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 This work proposes a new unsupervised learning approach to detect and locate the risks 
“abnormal event” in video scenes using Faster R-CNN and Bidirectional LSTM 
autoencoder. The approach proposed in this work is carried out in two steps: In the first 
step, we used a bidirectional LSTM autoencoder to detect the frames containing risks. In 
the second step, for each frame containing risks, we first used Faster R-CNN to extract all 
the objects containing in the scene and then for each object detected we check whether it 
represents a risk or not. In other words, in testing phase, the frames with events deviated 
from normal features learned in training phase are detected as risk. To locate objects 
representing risk, only the objects detected by Fast R-CNN deviated from normal feature 
are classified as risk.  Experimental results demonstrate that the proposed method can 
reliably detect and locate the object representing risk in video sequences. 
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1. Introduction  

The security of public spaces has become a very important 
area in recent years, hence the need to develop an automated 
surveillance system capable of analysing video scenes, exactly 
detect and locate anomalies. In order to respond to this, demand 
several approaches have been proposed based on sparse coding 
[1]-[3] or deep learning techniques [4]-[6]. The last one is divided 
on two types of learning techniques [1], the supervised setting 
which requires both normal and abnormal labelled training 
samples, but it is difficult to obtain a training labelled data set, 
moreover, unsupervised methods avoid excessive manual 
labelling, it can only be applied on the specific scenes because 
they are using underlying data and prior knowledge to design 
limited distributions.  

In recent years, deep learning has become an important 
domain and have been applied for a diverse set of tasks, the 
anomaly detection is one, most research on this area was based on 
RNN and CNN network architectures, such as deep generative 
models such as variational autoencoder (VAE) [7], generative 
adversarial networks (GANs) [8], Long Short-Term memory 
networks (LSTMs) [9], deep learning have resolved the weakness 
of traditional method. 

     In real life there is some challenging problems to detect 
anomalous video, like the lack of clear definition of anomalies, 
difficulty of scene segmentation, high density object with   
random motions, occlusions, and the fact that a risk appears rarely 
in short time. This paper focused on unsupervised risk detection 
and localization approaches based on convolutional neural 
network algorithms. 

     Our approach present a model based on the convolutional 
neural network, Bidirectional LSTM auto-encoder and Fast C-
RNN. The convolution neural network auto-encoder captures the 
local structure and the LSTM auto-encoder captures temporal 
information, it learns the normal patterns from the normal training 
videos then the risks are detected as events deviated from the 
normal patterns learned. To detect risk in frame we compute de 
difference between the original frame and the reconstructed 
frame, and performing a threshold error will detect the frame 
contains risk. In the second steep the Fast C-RNN extract objects 
from the frame with risk, to localize risk in this frame the error is 
only computed between objects detected in normal frame and 
those objects in the reconstructed frame. Fig. 1 illustrates an 
overview of the proposed method. 

The reminder of this paper is organized as follows: The second 
section presents the methodology, the third section shows 
experimental results, and finally a conclusion. 
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Figure 1:  Overview of the proposed approach 

2. Related Work 

In this section, we present some of the previous works on 
anomaly detection based on deep learning. In [4], the authors have 
been introduced a cascade of auto-encoders, based on two novel 
cubic-patch-based anomaly detectors, the first one based on 
power of an auto-encoder on reconstructing an input video patch 
and the second is based on the power of sparse representation of 
an input video patch. 

To analyze spatial and temporal information, the spatial 
temporal Convolutional Neural Networks have been used to 
capture spatial and temporal features encoded in frames video. 
The convolution is only performed in spatial temporal volumes of 
moving pixels to resolve the problem of local noise, and increase 
detection accuracy [10]. In [11], the authors have integrated the 
HOG and HOF motion features as input to the autoencoder to 
learn the reconstruction of regular motion in video frames, in the 

reconstruction step, the higher error is classified as abnormal 
events. Hence in [5], the authors  have proposed an unsupervised 
deep learning framework for anomalous event detection in 
complex video scenes based on a three-stream architecture 
(spatial, temporal and their joint representation) by employing the 
auto-encoder to learn the features, furthermore in [6], the authors 
built a novel model called spatio-temporal autoencoder (STAE), 
which learn video representation automatically using deep neural 
networks and extract features from both spatial and temporal 
dimensions by using 3-dimensional convolutions.   

Whereas Generative Adversarial Nets (GANs) [12] takes as 
the first input the normal frames and produces corresponding 
optical-flow images. As the second input, GANs takes the real 
optical-flow of normal frames and outputs an appearance 
reconstruction. The abnormal areas are detected by computing 
local differences between the reconstructed appearance and 
motion and the normal frames and real optical-flow in order. 
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In [13], the authors have been presented a composite Conv-
LSTM network able to reconstruct input frames, and predict future 
frames. The anomalous video segments are detected using a 
regularity evaluation algorithm at the model’s output, video 
sequences containing normal events have a higher regularity score 
since they are similar to the data used to train the model, while 
sequences containing abnormal events have a lower regularity 
score. 

3. Methodology 

3.1. The LSTM Model 

To resolve the problem of vanishing gradient and exploding in 
recurrent neural network (RNN), Hochreiter and al in [14], have 
been presented a neural network called Long Short-Term Memory 
(LSTM) for modelling long dependencies over time, and learn 
more semantic information and complex features. The LSTM unit 
is formulates with the equations as follow: 
 

𝒇𝒇𝒕𝒕 =  𝝈𝝈�𝑾𝑾𝒇𝒇 ⊗ [𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕] + 𝒃𝒃𝒇𝒇�                      (1) 

 

𝒊𝒊𝒕𝒕 =  𝝈𝝈(𝑾𝑾𝒊𝒊  ⊗ [𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕] + 𝒃𝒃𝒊𝒊)                        (2) 

 

Ĉ𝒕𝒕 = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑾𝑾𝒄𝒄  ⊗ [𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕] + 𝒃𝒃𝑪𝑪)                      (3) 

 

𝑪𝑪𝒕𝒕 = 𝒇𝒇𝒕𝒕  ⊗𝑪𝑪𝒕𝒕−𝟏𝟏 + 𝒊𝒊𝒕𝒕 ⊗  Ĉ𝒕𝒕                          (4) 

 

𝒐𝒐𝒕𝒕 =  𝝈𝝈(𝑾𝑾𝒐𝒐  ⊗   [𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕] + 𝒃𝒃𝒐𝒐)                          (5) 

 

𝒉𝒉𝒕𝒕 = 𝒐𝒐𝒕𝒕  ⊗ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑪𝑪𝒕𝒕)                           (6) 

Eq. (1) define the forget gate to reset the memory cell, Eq. (2) 
and Eq.(3) denotes the input and output gates, and essentially 
control the input and output of the memory cell. Eq. (4) represents 
the memory cell that prevents the problem of vanishing gradient 
and exploding problem in RNN. 

xt denote the input at time t. 

Figure 2 illustrates the difference between LSTM unit and 
RNN neural network.       

To capture the most important semantic information and 
height level features in sequences video, we use Bidirectional 
Long Short-Term Memory (BLSTM) Networks architecture. The 
basic idea of BLSTM that the output of the forward and backward 
layer is combined at each time step to form one output, it’s learned 
the past and future feature very fast and more accurate, the Fig. 3 
illustrate the BLSTM architecture: 

 

(a) 

 

(b) 

Figure 2:  LSTM unit on the top and RNN unit on the bottom 
 

 
Figure 3: The architecture of BLSTM 

Figure 4:  Autoencoder architecture 

3.2. The Autoencoder 
An autoencoder is an artificial neural network which 

performed in an unsupervised learning context, it can be seen as 
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the set of two components, an encoder and a decoder, the encoder 
that consists to reduce dimensionality of the input data, in order 
to represent them in a new space, the number of their input units 
layer is less than the output. Whereas the decoder, reconstruct data 
from the encoding by minimizing the reconstruction error 
between the encoder result (hidden layer) and the original inputs. 
The Fig.4 shows the autoencoder architecture. 

In comparison with the PCA, the autoencoder is more 
efficient in case of non-linear transformation. 

3.3. Faster C-RNN 

Object detection is the process of finding objects in frames 
video, there is many approaches treating this area of research, on 
this paragraph we will focused on the neural network Faster R-
CNN approach [14]. 

Faster R-CNN is a region based neural network, the  first 
steep use RPN fully convolutional network that take an image as 
input and outputs  proposal regions with an objectness  score  for 
each one the second steep integrate the Fast R-CNN network to 
classify those regions. 

The RPN network is a complete convolutional network which 
slides on the feature map to indicate for each position whether 
there is an object or not, without taking into account the class of 
the object.  

In order to have a system that is robust to translation and to 
scale, RPN uses an anchor-based algorithm. For each position of 
the sliding window on the feature map, 9 anchors are placed. The 
anchors are all centered on the sliding window, only their scale 
and ratio change (there are three scales and three ratios (1: 1, 2: 1 
and 1: 2), which makes the 9 anchors. Each anchor is processed 

through the convolutional layers of the RPN and the networks 
produce the probability that this anchor represents an object and 
potentially an offset to correct the dimensions of the anchor. 
Faster R-CNN generate region proposals directly in the network 
instead of using an external algorithm, that’s make it faster, 
accurate and useful in real time detection. 

4. The Proposed Method 

For risk detection and localization in space public, we have 
presented an approach, which consists of recurrent neural network 
and convolution neural network. The proposed method focused 
on two pre-trained models. The Bidirectional LSTM Autoencoder 
[15], this model learns the normal behavior from normal training 
video frames. The risks on testing data are detected as behavior 
deviated from the normal characteristic learned, by performing a 
threshold on reconstruction error. The second model is the Fast 
RCNN [14], a pre-trained object detection model which used to 
detect and extract objects in video frames, the model was trained 
on the MS-COCO dataset, and the output of this model is the 
bounding box of objects detected in frames video. 

The first model consists of two convolution layers followed 
by bidirectional LSTM layers in the Fig. 5. Inspired by [17], the 
reconstruction error of the frame t is defined as follow: 

𝒆𝒆(𝒕𝒕) =  ‖𝑰𝑰( 𝒕𝒕) − 𝒇𝒇𝒘𝒘(𝑰𝑰(𝒕𝒕))‖𝟐𝟐                              (7) 

where fw the learned model and the reconstruction error score is 
defined as follow:  

𝑹𝑹𝑹𝑹𝑹𝑹 =  
𝒆𝒆(𝒕𝒕) − 𝒆𝒆(𝒕𝒕)𝒎𝒎𝒎𝒎𝒎𝒎 

𝒆𝒆(𝒕𝒕)𝒎𝒎𝒎𝒎𝒎𝒎
                                  (8) 

 

Figure 5:  Architecture of the first model 
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To locate objects representing risk, we apply equation (8) to 
compute error construction of objects detected in frames with risk. 
In other words, the reconstruction error scores between bounding 
box of object in the original frame and the same bounding box in 
reconstructed frame must be greater than a threshold α to classify 
the object as abnormal, the experimental value of α is 0.005. 

5. Experimental Results 

The model was trained and tested on the UCSD Ped1 datasets, 
the training video frames are divided into temporal cuboid of 10 
frames, the resolution of each frame is 227x227, and the pixels 
value are normalized to take value between 0 and 1. The same 
processing data was performed to the testing video frames and the 
reconstructed error was computed for every cuboid of testing data. 

The training videos contain videos without risk, and the 
testing videos contain both sequences video without risk and 
sequences video with risk. The computer used in this works has 
NVIDIA K80 with 12GB Memory tensorflow 2 python Library. 
To trains the model 40 epochs was used with a batch size of 4, a 
dropout of 20 percent, Adam optimizer with lr=1e-4, decay=1e-5 
and epsilon=1e-6. 

The Fig 6, 7 and 8 illustrates the result of our approach. (a) 
Represents the image difference between the original and the 
reconstructed frame, (b) shows objects of original frame, and the 
reconstructed objects, the object which has a reconstruction error 
greater than a threshold (0.005) is classified as abnormal object. 

 
(a) Input frame on the left, reconstructed frame on the middle, and the 

difference between input and reconstructed frame on the right 

 
(b) Extracted objects on the top, reconstructed frame on the bottom 

Figure 6:  The folder test 19 in UCSDped1, frame 150 

 
(a) Input frame on the left, reconstructed frame on the middle, and the 

difference between input and reconstructed frame on the right 

 
(b) extracted objects on the top, reconstructed frame on the bottom 
Figure 7: The folder test 36 in UCSDped1, frame 120 

 
(a) Input frame on the left, reconstructed frame on the middle, and the 

difference between input and reconstructed frame on the right 

 
(b) Extracted objects on the top, reconstructed frame on the bottom 

Figure 8:  The folder test 19 in UCSDped1, frame 120 

The Tab. 1 demonstrates the reconstructed error of detected 
objects. The object 5(car), where error greater than the threshold 
(0.005) in frame 2 was located as risk. 

Table 1: Reconstruction Error for Detected Objects 

 Obj1 Obj2 Obj3 Obj4 Obj5 

Frame1 0.0037 0.004 0.0028 0.0032 0.0033 

Frame 2 0.0043 0.003 0.0038 0.0041 0.0054 

Frame 3 0.0035 0.0029 0.0028   

6. Conclusion 

This work proposes an automated deep learning-based 
approach to detect and locate risks in public space; it exploits both 
convolution neural network and recurrent neural network in order 
to learn the spatial and temporal semantic features from frames 
video. Firstly, Bidirectional LSTM Autoencoder is used to detect 
abnormal frames, and then, a Fast R-CNN is applied to locate 
exactly objects representing risks in frames containing risks. 
Experiments were tested on UCSD datasets, and prove that the 
proposed approach detect and locate risks accurately. This 
approach performs automatically without any involvement, which 
makes it useful for real time video surveillance. 

http://www.astesj.com/
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Finally, our future work consists to treat this idea in one 
convolutional neural network model. 
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