
say that P grows essentially less rapidly than M at
0(resp. near infinity, and we write P ≺≺M, for every
positive constant c, we have limt→0

(
supx∈Ω

P (x,ct)
M(x,t)

)
= 0

(resp.limt→∞
(
supx∈Ω

P (x,ct)
M(x,t)

)
= 0

)
.

Remark 1 [12] If P ≺≺ M near infinity, then ∀ε > 0
there exist k(ε) > 0 such that for almost all x ∈Ω we have
P (x, t) ≤ k(ε)M(x,εt) ∀t ≥ 0.

2.2 Musielak-Orlicz space

For a Musielak-Orlicz function M and a mesurable
function u : Ω→ IR, we define the functionnal

%M,Ω(u) =
∫
Ω

M(x, |u(x)|)dx.

The set KM(Ω) = {u : Ω → IR mesurable :
%M,Ω(u) <∞} is called the Musielak-Orlicz class. The
Musielak-Orlicz space LM(Ω) is the vector space gen-
erated by KM(Ω); that is, LM(Ω) is the smallest linear
space containing the set KM (Ω). Equivalently

LM (Ω) = {u : Ω→ IR mesurable : %M,Ω(
u
λ

) <∞,

for some λ > 0}.

For any Musielak-Orlicz function M, we put M(x,s) =
supt≥0(st −M(x,s)). M is called the Musielak-Orlicz
function complementary to M (or conjugate of M) in
the sense of Young with respect to s. We say that a se-
quence of function un ∈ LM (Ω) is modular convergent
to u ∈ LM(Ω) if there exists a constant λ > 0 such that
limn→∞ %M,Ω(un−uλ ) = 0.

This implies convergence for σ (ΠLM ,ΠLM )(see [17]).
In the space LM (Ω), we define the following two norms

‖u‖M = inf
{
λ > 0 :

∫
Ω
M(x, |u(x)|

λ )dx ≤ 1
}
,

which is called the Luxemburg norm, and the so-called
Orlicz norm by

‖|u|‖M,Ω = sup‖v‖M≤1

∫
Ω
|u(x)v(x)|dx,

where M is the Musielak-Orlicz function complemen-
tary toM. These two norms are equivalent [17]. KM (Ω)
is a convex subset of LM(Ω). The closure in LM(Ω) of
the set of bounded measurable functions with com-
pact support in Ω is by denoted EM(Ω). It is a sepa-
rable space and (EM(Ω))∗ = LM(Ω). We have EM(Ω) =
KM (Ω), if and only if M satisfies the ∆2−condition for
large values of t or for all values of t, according to
whether Ω has finite measure or not.
We define

W 1LM (Ω) = {u ∈ LM (Ω) :Dαu ∈ LM (Ω), ∀α ≤ 1},
W 1EM (Ω) = {u ∈ EM (Ω) :Dαu ∈ EM (Ω), ∀α ≤ 1},

where α = (α1, ...,αN ),|α| = |α1| + ... + |αN | and Dαu
denote the distributional derivatives. The space
W 1LM (Ω) is called the Musielak-Orlicz-Sobolev space.
Let %M,Ω(u) =

∑
|α|≤1 %M,Ω(Dαu) and ‖u‖1M,Ω = inf{λ >

0 : %M,Ω(uλ ) ≤ 1} for u ∈W 1LM (Ω).
These functionals are convex modular and a norm on
W 1LM (Ω), respectively. Then pair (W 1LM (Ω),‖u‖1M,Ω)
is a Banach space if M satisfies the following condition
(see [10]),

There exists a constant c > 0 such that inf
x∈Ω

M(x,1) > c.

The space W 1LM (Ω) is identified to a subspace of the
product Πα≤1LM(Ω) = ΠLM . We denote by D(Ω) the
Schwartz space of infinitely smooth functions with
compact support in Ω and by D(Ω) the restriction of
D(IR) on Ω. The space W 1

0 LM(Ω) is defined as the
σ (ΠLM ,ΠEM ) closure of D(Ω) in W 1LM(Ω) and the
space W 1

0 EM (Ω) as the(norm) closure of the Schwartz
space D(Ω) in W 1LM (Ω).
For two complementary Musielak-Orlicz functions M
and M, we have [17].

• The Young inequality:

st ≤M(x,s) +M(x, t) for all s, t ≥ 0 , x ∈Ω.

• The Holder inequality∣∣∣ ∫
Ω
u(x)v(x)dx

∣∣∣ ≤ ‖u‖M,Ω‖|v|‖M,Ω for all
u ∈ LM (Ω),v ∈ LM (Ω).

We say that a sequence of functions un converges to
u for the modular convergence in W 1LM(Ω) (respec-
tively in W 1

0 LM (Ω)) if, for some λ > 0.

lim
n→∞

%M,Ω
(un −u

λ

)
= 0.

The following spaces of distributions will also be used

W −1LM (Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα
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where fα ∈ LM (Ω)
}
,

and

W −1EM (Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα

where fα ∈ EM (Ω)
}
.

Lemma 1 [17] Let Ω be a bounded Lipschitz domain in
IRN and let M and M be two complementary Musielak-
Orlicz functions which satisfy the following conditions:

• There exists a constant c > 0 such that
infx∈ΩM(x,1) > c,

• There exists a constant A > 0 such that for all
x,y ∈Ω with |x − y| ≤ 1

2 , we have

M(x, t)
M(y, t)

≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1,

• For all y ∈Ω,
∫
Ω
M(y,1)dx <∞,

• There exists a constant C > 0 such that

M(y, t) ≤ C a.e. in Ω.

Under this assumptions D(Ω) is dense in LM(Ω) with
respect to the modular topology, D(Ω) is dense in
W 1

0 LM(Ω) for the modular convergence and D(Ω) is
dense in W 1

0 LM (Ω) for the modular convergence.
Consequently, the action of a distribution S in in
W −1LM(Ω) on an element u of W 1

0 LM(Ω) is well de-
fined. It will be denoted by < S,u >.

2.3 Truncation Operator

Tk , k > 0, denotes the truncation function at level k
defined on IR by Tk(r) = max(−k,min(k, r)). The follow-
ing abstract lemmas will be applied to the truncation
operators.

Lemma 2 [12] Let F : IR→ IR be uniformly lipschitzian,
with F(0) = 0. Let M be an Musielak-Orlicz func-
tion and let u ∈ W 1

0 LM(Ω)(resp.u ∈ W 1EM(Ω)). Then
F(u) ∈W 1LM(Ω)(resp.u ∈W 1

0 EM(Ω)). Moreover, if the
set of discontinuity points D of F′ is finite, then

∂
∂xi

F(u) =
{
F′(x) ∂u∂xi a.e. in {x ∈Ω; u(x) <D}
0 a.e. in {x ∈Ω; u(x) ∈D}

Lemma 3 Suppose that Ω satisfies the segement prop-
erty and let u ∈W 1

0 LM (Ω). Then, there exists a sequence
un ∈ D(Ω) such that un→ u for modular convergence in
W 1

0 LM (Ω). Furthermore, if u ∈W 1
0 LM (Ω)∩L∞(Ω) then

‖un‖∞ ≤ (N + 1)‖u‖∞.

Let Ω be an open subset of IRN and letM be a Musielak-
Orlicz function satisfying∫ 1

0

M−1
x (t)

t
N+1
N

dt =∞ a.e. x ∈Ω, (2)

and the conditions of Lemma (1). We may assume
without loss of generality that∫ 1

0

M−1
x (t)

t
N+1
N

dt <∞ a.e. x ∈Ω. (3)

Define a function M∗ : Ω × [0,∞) by M∗(x,s) =∫ s
0
M−1
x (t)

t
N+1
N

dt x ∈Ω and s ∈ [0,∞).

M∗ its called the Sobolev conjugate function of M (see
[18] for the case of Orlicz function).

Theorem 1 Let Ω be a bounded Lipschitz domain and
let M be a Musielak-Orlicz function satisfying (2),(3) and
the conditions of lemma (1). Then W 1

0 LM (Ω) ↪→ LM∗(Ω),
where M∗ is the Sobolev conjugate function of M. More-
over, if Φ is any Musielak-Orlicz function increasing essen-
tially more slowly than M∗ near infinity, then the imbed-
ding W 1

0 LM (Ω) ↪→ Lφ(Ω), is compact.

Corollaire 1 Under the same assumptions of theorem (1),
we have W 1

0 LM (Ω) ↪→↪→ LM (Ω).

Lemma 4 If a sequence un ∈ LM(Ω) converges a.e. to u
and if un remains bounded in LM(Ω), then u ∈ LM(Ω)
and un⇀u for σ (LM (Ω),EM (Ω)).

Lemma 5 Let un,u ∈ LM(Ω). If un → u with re-
spect to the modular convergence, then un ⇀ u for
σ (LM (Ω),LM (Ω)).

Démonstration: Let λ > 0 such that
∫
Ω
M(x, un−uλ )dx→

0. Thus, for a subsequence, un → u a.e. in Ω. Take
v ∈ LM(Ω). Multiplying v by a suitable constant, we
can assume λv ∈ LM (Ω). By Young’s inequality,

|(un −u)v| ≤M(x,
un −u
λ

) +M(x,λv)

which implies, by Vitali’s theorem, that
∫
Ω
|(un −

u)v|dx→ 0.

2.4 Inhomogeneous Musielak-Orlicz-
Sobolev spaces

Let Ω an bounded open subset IRN and let QT =
Ω×]0,T [ with some given T > 0. Let M be an Musielak-
Orlicz function, for each α ∈ INN , denote by ∇αx the
distributional derivative onQT of order α with respect
to the variable x ∈ INN . The inhomogeneous Musielak-
Orlicz-Sobolev spaces are defined as follows,

W 1,xLM (QT ) = {u ∈ LM (QT ) : ∇αx u ∈ LM (QT ),

∀α ∈ INN , |α| ≤ 1},

W 1,xEM (QT ) = {u ∈ EM (QT ) : ∇αx u ∈ EM (QT ),

∀α ∈ INN , |α| ≤ 1}.
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The last space is a subspace of the first one, and
both are Banach spaces under the norm ‖u‖ =∑
|α|≤m ‖∇αx u‖M,QT . We can easily show that they form

a complementary system when Ω satisfies the Lips-
chitz domain [17]. These spaces are considered as sub-
spaces of the product space ΠLM(QT ) which have as
many copies as there is α-order derivatives,|α| ≤ 1. We
shall also consider the weak topologies σ (ΠLM ,ΠEM )
and σ (ΠLM ,ΠLM ). If u ∈W 1,xLM(QT ) then the func-
tion : t 7→ u(t) = u(t, .) is defined on (0,T ) with val-
ues W 1LM(Ω). If, further, u ∈ W 1,xEM(QT ) then
the concerned function is a W 1,xEM(Ω)-valued and
is strongly measurable. Furthermore the following
imbedding holds W 1,xEM(Ω) ⊂ L1(0,T ,W 1,xEM(Ω)).
The space W 1,xLM(QT ) is not in general separa-
ble, if W 1,xLM(QT ) , we can not conclude that the
function u(t) is measurable on (0,T ). However,the
scalar function t 7→ ‖u(t)‖M,Ω , is in L1(0,T ) .The
space W 1,x

0 EM(QT ) is defined as the (norm) closure
W 1,xEM(QT ) of D(QT ). We can easily show as in
[8],that when Ω has the segment property, then
each element u of the closure of D(QT ) with respect
of the weak* topology σ (ΠLM ,ΠEM ) is a limit, in
W 1,x

0 EM(QT ), of some subsequence (ui) ⊂ D(QT ) for
the modular convergence; i.e. there exists λ > 0 such
that for all |α| ≤ 1∫

QT

M(x,
∇αx ui −∇αx u

λ
)dxdt→ 0 asi→∞. (4)

This implies that (ui) converge to u inW 1,xLM (QT ) for
the weak topology σ (ΠLM ,ΠLM ) .
Consequently,

D(QT )
σ (ΠLM ,ΠEM )

=D(QT )
σ (ΠLM ,ΠLM )

. (5)

This space will be denoted byW 1,x
0 LM (QT ) . Furthermore,

W 1,x
0 EM (QT ) =W 1,x

0 LM (QT )∩ΠEM .
We have the following complementary system(
W 1,x

0 LM (QT ) F
W 1,x

0 EM (QT ) F0

)
F being the dual space of

W 1,x
0 EM (QT ). It is also, except for an isomorphism, the

quotient of ΠLM by the polar set W 1,x
0 EM(QT )⊥, and

will be denoted by F = W −1,xLM(QT ) and it is show
that,

W −1,xLM (QT ) =
{
f =

∑
|α|≤1

∇αx fα : fα ∈ LM (QT )
}
.

This space will be equipped with the usual quo-
tient norm ‖f ‖ = inf

∑
|α|≤1 ‖fα‖M,QT where the infi-

mum is taken on all possible decompositions f =∑
|α|≤1∇αx fα , fα ∈ LM (QT ).

The space F0 is then given by, F0 =
{
f =

∑
|α|≤1∇αx fα :

fα ∈ EM (QT )
}

and is denoted by F0 =W −1,xEM (QT ).

Theorem 2 [14] Let Ω be a bounded Lipchitz domain
and let M be a Musielak-Orlicz function satisfying the

same conditions of Theorem (1). Then there exists
a constant λ > 0 such that ‖u‖M ≤ λ‖∇u‖M , ∀ ∈
W 1

0 LM (QT ).

Definition 1 We say that un → u in W −1,xLM(QT ) +
L1(QT ) for the modular convergence if we can write
un =

∑
|α|≤1D

α
x u

α
n +u0

n and u =
∑
|α|≤1D

α
x u

α +u0

with uαn → uα in LM (QT ) for modular convergence for all
|α| ≤ 1 and u0

n→ u0 strongly in L1(QT )

Lemma 6 Let {un} be a bounded sequence in
W 1,xLM(QT ) such that ∂un

∂t = αn + βn in D′(QT ), un ⇀
u, weakly in W 1,xLM (QT ), for σ (ΠLM ,ΠEM )

with {αn} and {βn} two bounded sequences respectively
in W −1,xLM (QT ) and inM(QT ). Then
un → u in L1

loc(QT ). Furthermore, if un ∈ W
1,x
0 LM(QT ),

then un→ u strongly in L1(QT ).

Theorem 3 if u ∈ W 1,xLM(QT ) ∩ L1(QT ) (resp.
W 1,x

0 LM (QT )∩L1(QT )) and ∂u
∂t ∈W

−1,xLM (QT )+L1(QT )
then there exists a sequence (vj ) in D(QT ) (resp.
D(I,D(QT ))) such that vj → u in W 1,xLM(QT ) and
∂vj
∂t →

∂u
∂t in W −1,xLM(QT ) + L1(QT ) for the modular

convergence.

Démonstration: Let u ∈ W 1,xLM(QT ) ∩ L1(QT ) and
∂u
∂t ∈W

−1,xLM(QT ) +L1(QT ) , then for any ε > 0. Writ-
ing ∂u

∂t =
∑
|α|≤1D

α
x u

α + u0, where uα ∈ LM(QT ) for all
|α| ≤ 1 and u0 ∈ L1(QT ), we will show that there exits
λ > 0 (depending Only on u and N ) and there exists
v ∈ D(QT ) for which we can write ∂u

∂t =
∑
|α|≤1D

α
x v

α+v0

with vα ,v0 ∈ D(QT ) such that∫
QT

M(x,
Dαx v −Dαx u

λ
)dxdt ≤ ε,∀|α| ≤ 1, (6)

‖v −u‖L1(QT ) ≤ ε, (7)

‖v0 −u0‖L1(QT ) ≤ ε, (8)∫
QT

M(x,
vα −uα

λ
)dxdt ≤ ε,∀|α| ≤ 1 (9)

The equation (6) flows from a slight adaptation
of the arguments [17],The equations (7),(8) flows also
from classical approximation results. For The equa-
tion (9) we know that D(QT ) is dense in LM(QT )
for the modular convergence. The case where u ∈
W 1,x

0 LM (QT )∩L1(QT )) can be handled similarly with-
out essential difficulty as it mentioned [17].

Remark 2 The assumption u ∈ L1(QT ) in theorem (3) is
needed only when QT has infinite measure, since else, we
have LM (QT )) ⊂ L1(QT ) and so W 1,xLM (QT )∩L1(QT ) =
W 1,xLM (QT ).

Remark 3 If in the statement of theorem (3) above, one
takes I = IR, we have that D(Ω × IR) is dense in {u ∈
W 1,x

0 LM(Ω × IR) ∩ L1Ω × IR) : ∂u∂t ∈ W
−1,xLM(Ω × IR) +

L1(Ω × IR)} for the modular convergence. This trivially
follows from the fact that D(IR,D(Ω)) =D(Ω× IR).
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Remark 4 Let a < b ∈ IR and Ω be a bounded open subset
of IRN with the segment property, then {u ∈W 1,x

0 LM (Ω×
(a,b))∩L1Ω× (a,b)) : ∂u∂t ∈W

−1,xLM (Ω× (a,b)) +L1(Ω×
(a,b))} ⊂ C([a,b],L1(Ω)).

Démonstration: Let u ∈ W 1,x
0 LM(Ω × (a,b)) and ∂u

∂t ∈
W −1,xLM (Ω× (a,b)) +L1(Ω× (a,b)).
After two consecutive reflections first with respect
to t = b and then with respect to t = a, û(x, t) =
u(x, t)χ(a,b) +u(x,2b−t)χ(b,2b−a) in Ω×(b,2b−a) and
ũ(x, t) = û(x, t)χ(a,2b−a) + û(x,2a− t)χ(3a−2b,a) in Ω×
(3a− 2b,2b − a). We get function ũ ∈W 1,x

0 LM (Ω× (3a−
2b,2b − a)) with ∂ũ

∂t ∈ W
−1,xLM(Ω × (3a − 2b,2b − a)) +

L1(Ω× (3a− 2b,2b − a)). Now by letting a function η ∈
D(IR) with η = 1 on [a,b] and suppη ⊂ (3a−2b,2b − a),
we set u = ηũ, therefore,by standard arguments (see
[19]), we have u = u on (Ω × (a,b)), u ∈ W 1,x

0 LM(Ω ×
IR)∩L1(Ω× IR) and ∂u

∂t ∈W
−1,x
0 LM (Ω× IR) +L1(Ω× IR).

Let now vj the sequence given by theorem (3) corre-
sponding to u, that is,

vj → u in W 1,x
0 LM (Ω× IR)

and

∂vj
∂t
→ ∂u

∂t
in W −1,x

0 LM (Ω× IR) +L1(Ω× IR)

for the modular convergence.
If we denote Sk(s) =

∫ s
0 Tk(t)dt the primitive of Tk .

We have,
∫
Ω
S1(vi − vj )(τ)dx =

∫
Ω

∫ r
−∞T1(vi − vj )(

∂vi
∂t −

∂vj
∂t )dxdt → 0 as i, j → 0, from which, one de-

duces that vj is a Cauchy sequence in C(IR;L1(Ω))
and hence u ∈ C(IR,L1(Ω)). Consequently, u ∈
C([a;b];L1(Ω)).

3 Formulation of the problem and
main results

Let Ω be an open subset of IRN (N ≥ 2) satisfying the
segment property,and let M and P be two Musielak-
Orlicz functions such that M and its complementary
M satisfies conditions of Lemma 1, M is decreasing in
x and P ≺≺M.
b : Ω × IR→ IR is a Carathéodory function such that
for every, x ∈ Ω, b(x, .) is a strictly increasing C1(IR)-
function and

b ∈ L∞(Ω× IR) with b(x,0) = 0, (10)

There exists a constant λ > 0 and functions A ∈ L∞(Ω)
and B ∈ LM (Ω) such that

λ ≤ ∂b(x,s)
∂s

≤ A(x) and
∣∣∣∣∇x(∂b(x,s)

∂s

)∣∣∣∣ ≤ B(x) (11)

a.e. x ∈Ω and ∀ |s| ∈ IR.
A : D(A) ⊂ W 1

0 LM(QT ) → W −1LM(QT ) defined by
A(u) = −div a(x, t,u,∇u), where a :QT × IR× IRN → IRN

is caratheodory function such that for a.e. x ∈Ω and
for all s ∈ IR,ξ,ξ∗ ∈ IRN ,ξ , ξ∗

|a(x, t, s,ξ)| ≤ ν(a0(x, t) +M
−1
x P (x, |s|)), (12)

with a0(., .) ∈ EM (QT ),

(a(x, t, s,ξ)− a(x, t, s,ξ∗))(ξ − ξ∗) > 0, (13)

a(x, t, s,ξ).ξ ≥ αM(x, |ξ |) +M(x, |s|). (14)

Φ(x,s,ξ) :QT × IR× IRN → IRN is a Carathéodory func-
tion such that

|Φ(x, t, s)| ≤ c(x, t)M−1
x M(x,α0|s|), (15)

where c(., .) ∈ L∞(QT ), ‖c(., .)‖L∞(QT ) ≤ α, and
0 < α0 <min(1, 1

α ).
H(x, t, s,ξ) :QT × IR× IRN → IR is a Carathéodory func-
tion such that

|H(x, t, s,ξ)| ≤ h(x, t) + ρ(s)M(x, |ξ |), (16)

ρ : IR→ IR+ is continuous positive function which be-
long L1(IR) and h(., .) belong L1(QT ).

f ∈ L1(Ω), (17)

and

u0 ∈ L1(Ω) such that b(x,u0) ∈ L1(Ω). (18)

Note that <,> means for either the pairing between
W 1,x

0 LM (QT )∩L∞(QT )) and W −1,xLM (QT ) +L1(QT ) or
between W 1,x

0 LM (QT ) and W −1,xLM (QT ).
Weak entropy solution: The definition of a entropy
solution of Problem (1) can be stated as follows,

Definition 2 A measurable function u defined onQT is a
entropy solution of Problem (1), if it satisfies the following
conditions:

b(x,u) ∈ L∞(0,T ;L1(Ω)),b(x,u)(t = 0) = b(x,u0) in Ω,

Tk(u) ∈W 1,x
0 LM (QT ), ∀k > 0, ∀t ∈]0,T ],



∫ T
0

〈
∂v
∂s ;

∫ u
0
∂b(x,z)
∂s T ′k (z − v)dz

〉
ds

+
∫
Ω

∫ u0

0
∂b(x,s)
∂s Tk(s − v(0))dsdx

+
∫
QT
a(u,∇u)∇Tk(u − v)dxds+

∫
QT

Φ(u)∇Tk(u − v)dxds

+
∫
QT
H(u,∇u)Tk(u − v)dxds ≤

∫
QT
f Tk(u − v)dxds

∀k > 0, and ∀v ∈W 1,xLM (QT )∩L∞(QT ) with
v(T ) = 0, such that ∂v

∂t ∈W
−1,xLM (QT ) +L1(QT )

(19)

Theorem 4 Assume that (11) − (18) hold true . Then
there exists at least one solution u of the following problem
(19).
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4 Proof of theorem 4

Truncated problem.
For each n > 0, we define the following approximations

bn(x,s) = b(x,Tn(s)) +
1
n
s ∀ r ∈ IR, (20)

an(x, t, s,ξ) = a(x, t,Tn(s),ξ) a.e. (x, t) ∈QT , (21)

∀ s ∈ IR, ∀ ξ ∈ IRN ,

Φn(x, t, s) = Φ(x, t,Tn(s)) a.e. (x, t) ∈QT , ∀ s ∈ IR,
(22)

Hn(x, t, s,ξ) =
H(x, t, s,ξ)

1 + 1
n |H(x, t, s,ξ)|

, (23)

fn ∈ L1(QT ) such that fn→ f strongly in L1(QT ), (24)

and ‖fn‖L1(QT ) ≤ ‖f ‖L1(QT ),
and

u0n ∈ C∞0 (Ω)such that bn(x,u0n)→ b(x,u0) (25)

strongly in L1(Ω).
Let us now consider the approximate problem :

∂bn(x,un)
∂t

− div(an(x, t,un,∇un))− div(Φn(x, t,un))

+Hn(x,un,∇un) = fn in QT ,
un(x, t) = 0 on ∂Ω× (0,T ),
bn(x,un)(t = 0) = bn(x,u0n) in Ω.

(26)
Since Hn is bounded for any fixed n > 0, there exists at
last one solution un ∈W

1,x
0 LM (QT ) of (26)(see [20]).

Remark 5 the explicit dependence in x and t of the func-
tions a, Φ and H will be omitted so that a(x, t,u,∇u) =
a(u,∇u), Φ(x, t,u) = Φ(u) and H(x, t,u,∇u) =H(u,∇u).

Proposition 1 let un be a solution of approximate equa-
tion (26)such that

Tk(un)→ Tk(u) weakly in W 1,xLM (QT ),
un→ u a.e. in QT ,
bn(x,un)→ b(x,u) a.e. in QT and b(x,u) ∈ L∞(QT ),
a(Tk(un),∇Tk(un))∇Tk(un)⇀a(Tk(u),∇Tk(u))∇Tk(u)

weakly in L1(QT ),
∇un→∇u a.e. in QT ,
Hn(un,∇un)→H(u,∇u) strongly in L1(QT ).

(27)
then u be a solution of problem (19).

Démonstration: Let v ∈W 1
0 LM (QT )∩L∞(QT ) such that

∂v
∂t ∈W

−1,xLM (QT ) +L1(QT ) with v(T ) = 0, then by the-
orem 3 we can take v = v on QT , v ∈W 1,xLM(Ω ×
IR)∩L1(Ω×IR)∩L∞(Ω×IR), ∂v∂t ∈W

−1,xLM (QT )+L1(QT ),
and there exists vj ∈ D(Ω × IR) such that vj(T ) = 0,

vj → v in W 1,x
0 LM (Ω× IR) and

∂vj
∂t
→ ∂v

∂t
∈W −1,xLM (QT ) +L1(QT ), (28)

for the modular convergence in W 1
0 LM(QT ) , with

‖vj‖L∞(QT ) ≤ (N + 2)‖v‖L∞(QT ).

Pointwise multiplication of the approximate equation
(26) by Tk(un − vj ), we get

∫ T

0
<
∂bn(x,un)

∂s
;Tk(un − vj ) > ds

+
∫
QT
an(un,∇un)∇Tk(un − vj )dxds

+
∫
QT

Φn(un)∇Tk(un − vj )dxds

+
∫
QT
Hn(un,∇un)∇Tk(un − vj )dxds

=
∫
QT
fnTk(un − vj )dxds

(29)

We pass to the limit as in (29), n tend to +∞ and j
tend to +∞:
Limit of the first term of (29):
The first term can be written∫ T

0
<
∂bn(x,un)

∂s
;Tk(un − vj ) > ds

=
∫ T

0
<
∂v
∂s

;
∫ un

0

∂bn(x,z)
∂s

T ′k (z − vj ) > ds

+
∫
Ω

∫ un(T )

0

∂bn(x,s)
∂s

Tk(s − vj (T ))dsdx

−
∫
Ω

∫ u0n

0

∂bn(x,s)
∂s

Tk(s − vj (0))dsdx,

the fact that ∂bn(x,s)
∂s ≥ 0 and vj (T ) = 0 , we get∫

Ω

∫ u(T )

0

∂b(x,s)
∂s

Tk(s − vj (T ))dsdx =

∫
Ω

∫ u(T )

0

∂b(x,s)
∂s

Tk(s)dsdx ≥ 0

On the other hand, we have u0n converge to u0 strongly
in L1(Ω), then
limn→+∞

∫
Ω

∫ u0n

0
∂bn(x,s)
∂s Tk(s − vj (0))dsdx

=
∫
Ω

∫ u0

0

∂b(x,s)
∂s

Tk(s − vj (0))dsdx,

withM = k+(N+2)‖v‖∞ and TM (un) converges to TM (u)
strongly in EM (QT ), we obtain

lim
n→+∞

∫ T

0
<
∂vj
∂t

;
∫ un

0

∂bn(x,z)
∂s

T ′k (z − vj )dz > ds

= lim
n→+∞

∫ T

0
<
∂vj
∂s

;
∫ TM (un)

0

∂bn(x,z)
∂s

T ′k (z − vj )dz > ds

=
∫ T

0
<
∂vj
∂s

;
∫ TM (u)

0

∂b(x,z)
∂s

T ′k (z − vj )dz > ds,

then∫ T

0
<
∂vj
∂s

;
∫ TM (u)

0

∂b(x,z)
∂s

T ′k (z − vj )dz > ds

≤ lim
n→+∞

∫ T

0
<
∂b(x,un)
∂s

Tk(un − vj ) > ds

+
∫
Ω

∫ u0

0
<
∂b(x,s)
∂s

Tk(s − vj (0)) > dsdx,
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using (28), the definition of Tk and pass to limit as
j→ +∞, we deduce∫ T

0
<
∂v
∂s

;
∫ TM (u)

0

∂b(x,z)
∂s

T ′k (z − v)dz > ds

≤ lim
j→+∞

lim
n→+∞

∫ T

0
<
∂b(x,un)
∂s

Tk(un − vj ) > ds

+
∫
Ω

∫ u0

0
<
∂b(x, t)
∂s

Tk(s − v(0)) > dsdx.

• We can follow same way in [21]to prove that

liminf
j→∞

liminf
n→∞

∫
QT

a(un,∇un)∇Tk(un − vj )dxds

≥
∫
QT

a(u,∇u)∇Tk(u − v)dxds.

• For n ≥ k + (N + 2)‖v‖L∞(QT ) Φn(un)∇Tk(un −vj ) =
Φ(Tk+(N+2)‖v‖L∞(QT )

(un))∇Tk(un − vj ). The point-
wise convergence of un to u as n tends to +∞ and
(15), then Φ(Tk+(N+2)‖v‖L∞(QT )

(un))∇Tk(un − vj )⇀
Φ(Tk+(N+2)‖v‖L∞(QT )

(u))∇Tk(u − vj ) weakly for
σ (ΠLM ,ΠLM ).
In a similar way, we obtain

lim
j→∞

∫
QT

Φ(Tk+(N+2)‖v‖L∞(QT )
(u))∇Tk(u − vj )dxds

=
∫
QT

Φ(Tk+(N+2)‖v‖L∞(QT )
(u))∇Tk(u − v)dxds

=
∫
QT

Φ(u)∇Tk(u − v)dxds.

• Limit of Hn(un,∇un)Tk(un − vj ):
Since Hn(un,∇un) converge strongly to
H(x,s,u,∇u) in L1(QT ) and the pointwise
convergence of un to u as n → +∞, it is
possible to prove that Hn(un,∇un)Tk(un − vj )
converge to H(u,∇u)Tk(u − vj ) in L1(QT )
and limj→∞

∫
QT
H(u,∇u)Tk(u − vj )dxds =∫

QT
H(u,∇u)Tk(u − v)dxds.

• Since fn converge strongly to f in L1(QT ) , and
Tk(un − vj )→ Tk(un − vj ) weakly* in L∞(QT ), we

have
∫
QT

fnTk(un−vj )dxds→
∫
QT

f Tk(u−vj )dxds

as n→∞ and also we have∫
QT

f Tk(u − vj )dxds →
∫
QT

f Tk(u − v)dxds as

j→∞
Finally, the above convergence result, we are in
a position to pass to the limit as n tends to +∞
in equation (29) and to conclude that u satisfies
(19).

It remains to show that b(x,u) satisfies the ini-
tial condition. In fact, remark that, BM(x,un) =∫ un

0

∂b(x,s)
∂s

TM(s − v)ds is bounded in L∞(QT ). Sec-

ondly, by (69) we show that
∂BM (x,un)

∂t
is bounded in

W −1,xLM(QT )) + L1(QT ). As a consequence, a Lemma
4 implies that BM(x,un) lies in a compact set of
C0([0,T ];L1(Ω)) . It follows that, BM(x,un)(t = 0)
converges to BM(x,u)(t = 0) strongly in L1(Ω). On
the order hand, the smoothness of BM imply that
BM (x,un)(t = 0) converges to BM (x,u)(t = 0) strongly in
L1(Ω), we conclude that BM(x,un)(t = 0) = BM(x,u0n)
converges to BM(x,u)(t = 0) strongly in L1(Ω), we
obtain BM(x,u)(t = 0) = BM(x,u0) a.e. in Ω and for
all M > 0, now letting M to +∞, we conclude that
b(x,u)(t = 0) = b(x,u0) a.e. in Ω.

Remark 6 We focus our work to show the conditions of
the proposition 27, then for this we go through 4 steps to
arrive at our result.

Step 1: In this step let us begin by showing

Lemma 7
Let {un}n be a solution of the approximate problem (26),
then for all k > 0, there exists a constants C1 and C2 such
that ∫

QT

a(Tk(un),∇Tk(un))∇Tk(un)dxdt ≤ kC1, (30)

and ∫
QT

M(x, |∇Tk(un)|)dxdt ≤ kC2, (31)

where C1 and C2 does not depend on the n and k.

Démonstration: Fixed k > 0,
Let τ ∈ (0,T ) and using exp(G(un))Tk(un)+χ(0,τ) as a
test function in problem (26), where

G(s) =
∫ s

0

ρ(r)
α′

dr and α′ > 0 is a parameter to be speci-

fied later, we get:∫
Qτ

∂bn(x,un)
∂s

exp(G(un))Tk(un)+χ(0,t)dxdt (32)

+
∫
Qτ

a(un,∇un)
ρ(un)
α′

exp(G(un))∇unTk(un)+dxdt

(33)

+
∫
{0≤un≤k}

a(un,∇un)exp(G(un))∇Tk(un)dxdt (34)

+
∫
Qτ

Φn(un)∇
(
exp(G(un))Tk(un)+

)
dxdt (35)

+
∫
Qτ

H(un,∇un)exp(G(un))Tk(un)+dxdt (36)

≤ k exp(
‖ρ‖L1

α′
)‖fn‖L1(QT ). (37)

For the (32), we have∫
Qτ

∂bn(x,un)
∂s

exp(G(un))Tk(un)+χ(0,τ)dxdt

=
∫
Ω

Bn,k(x,un(τ))dx −
∫
Ω

Bn,k(x,un(0))dx,
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where

Bn,k(x,r) =
∫ r

0

∂bn(x,s)
∂s

exp(G(Tk(s)))Tk(s)
+ds.

By (11), we have
∫
Ω
Bn,k(x,un(τ))dx ≥ 0 and∫

Qτ

Bn,k(x,un(0))dx ≤ k exp(
‖ρ‖L1

α′
)‖b(x,u0‖L1(Ω).

For the (35), if we use (15) and Young inequality , we
get∫
Qτ

Φn(un))∇(exp(G(un))Tk(un)+)dxdt ≤

‖c(., .)‖L∞(QT )

α′
[
α0

∫
Qτ

M(x,un)ρ(un)exp(G(un))Tk(un)+dxdt

+
∫
Qτ

M(x,∇un)ρ(un)exp(G(un))Tk(un)+dxdt
]

+‖c(., .)‖L∞(QT )α0

∫
Qτ

M(x,un)exp(G(un))dxdt

+‖c(., .)‖L∞(QT )

∫
Qτ

M(x, |∇Tk(un)+|)exp(G(un))dxdt.

For the (36), we have,∫
Qτ

Hn(un,∇un)exp(G(un))Tk(un)+dxdt

≤ k exp(
‖ρ‖L1

α′
)
∫
QT

|h(x, t)|dxdt

+
∫
Qτ

ρ(un)exp(G(un))M(x,∇Tk(un))Tk(un)+dxdt.

finally using the previous inequalities and (14), we
obtain

1
α′

∫
Qτ

M(x,un)ρ(un)exp(G(un))Tk(un)+dxdt

+ α
α′

∫
Qτ
M(x,∇un)ρ(un)exp(G(un))Tk(un)+dxdt

+
∫
Qτ

a(un,∇un)exp(G(un))∇Tk(un)+dxdt

≤ ‖c(.,.)‖L∞(QT )
α′ [α0

∫
Qτ
M(x,un)ρ(un)exp(G(un))Tk(un)+dxdt

+
∫
Qτ

M(x,∇un)ρ(un)exp(G(un))Tk(un)+dxdt]

+α0‖c(., .)‖L∞(QT )

∫
{0≤un≤k}

M(x,un)exp(G(un))dxdt

+‖c(., .)‖L∞(QT )

∫
Qτ

M(x,∇Tk(un)+)exp(G(un))dxdt

+
∫
Qτ

M(x,∇un)ρ(un)exp(G(un))Tk(un)+dxdt

+k[exp(
‖ρ‖L1

α′
(‖f ‖L1(QT ) + ‖b(x,u0‖L1(Ω)

+
∫
QT
|h(x, t)|dxdt],

(38)

which becomes after simplification,

[
1−α0‖c(., .)‖L∞(QT )

α′
]
∫
Qτ

M(x,un)ρ(un)exp(G(un))Tk(un)+dxdt

+[
α−‖c(.,.)‖L∞(QT )−α′

α′ ]
∫
Qτ
M(x,∇un)ρ(un)exp(G(un))Tk(un)+dxdt

+
∫
Qτ

a(un,∇un)exp(G(un))∇Tk(un)+dxdt

≤
‖c(., .)‖L∞(QT )

α
[α0α

∫
{0≤un≤k}

M(x,un)exp(G(un))dxdt

+αM(x,∇Tk(un)+)exp(G(un))dxdt] + kC.
(39)

If we choose α′ such that α′ < α − ‖c(., .)‖L∞(QT ) and
using again (14) in (39) we get

[1−
‖c(., .)‖L∞(QT )

α
]
∫
Qτ

a(un,∇un)exp(G(un))∇Tk(un)+dxdt ≤ kC.

(40)
we deduce,∫

{0≤un≤k}
a(un,∇un)exp(G(un))∇Tk(un)dxdt ≤ kc1.

one has exp(G(un)) ≥ 1 for in {(x, t) ∈ QT : 0 ≤ un ≤ k}
then ∫

{0≤un≤k}
a(un,∇un)∇Tk(un)dxdt ≤ kc1. (41)

and by (14) another again∫
Qt

M(x, |∇Tk(un)+|)dxdt ≤ kc2. (42)

Similarly, taking exp(−G(un)Tk(un)−χ(0,τ) as a test
function in problem (26), we get∫

Qτ

∂bn(x,un)
∂t

exp(−G(un))Tk(un)−dxdt (43)

+
∫
Qτ

an(un,∇un)∇(exp(−G(un))∇Tk(un)−)dxdt (44)

+
∫
Qτ

Φn(un)∇(exp(−G(un))∇Tk(un)−)dxdt (45)

+
∫
Qτ

H(un,∇un)exp(−G(un))Tk(un)−dxdt (46)

≥
∫
Qτ

fn exp(−G(un))Tk(un)−dxdt. (47)

and using same techniques above, we obtain∫
{−k≤un≤0}

a(un,∇un)∇Tk(un)dxdt ≤ kc1. (48)

since exp(−G(un)) ≥ 1 in {(x, t) ∈QT : −k ≤ un ≤ 0}
and ∫

Qτ

M(x, |∇Tk(un)−|)dxdt ≤ kc2. (49)

Combining now (41) and (48) we get,∫
Qτ

a(un,∇un)∇Tk(un)dxdt ≤ kC1, (50)

in the same with (42) and (49) we get,∫
Qτ

M(x, |∇Tk(un)|)dxdt ≤ kC2. (51)
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we conclude that Tk(un) is bounded in W 1,x
0 LM (QT )

independently of n, and for any k > 0, so there exists a
subsequence still denoted by un such that

Tk(un)⇀ξk weakly in W 1,x
0 LM (QT ). (52)

On the other hand, using (51), we have

M(x,
k
δ

)meas{|un| > k} ≤
∫
{|un |>k}

M(x,
|Tk(un)|
δ

)dxdt

≤
∫
QT

M(x, |∇Tk(un)|)dxdt ≤ kC2,

then

meas{|un| > k} ≤
kC2

M(x, kδ )
,

for all n and for all k.
Assuming that there exists a positive function M such
that limt→∞

M(t)
t = +∞ and M(t) ≤ ess infx∈ΩM(x, t),

∀t ≥ 0. thus, we get

lim
k→∞

meas{|un| > k} = 0.

Now we turn to prove the almost every convergence
of u

n
, bn(x,un) and an(x, t,Tk(un),∇Tk(un)).

Proposition 2 Let un be a solution of the approximate
problem, then

un→ u a.e in QT , (53)

bn(x,un)→ b(x,u) a.e in QT and

b(x,u) ∈ L∞(0,T ,L1(Ω)), (54)

an(Tk(un),∇Tk(un))⇀$k in (LM (QT ))N , (55)

for σ (ΠLM ,ΠEM ),

for some $k ∈ (LM (QT ))N .

Démonstration: :
Proof of (53) and (54):
Proceeding as in [22], we have for any S ∈ W 2,∞(IR),
such that S ′ , has a compact support
(suppS ′ ⊂ [−K,K]).

BnS (x,un) is bounded in W 1,x
0 LM (QT ), (56)

and

∂BnS (x,un)
∂t

is bounded in L1(QT ) +W −1,xLM (QT ),

(57)
independently of n.
Indeed, we have first

|∇BnS (x,un)| ≤ ‖AK‖L∞(Ω)|DTk(un)|‖S ′‖L∞(Ω)+K‖S ′‖L∞(Ω)BK (x),
(58)

a.e. in QT .
As a consequence of (58) and (51) we then obtain (56).
To show that (57) holds true, we multiply the equation
(26) by S ′(un), to obtain

∂BnS (x,un)
∂t

= div(S ′(un)an(un,∇un))−S ′′(un)an(un,∇un)∇un
(59)

+div(S ′(un)Φn(un))− S ′′(un)Φn(un)∇un

+Hn(un,∇un)S ′(un) + fnS
′(un) in D(QT ).

where BnS(x,r) =
∫ r

0 S
′(s)∂bn(x,s)

∂s ds. Since suppS ′ and
suppS ′′ are both included in [−K,K], un may be re-
placed by Tk(un) in each of these terms. As a conse-
quence, each term in the right hand side of (59) is
bounded either in W −1,xLM(QT ) or in L1(QT ) which
shows that (57) holds true.
Arguing again as in [22] estimates (56), (57) and the
following remark (1), we can show (53) and (54).
Proof of (55) :
The same way in [15], we deduce that
an(Tk(un),∇Tk(un)) is a bounded sequence in
(LM (QT ))N , and we obtain (55).
Step 2: This technical lemma will help us in the step
3 of the demonstration,

Lemma 8 If the subsequence un satisfies (26), then

lim
m→+∞

limsup
n→+∞

∫
{m≤|un |≤m+1}

a(un,∇un)∇undxdt = 0.

(60)

Démonstration: Taking the function Zm(un) = T1(un −
Tm(un))− and multiplying the approximating equation
(26) by the test function exp(−G(un))Zm(un) we get

∫
QT
Bn,m(x,un(T ))dx

+
∫
QT
an(un,∇un)∇(exp(−G(un))Zm(un))dxdt

+
∫
QT

Φn(un)∇(exp(−G(un))Zm(un))dxdt

+
∫
QT
Hn(un,∇un)exp(−G(un))Zm(un)dxdt

=
∫
QT
fn exp(−G(un))Zm(un)dxdt +

∫
QT
Bn,m(x,u0n)dx

(61)

where Bn,m(x,r) =
∫ r

0

∂bn(x,s)
∂s

exp(−G(s))Zm(s)ds.

Using the same argument in step 2, we obtain∫
QT

M(x, |∇Zm(un)|)dxdt ≤ C(
∫
QT

|h(x, t)|Zm(un)dxdt

+
∫
QT

fnZm(un)dxdt +
∫
|u0n |>m

|bn(x,u0n)|dx).

where

C = exp(
‖ρ‖L1

α′
)(

α
α − ‖c(., .)‖L∞(QT )

).

Passing to limit as n→ +∞, since the pointwise conver-
gence of un and strongly convergence in L1(QT ) of fn
and bn(x,u0n) we get

lim
n→+∞

∫
QT

M(x, |∇Zm(un)|)dxdt ≤ C(
∫
QT

f Zm(u)dxdt

+
∫
QT

|h(x, t)|Zm(u)dxdt +
∫
{|u0 |>m}

|b(x,u0)|dx).
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By using Lebesgue’s theorem and passing to limit
as m→ +∞, in the all term of the right-hand side, we
get

lim
m→+∞

lim
n→+∞

∫
QT

M(x, |∇Zm(un)|)dxdt = 0, (62)

On the other hand, by (15) and Young inequality,for
n > m+ 1 we obtain∫
QT
|Φn(x, t,un)exp(−G(un))∇Zm(un)|dxdt

≤ exp(
‖ρ‖L1

α′
)[
∫
{−(m+1)≤un≤−m}

M(x,α0|Tm+1(un)|)dxdt

+
∫
QT

M(x, |∇Zm(un)|)dxdt].

Using the pointwise convergence of un and by
Lebesgues theorem, it follows,
limn→+∞

∫
QT
|Φn(un)exp(−G(un))∇Zm(un)|dxdt

≤ exp(
‖ρ‖L1

α′
)[
∫
{−(m+1)≤u≤−m}

M(x,α0|Tm+1(u)|)dxdt

+ lim
n→+∞

∫
QT

M(x, |∇Zm(un)|)dxdt]

passing to the limit in as m→ +∞, we get

lim
m→+∞

lim
n→+∞

∫
QT

Φn(un)exp(−G(un))∇Zm(un)dxdt = 0.

Finally passing to the limit in (61), we get

lim
m→+∞

lim
n→+∞

∫
{−(m+1)≤un≤−m}

an(un,∇un)∇undxdt = 0,

In the same way we take Zm(un) = T1(un−Tm(un))+ and
multiplying the approximating equation (26) by the
test function exp(G(un))Zm(un) and we also obtain

lim
m→+∞

lim
n→+∞

∫
{m≤un≤m+1}

an(un,∇un)∇undxdt = 0,

on the above we get (60).
Step 3: Almost everywhere convergence of the gra-
dients.

This step is devoted to introduce a time regulariza-
tion of the Tk(u) for k > 0 in order to perform the
monotonicity method.

Lemma 9 (See [23]) Under assumptions (11)-(18), and
let (zn) be a sequence in W 1,x

0 LM (QT ) such that:

zn⇀ z for σ (ΠLM (QT ),ΠEM (QT )), (63)

(a(x, t,zn,∇zn)) is bounded in (LM (QT ))N , (64)∫
QT

[a(x, t,zn,∇zn)−a(x, t,zn,∇zχs)][∇zn−∇zχs]dxdt→ 0,

(65)
as n and s tend to +∞, and where χs is the characteristic
function of Qs = {(x, t) ∈QT ; |∇z| ≤ s} then,

∇zn→∇z a.e. in QT , (66)

lim
n→+∞

∫
QT

a(x, t,zn,∇zn)∇zndxdt =
∫
QT

a(x, t,z,∇z)∇zdxdt,

(67)

M(x, |∇zn|)→M(x, |∇z|) in L1(QT ). (68)

Let υj ∈ D(QT ) be a sequence such that υj → u in

W 1,x
0 LM (QT ) for the modular convergence.

This specific time regularization of Tk(υj ) (for fixed
k ≥ 0) is defined as follows.
Let (α

µ
0 )µ be a sequence of functions defined on Ω such

that

α
µ
0 ∈ L

∞(Ω)∩W 1
0 LM (Ω) for all µ > 0, (69)

‖αµ0‖L∞(Ω) ≤ k, for all µ > 0,

and α
µ
0 converges to Tk(u0) a.e. in Ω and 1

µ‖α
µ
0‖M,Ω

converges to 0 as µ→ +∞.
For k ≥ 0 and µ > 0, let us consider the unique solu-
tion (Tk(υj ))µ ∈ L∞(QT )∩W 1,x

0 LM (QT ) of the monotone
problem:

∂(Tk(υj ))µ
∂t

+µ((Tk(υj ))µ − Tk(υj )) = 0 in D ′(Ω),

(Tk(υj ))µ(t = 0) = α
µ
0 in Ω.

Remark that due to

∂(Tk(υj ))µ
∂t

∈W 1,x
0 LM (QT ).

We just recall that, (Tk(υj ))µ → Tk(u) a.e. in QT ,
weakly-∗ in L∞(QT ),

(Tk(υj ))µ → (Tk(u))µ in W 1,x
0 LM(QT ) for the

modular convergence as j→ +∞ and
(Tk(u))µ → Tk(u) in W 1,x

0 LM(QT ), for the modular
convergence as µ→ +∞.

||(Tk(υj ))µ||L∞(QT ) ≤max(||(Tk(u))||L∞(QT ), ||α
µ
0 ||L∞(Ω)) ≤ k,

∀ µ > 0 ,∀ k > 0.
We introduce a sequence of increasing C1(IR)-functions
Sm such that Sm(r) = 1 for |r | ≤m, Sm(r) =m+ 1−
|r |, for m ≤ |r | ≤m+ 1, Sm(r) = 0 for |r | ≥m+ 1
for anym ≥ 1 and we denote by ε(n,µ,η, j,m) the quan-
tities such that

lim
m→+∞

lim
j→+∞

lim
η→+∞

lim
µ→+∞

lim
n→+∞

ε(n,µ,η, j,m) = 0,

the main estimate is
For fixed k ≥ 0, let W n,j

µ,η = Tη(Tk(un)− Tk(υj )µ)+ and

W
j
µ,η = Tη(Tk(u)− Tk(υj )µ)+.

Multiplying the approximating equation by
exp(G(un)))W n,j

µ,ηSm(un) and using the same technique
in step 2 we obtain:
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∫
QT

<
∂bn(x,un)

∂t
exp(G(un))W n,j

µ,ηSm(un)dxdt

+
∫
QT

an(un,∇un)exp(G(un))∇(W n,j
µ,η )Sm(un)dxdt

+
∫
QT

an(un,∇un)∇un exp(G(un))W n,j
µ,ηS

′
m(un)dxdt

−
∫
QT

Φn(un)exp(G(un))∇(W n,j
µ,η )Sm(un)dxdt

−
∫
QT

Φn(un)∇un exp(G(un))W n,j
µ,ηS

′
m(un)dxdt

≤
∫
QT
fn exp(G(un))W n,j

µ,ηSm(un)dxdt

+
∫
QT
h(x, t)exp(G(un))W n,j

µ,ηSm(un)dxdt.
(70)

Now we pass to the limit in (70) for k real number
fixed.
In order to perform this task we prove below the fol-
lowing results for any fixed k ≥ 0:∫
QT

∂bn(x,un)
∂t

exp(G(un))W n,j
µ,ηSm(un)dxdt ≥ ε(n,µ,η, j)

(71)
for any m ≥ 1,∫

QT

Φn(un)Sm(un)exp(G(un))∇(W n,j
µ,η )dxdt = ε(n,j,µ)

(72)
for any m ≥ 1,∫
QT

Φn(un)∇unS ′m(un)exp(G(un))W n,j
µ,η dxdt = ε(n,j,µ)

(73)
for any m ≥ 1,∫

QT

an(un,∇un)∇unS ′m(un)exp(G(un))W n,j
µ,η dxdt (74)

≤ ε(n,m),∫
QT

an(un,∇un)Sm(un)exp(G(un))∇(W n,j
µ,η )dxdt (75)

≤ Cη + ε(n,j,µ,m),∫
QT

fnSm(un)exp(G(un))W n,j
µ,η dxdt

+
∫
QT

h(x, t)exp(G(un))W n,j
µ,ηSm(un)dxdt (76)

≤ Cη + ε(n,η),∫
QT

[a(Tk(un),∇Tk(un))− a(x, t,Tk(un),∇Tk(u))] (77)

×[∇Tk(un)−∇Tk(u)]dxdt→ 0.

Proof of (71):

Lemma 10∫
QT

∂bn(x,un)
∂t

exp(G(un))W n,j
µ,ηSm(un)dxdt ≥ ε(n,µ,η,η, j)

(78)
m ≥ 1.

Démonstration: We adopt the same technics in the
proof in [8].
Proof of (72): If we take n > m + 1, we get
Φn(un)exp(G(un))Sm(un) =

Φ(Tm+1(un))exp(G(Tm+1(un)))Sm(Tm+1(un)),

then Φn(un)exp(G(un))Sm(un) is bounded in LM(Q),
thus, by using the pointwise convergence of un and
Lebesgue’s theorem we obtain

Φn(un)exp(G(un))Sm(un)→ Φ(u)exp(G(u))Sm(u),

with the modular convergence as n → +∞, then
Φn(un)exp(G(un))Sm(un) → Φ(u)exp(G(u))Sm(u) for
σ (ΠLM ,ΠLM ).

On the other hand ∇W n,j
µ,η = ∇Tk(un) −

∇(Tk(υj ))µ for |Tk(un) − (Tk(υj ))µ| ≤ η converge
to ∇Tk(u) − ∇(Tk(υj ))µ weakly in (LM(QT ))N ,

then
∫
QT

Φn(un)exp(G(un))Sm(un)∇W n,j
µ,η dxdt →∫

QT
Φ(u)Sm(u)exp(G(u))∇W j

µ,η dxdt, as n→ +∞.

using the modular convergence ofW j
µ,η as j→ +∞ and

letting µ tends to infinity, we get (72).
Proof of (73): For n > m + 1 > k ,

we have ∇unS ′m(un) = ∇Tm+1(un) a.e. in
QT . By the almost every where conver-
gence of un we have exp(G(un))W n,j

µ,η →
exp(G(u))W j

µ,η in L∞(QT ) weak-* and since the
sequence (Φn(Tm+1(un)))n converge strongly in
EM(QT ) then Φn(Tm+1(un))exp(G(un)) W

n,j
µ,η →

Φ(x, t,Tm+1(u)) exp(G(u))W j
µ,η , converge strongly in

EM(QT ) as n → +∞. By virtue of ∇Tm+1(un) →
∇Tm+1(u) weakly in (LM (QT ))N as n→ +∞ we have∫
{m≤|un |≤m+1}

Φn(Tm+1(un))∇unS ′m(un)exp(G(un))W n,j
µ,η dxdt

→
∫
{m≤|u|≤m+1}

Φ(u)∇u exp(G(u))W j
µ,η dxdt

as n→ +∞.
with the modular convergence of W j

µ,η as j→ +∞ and
letting µ→ +∞ we get (73).
Proof of (74): we have∫
QT

an(un,∇un)S ′m(un)∇un

×exp(G(un))exp(G(un))W n,j
µ,η dxdt

=
∫
{m≤|un |≤m+1}

an(un,∇un)S ′m(un)∇un

×exp(G(un))W n,j
µ,η dxdt

≤ ηC
∫
{m≤|un |≤m+1}

an(un,∇un)∇un dxdt.

Using (60), we get∫
QT

an(un,∇un)S ′m(un)∇un exp(G(un))W n,j
µ,η dxds

≤ ε(n,µ,m).
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Proof of (76): Since Sm(r) ≤ 1 and W n,j
µ,η ≤ η we get∫

QT

fnSm(un)exp(G(un))W n,j
µ,η dxdt ≤ ε(n,η),

∫
QT

h(x, t)exp(G(un))W n,j
µ,ηSm(un)dxdt ≤ Cη.

Proof of (75):∫
QT

an(un,∇un)Sm(un)exp(G(un))∇W n,j
µ,η dxdt

=
∫
{|un |≤k}∩{0≤Tk(un)−Tk(υj )µ)≤η}

an(Tk(un),∇Tk(un))

×Sm(un)exp(G(un))(∇Tk(un)−∇Tk(υj )µ)dxdt

−
∫
{|un |>k}∩{0≤Tk(un)−Tk(υj )µ)≤η}

an(un,∇un)

× Sm(un)exp(G(un))∇Tk(υj )µ dxdt (79)

Since an(Tk+η(un),∇Tk+η(un)) is bounded in
(LM(QT ))N there exist some $k+η ∈ (LM(QT ))N

such that an(Tk+η(un),∇Tk+η(un)) → $k+η weakly in
(LM (QT ))N .
Consequently,∫
{|un |>k}∩{0≤Tk(un)−Tk(υj )µ)≤η}

an(un,∇un)Sm(un)

exp(G(un))∇Tk(υj )µ dxdt

=
∫
{|u|>k}∩{0≤Tk(u)−Tk(υj )µ)≤η}

$k+η

× Sm(u)exp(G(u))∇Tk(υj )µ dxdt + ε(n), (80)

where we have used the fact that
Sm(un)exp(G(un))∇Tk(υj )µ)χ{|un |>k}∩{0≤Tk(un)−Tk(υj )µ)≤η}

→ Sm(u)exp(G(u))∇Tk(υj )µ)χ{|u|>k}∩{0≤Tk(u)−Tk(υj )µ)≤η}

strongly in (EM (QT ))N .
Letting j→ +∞, we obtain∫
{|u|>k}∩{0≤Tk(u)−Tk(υj )µ)≤η}

$k+η

Sm(u)exp(G(u))∇Tk(υj )µ dxdt

=
∫
{|u|>k}∩{0≤Tk(u)−Tk(u)µ)≤η}

$k+η

Sm(u)exp(G(u))∇Tk(u)µ dxdt + ε(n,j),

One easily has,∫
{|u|>k}∩{0≤Tk(u)−Tk(u)µ)≤η}Sm(u)exp(G(u))∇Tk(u)µ$k+η dxdt

= ε(n,j,µ).

By (70)-(76), (79) and (80) we obtain∫
{|un |≤k}∩{0≤Tk(un)−Tk(υj )µ)≤η}

an(Tk(un),∇Tk(un))Sm(un)

exp(G(un))(∇Tk(un)−∇Tk(υj )µ)dxdt

≤ Cη + ε(n,j,µ,m),

we know that exp(G(un)) ≥ 1 and Sm(un) = 1 for |un| ≤ k
then∫

{|un |≤k}∩{0≤Tk(un)−Tk(υj )µ)≤η}
an(x, t,Tk(un),∇Tk(un))

× (∇Tk(un)−∇Tk(υj )µ)dxdt ≤ Cη + ε(n,j,µ,m). (81)

Proof of (77): Setting for s > 0, Qs = {(x, t) ∈ Q :
|∇Tk(u)| ≤ s} and Qsj = {(x, t) ∈Q : |∇Tk(υj )| ≤ s} and de-
noting by χs and χsj the characteristic functions of Qs

and Qsj respectively, we deduce that letting 0 < δ < 1,
define

Θn,k = (a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))

×(∇Tk(un)−∇Tk(u))

For s > 0, we have
0 ≤

∫
Qs

Θδ
n,k dxdt =

∫
Qs

Θδ
n,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt

+
∫
Qs

Θδ
n,kχ{Tk(un)−Tk(υj )µ>η} dxdt

The first term of the right-side hand, with the Hölder
inequality,∫
Qs

Θδ
n,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt ≤

(
∫
Qs

Θn,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt)
δ(
∫
Qs
dxdt)1−δ

≤ C1(
∫
Qs

Θn,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt)
δ

Also using the Hölder inequality, the second term of
the right-side hand is∫

Qs
Θδ
n,kχ{Tk(un)−Tk(υj )µη} dxdt ≤ (

∫
Qs

Θn,k dxdt)
δ

×(
∫
{Tk(un)−Tk(υj )µ>η}

dxdt)1−δ

since a(x, t,Tk(un),∇Tk(un)) is bounded in (LM(QT ))N ,
while ∇Tk(un) is bounded in (LM(QT ))N then∫
Qs

Θδ
n,kχ{Tk(un)−Tk(υj )µη} dxdt ≤ C2meas{(x, t) ∈ QT :

|Tk(un)− Tk(υj )µ| > η}1−δ
We obtain,∫
Qs

Θδ
n,k dxdt ≤ C1(

∫
Qs

Θn,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt)
δ

+C2meas{(x, t) ∈QT : Tk(un)− Tk(υj )µ > η}1−δ

On the other hand,∫
Qs

Θn,kχ{0≤Tk(un)−Tk(υj )µ≤η} dxdt

≤
∫

0≤Tk(un)−Tk(υj )µ≤η
(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(u)χs))(∇Tk(un)−∇Tk(u)χs)dxdt
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For each s > r, r > 0, one has
0 ≤

∫
Qr∩{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u))dxdt

≤
∫
Qs∩{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u))dxdt

=
∫
Qs∩{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(u)χs))(∇Tk(un)−∇Tk(u)χs)dxdt

≤
∫
Q∩{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(u)χs))(∇Tk(un)−∇Tk(u)χs)dxdt

=
∫
{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(un))

−a(Tk(un),∇Tk(υj )χsj ))(∇Tk(un)−∇Tk(υj )χsj )dxdt

+
∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(un))

×(∇Tk(υj )χsj −∇Tk(u)χs)dxdt

+
∫
{0≤Tk(un)−Tk(υj )µ≤η}

(a(Tk(un),∇Tk(υj )χsj )

−a(Tk(un),∇Tk(u)χs))∇Tk(un)dxdt

−
∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(υj )χsj )

×∇Tk(υj )χsj )dxdt

+
∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(u)χs)∇Tk(u)χs)dxdt

= I1(n,j, s) + I2(n,j) + I3(n,j) + I4(n,j,µ) + I5(n,µ)

we will go to the limit as n, j, µ, and s → +∞ I1 =∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(un))

×(∇Tk(un)−∇Tk(υj )µ)dxdt

−
∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(un))

×(∇Tk(υj )χsj −∇Tk(υj )µ)dxdt

−
∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(υj )χsj ))

×(∇Tk(un)−∇Tk(υj )χsj ))dxdt

Using (81), the first term of the right-hand side,
we get

∫
{0≤Tk(un)−Tk(υj )µ≤η}

a(Tk(un),∇Tk(un))(∇Tk(un) −
∇Tk(υj )µ)dxdt

≤ Cη + ε(n,m,j, s)

−
∫
{|u|>k}∩{|Tk(u)−Tk(υj )µ |≤η}

a(Tk(u),0)∇Tk(υj )µ dxdt

≤ Cη + ε(n,m,j,µ)

The second term of the right-hand side tends to∫
{|Tk(u)−Tk(υj )µ |≤η}

$k(∇Tk(υj )χsj −∇Tk(υj )µ)dxdt

since a(Tk(un),∇Tk(un)) is bounded in (LM (QT ))N , there
exist some $k ∈ (LM(QT ))N such that (for a subse-
quence still denoted by un

a(Tk(un),∇Tk(un))→$k in (LM (QT ))N

for σ (ΠLM ,ΠEM )

In view of the fact that
(∇Tk(υj )χsj − ∇Tk(υj )µ)χ{0≤Tk(un)−Tk(υj )µ≤η} →
(∇Tk(υj )χsj − ∇Tk(υj )µ)χ{0≤Tk(u)−Tk(υj )µ≤η} Strongly in

(EM (QT ))N as n→ +∞.
the third term of the right-hand side tends to∫
{0≤Tk(u)−Tk(υj )µ≤η}

a(Tk(u),∇Tk(υj )χsj ))

(∇Tk(u)−∇Tk(υj )χsj ))dxdt

Since a(Tk(un),∇Tk(υj )χsj ))χ{0≤Tk(un)−Tk(υj )µ≤η} →
a(Tk(u),∇Tk(υj )χsj ))χ|Tk(u)−Tk(υj )µ |≤η in (EM(QT ))N

while

(∇Tk(un)−∇Tk(υj )χsj ))→ (∇Tk(u)−∇Tk(υj )χsj ))

in (LM(QT ))N for σ (ΠLM ,ΠEM ) Passing to limit as
j→ +∞ and µ→ +∞ and using Lebesgue’s theorem,
we have

I1 ≤ Cη + ε(n,j, s,µ)

For what concerns I2, by letting n→ +∞, we have

I2→
∫
{0≤Tk(u)−Tk(υj )µ≤η}

$k(∇Tk(υj )χsj −∇Tk(u)χs)dxdt

Since a(Tk(un),∇Tk(un)) ⇀ $k in (LM(QT ))N , for
σ (ΠLM ,ΠEM ), while (∇Tk(υj )χ

s
j−∇Tk(u)χs)χ{0≤Tk(un)−Tk(υj )µ≤η}

→ (∇Tk(υj )χsj −∇Tk(u)χs)χ{0≤Tk(u)−Tk(υj )µ |≤η}

strongly in (EM (QT ))N .
Passing to limit j → +∞, and using Lebesgue’s theo-
rem, we have

I2 = ε(n,j)

Similar ways as above give

I3 = ε(n,j)

I4 =
∫
{0≤Tk(u)−Tk(u)µ≤η}

a(Tk(u),∇Tk(u))∇Tk(u)dxdt

+ε(n,j,µ, s,m)
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I5 =
∫
{0≤Tk(u)−Tk(u)µ≤η}

a(Tk(u),∇Tk(u))∇Tk(u)dxdt

+ε(n,j,µ, s,m)

Finally, we obtain,∫
Qs

Θn,k dxdt ≤ C1(Cη + ε(n,µ,η,m))δ +C2(ε(n,µ, ))1−δ

Which yields,by passing to the limit sup over n,j,µ ,s
and η∫
Qr∩{0≤Tη (Tk(u)−Tk(u)µ)}

[(a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u)))

(∇Tk(un)−∇Tk(u))]δ dxdt = ε(n) (82)

Taking on the hand the function W
n,j
η,µ = Tη(Tk(un) −

(Tk(υj ))µ)− and W j
η,µ = Tη(Tk(u)− (Tk(υj ))µ)−.

Multiplying the approximating equation by
exp(G(un)))W n,j

η,µSm(un), we obtain∫
Qr∩{Tη (Tk(un)−(Tk(υj ))µ)≤0}

[(a(x,Tk(un),∇Tk(un))

− a(x,Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u))]δ dxdt = ε(n)
(83)

by (82) and (83) we get∫
Qr

[(a(x,Tk(un),∇Tk(un))− a(x,Tk(un),∇Tk(u)))

×(∇Tk(un)−∇Tk(u))]δ dxdt = ε(n)

Thus, passing to a subsequence if necessary,∇un→
∇u a.e. in Qr , and since r is arbitrary,

∇un→∇u a.e. in QT

Step 4: Equi-integrability of the nonlinearity se-
quence
We shall prove that Hn(un,∇un)→ H(u,∇u) strongly
in L1(QT ).

Consider g0(un) =
∫ un

0
ρ(s)χ{s>h}ds and multiply (26)

by exp(G(un))g0(un) , we get[∫
QT

Bnh(x,un)dx
]T
0

+
∫
QT

a(,un,∇un)∇(exp(G(un))g0(un))dxdt

+
∫
QT

Φn(un,∇un)∇(exp(G(un))g0(un))dxdt

+
∫
QT

Hn(un,∇un)exp(G(un))g0(un))dxdt

≤ (
∫ +∞

h
ρ(s)dx)exp

(‖ρ‖L1(IR)

α′
)
[‖fn‖L1(Q) + ‖h(x, t‖L1(QT )]

where Bnh(x,r) =
∫ r

0
∂b(x,s)
∂s g0(s)exp(G(Tk(s)))ds ≥ 0

then using same technique in step 2 we can have∫
{un>h}

ρ(un)M(x,∇un)dxdt ≤ C(
∫ +∞

h
ρ(s)dx)

Since ρ ∈ L1(IR), we get

lim
h→0

sup
n∈IN

∫
{un>h}

ρ(un)M(x,∇un)dxdt = 0

Similarly, let g0(un) =
∫ 0

un

ρ(s)χ{s<−h}dx in (26), we have

also

lim
h→0

sup
n∈IN

∫
{un<−h}

ρ(un)M(x,∇un)dxdt = 0

We conclude that

lim
h→0

sup
n∈IN

∫
{|un |>h}

ρ(un)M(x,∇un)dxdt = 0 (84)

Let D ⊂QT then∫
D
ρ(un)M(x,∇un)dxdt ≤ max

{|un |≤h}
ρ(y)

∫
D∩{|un |≤h}

M(x,∇un)dxdt

+
∫
D∩{|un |>h}

ρ(un)M(x,∇un)dxdt

Consequently ρ(un)M(x,∇un) is equi-integrable. Then
ρ(un)M(x,∇un) converge to ρ(u)M(x,∇u) strongly in
L1(IR). By (16), we get our result.

As a conclusion, the proof of Theorem (4) is com-
plete.
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