On the Spectrum of problems involving both $p(x)$-Laplacian and $P(x)$-Biharmonic

Abdelouahed El Khalil ${ }^{1}$, My Driss Morchid Alaoul ${ }^{2}$, Abdelfattah Touzani ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623 Riyadh, KSA
${ }^{2}$ Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796 Atlas Fez, Morocco

ARTICLEINFO
Article history:
Received: 31 May, 2017
Accepted: 14 July, 2017
Online: 29 December, 2017
Keywords:
Nonlinear Eigenvalue Problems
Variational Methods
Ljusternik-Schnirelman

A B S TRACT

We prove the existence of at least one non-decreasing sequence of positive eigenvalues for the problem

$$
\left\{\begin{array}{l}
\Delta_{p(x)}^{2} u-\Delta_{p(x)} u=\lambda|u|^{p(x)-2} u, \quad \text { in } \Omega \\
u \in W^{2, p(x)}(\Omega) \cap W_{0}^{1, p(x)}(\Omega),
\end{array}\right.
$$

Our analysis mainly relies on variational arguments involving Ljusternik-Schnirelmann theory.

1 Introduction

Consider the following nonlinear eigenvalue problem

$$
\begin{cases}\Delta_{p(x)}^{2} u-\Delta_{p(x)} u=\lambda|u|^{p(x)-2} u, & \text { in } \Omega \tag{1.1}\\ u \in W_{0}^{2, p(x)}(\Omega) \cap W_{0}^{1, p(x)}(\Omega), & \end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 4)$.
The real λ is a parameter which plays the role of eigenvalue. For a function $p(.) \in C(\bar{\Omega})$, we assume the following hypothesis

$$
\begin{equation*}
1<p^{-}=\min _{x \in \bar{\Omega}} p(x) \leq p^{+}=\max _{x \in \bar{\Omega}} p(x)<+\infty . \tag{1.2}
\end{equation*}
$$

$\Delta_{p(x)}^{2} u:=\Delta\left(|\Delta u|^{p(x)-2} \Delta u\right)$, is the $p(x)$-biharmonic operator which is a natural generalization of the p biharmonic (where the exponent p is constant) and $\Delta_{p(x)} u:=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is the $p(x)$-harmonic operator.

It is well known that elliptic equations involving the non-standard growth are not trivial generalizations of similar problems studied in the constant case since the non-standard growth operator is not homogeneous and, thus, some techniques which can be applied in the case of the constant growth operators will fail in this new situation, such as the Lagrange multiplier theorem, see, e.g [1, 2]. Problerms
with $p(x)$-growth conditions are an interesting topic, which arises from nonlinear electrorheological fluids and elastic mechanics.

Recently for the case $p(x) \equiv p$ constant Giri, Choudhuri and Pradhan [3] proved the existence and concentration phenomena of solutions on the set $V^{-1}\{0\}$ for the following p-biharmonic elliptic equation:
$\Delta_{p}^{2} u-\Delta_{p} u+\lambda V(x)|u|^{p-2} u=f(x, u) \quad x \in \mathbb{R}^{\mathbb{N}}$, as $\lambda \rightarrow \infty$ unther some assumptions on the nonlinear function f. By variational methods, Lihua Liu and Caisheng Chen [4] establish the existence of infinitely many high-energy solutions to the equation

$$
\Delta_{p}^{2} u-\Delta_{p} u+V(x)|u|^{p-2} u=f(x, u), \quad x \in \mathbb{R}^{\mathbb{N}}
$$

with a concave-convex nonlinearity,i.e.,
$f(x, u)=\lambda h_{1}(x)|u|^{m-2} u+h_{2}(x)|u|^{q-2} u, 1<m<p<q<$ $p^{*}=\frac{p N}{N-2 p}$.
In our case by using the Ljusternik-Schnirelmann theory we obtain the existence of infinitely many solutions for the problem (1.1).

The outline of the rest of the paper is as follows. In Section 2 we present some definitions and basic resuls that are necessary. In Section 3 we give the proof of our main result about existence of solutions for problem 1.1 .

[^0]
2 Preliminaries and Useful results

We state some basic properties of the variable exponent Lebesgue-Sobolev spaces $L^{p(.)}(\Omega)$ and $W^{m, p(.)}(\Omega)$. We refer the reader to the monograph by [5] and to the references therein. Define the generalized Lebesgue space by

$$
\begin{aligned}
L^{p(.)}(\Omega)= & \{u: \Omega \rightarrow \mathbb{R} \text { measurable and } \\
& \left.\int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\},
\end{aligned}
$$

endowed with the Luxemburg norm

$$
|u|_{p(.)}=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{u}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

To manipulate this spaces better, we use the modular mapping

$$
\rho: L^{p(.)}(\Omega) \rightarrow \mathbb{R}
$$

defined by

$$
\rho(u)=\int_{\Omega}|u|^{p(x)} d x
$$

Proposition 2.1 (6) Under the hypothesis 1.2, the space $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is separable, uniformly convex, reflexive and its conjugate dual space is $L^{p^{\prime}(.)}(\Omega)$ where $p^{\prime}($. is the conjugate function of $p($.$) , related by$

$$
p^{\prime}(x)=\frac{p(x)}{p(x)-1}, \quad \forall x \in \Omega
$$

For $u \in L^{p(.)}(\Omega)$ and $v \in L^{p^{\prime}(.)}(\Omega)$ we have
$\left|\int_{\Omega} u(x) v(x) d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime}}\right)|u|_{p(.)}|v|_{p^{\prime}(.)} \leq 2|u|_{p(.)}|v|_{p^{\prime}(.)}$.
Sobolev space with variable exponent $W^{m, p(.)}(\Omega)$ are defined as

$$
W^{m, p(.)}(\Omega)=\left\{u \in L^{p(.)}(\Omega): D^{\alpha} u \in L^{p(.)}(\Omega),|\alpha| \leq m\right\}
$$

where $D^{\alpha} u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} . . \partial x_{N}^{\alpha_{N}}} u$, (the derivation in distributions sense) with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is a multi-index and $|\alpha|=\sum_{i=1}^{N} \alpha_{i}$. The space $W^{m, p(.)}(\Omega)$, equipped with the norm

$$
\|u\|_{m, p(x)}=\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|_{p(x)},
$$

is a Banach, separable and reflexive space. For more details, we refer the reader to $[6,7,8]$ and [9]. We denote by $W_{0}^{m, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{m, p(x)}(\Omega)$.
Note that the weak solutions of the problem 1.1 are
considered in the Sobolev space
$W^{2, p(x)}(\Omega) \cap W_{0}^{1, p(x)}(\Omega)$ is equiped with the norm

$$
\|u\|_{p(x)}=|\Delta u|_{p(x)}+|\nabla u|_{p(x)}
$$

In the sequel, we Set

$$
X=W_{0}^{2, p(x)}(\Omega) \cap W_{0}^{1, p(x)}(\Omega)
$$

Then, endowed with the norm $\|u\|_{p(x)}, X$ is a separable and reflexive Banach space. Moreover, $\|\cdot\|_{p(x)}$ and $|\Delta u|_{p(x)}$ are two equivalent norms of X by [10, Theorem4.4].
Let

$$
\|u\|=\inf \left\{\mu>0 ; \int_{\Omega}\left(\left|\frac{\Delta u}{\mu}\right|^{p(x)}+\left|\frac{\nabla u}{\mu}\right|^{p(x)}\right) d x \leq 1\right\}
$$

Then, $\|u\|$ is equivalent to the norms $\|\cdot\|_{p(x)}$ and $|\Delta u|_{p(x)}$ in X.

Lemma 2.2 (6) For all $p, r \in C_{+}(\bar{\Omega})$ such that $r(x) \leq$ $p_{m}^{*}(x)$ for all $x \in \bar{\Omega}$, then there is a continuous and compact embedding $W^{m, p(x)}(\Omega) \hookrightarrow L^{r(x)}(\Omega)$, where

$$
p_{m}^{*}(x)= \begin{cases}\frac{N p(x)}{N-m p(x)}, & \text { if } m p(x)<N \\ +\infty, & \text { if } m p(x) \geq N\end{cases}
$$

Proposition 2.3 Let $I(u)=\int_{\Omega}\left(\left|\frac{\Delta u}{\mu}\right|^{p(x)}+\left|\frac{\nabla u}{\mu}\right|^{p(x)}\right) d x$, for $u \in L^{p(.)}$, we have
(1) $\|u\|<(=;>1) \Leftrightarrow I(u)<(=;>1)$
(2) $\|u\| \leq 1 \Rightarrow\|u\|^{p^{+}} \leq I(u) \leq\|u\|^{p^{-}}$
(3) $\|u\| \geq 1 \Rightarrow\|u\|^{p^{-}} \leq I(u) \leq\|u\|^{p^{+}}$
(4) $\|u\| \rightarrow 0($ resp $\rightarrow+\infty) \Leftrightarrow I(u) \rightarrow 0,($ resp $\rightarrow+\infty)$

The proof of this proposition is similar to the proof of [6, Theorem 1.3].

Recall that our main result of this work is to show that problem 1.1) has at least one non-decreasing sequence of nonnegative eigenvalues $\left(\lambda_{k}\right)_{k \geq 1}$. To attain this objective we will use a variational technique based on Ljusternick-Schnirelmann theory on C^{1}-manifolds [11]. In fact, we give a direct characterization of λ_{k} involving a mini-max argument over sets of genus greater than k.

We set

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\int_{\Omega} \frac{1}{p(x)}\left(|\Delta u|^{p(x)}+|\nabla u|^{p(x)}\right) d x, u \in X, \int_{\Omega} \frac{1}{p(2.1)}|u|^{p(x)} d x=1\right\} \tag{2.1}
\end{equation*}
$$

The value defined in 2.1 can be written as the Rayleigh quotient

$$
\begin{equation*}
\lambda_{1}=\inf \frac{\int_{\Omega} \frac{1}{p(x)}\left(|\Delta u|^{p(x)}+|\nabla u|^{p(x)}\right) d x}{\int_{\Omega} \frac{1}{p(x)}|u|^{p(x) d x}} \tag{2.2}
\end{equation*}
$$

where the infimum is taken over $X \backslash\{0\}$.

Definition 2.4 Let X be a real reflexive Banach space and let X^{*} stand for its dual with respect to the pairing $\langle.,$.$\rangle . We shall deal with mappings T$ acting from X into X^{*}. The strong convergence in X (and in X^{*}) is denoted by \rightarrow and the weak convergence by $-T$ is said to belong to the class $\left(S^{+}\right)$, if for any sequence u_{n} in X converging weakly to $u \in X$ and $\limsup \left\langle T, u_{n}-u\right\rangle \leq 0$, it follows that u_{n} converges strongly to u in X. We write $T \in\left(S^{+}\right)$.

Consider the following two functionals defined on X :

$$
\begin{aligned}
& \Phi(u)=\int_{\Omega} \frac{1}{p(x)}\left(|\Delta u|^{p(x)}+|\nabla u|^{p(x)}\right) d x \text { and } \varphi(u) \\
& \quad=\int_{\Omega} \frac{1}{p(x)}|u|^{p(x)} d x
\end{aligned}
$$

and set $\mathcal{M}=\{u \in X ; \varphi(u)=1\}$.
Lemma 2.5 We have the following statements
(i) Φ and φ are even, and of class C^{1} on X.
(ii) \mathcal{M} is a closed C^{1}-manifold.

Proof. It is clear that φ and Φ are even and of class C^{1} on X and $\mathcal{M}=\varphi^{-1}\{1\}$. Therefore \mathcal{M} is closed. The derivative operator φ^{\prime} satisfies $\varphi^{\prime}(u) \neq 0 \forall u \in \mathcal{M}$ (i.e., $\varphi^{\prime}(u)$ is onto for all $\left.u \in \mathcal{M}\right)$. Hence φ is a submersion, which proves that \mathcal{M} is a C^{1}-manifold. Let as split Φ on two functionals.

$$
\Phi(u)=\Phi_{1}(u)+\Phi_{2}(u),
$$

where

$$
\Phi_{1}=\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x ; \quad \Phi_{2}=\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x .
$$

Now we consider the operator
$T_{1}:=\Phi_{1}^{\prime}: W_{0}^{2, p(.)}(\Omega) \rightarrow W^{-2, p^{\prime}(.)}(\Omega)$ is defined as
$\left\langle T_{1}(u), v\right\rangle=\int_{\Omega}|\Delta u|^{p(x)-2} \Delta u \Delta v d x$, for any $u, v \in W_{0}^{2, p(.)}(\Omega)$, and the $\mathrm{p}(\mathrm{x})$-laplace operator

$$
\begin{aligned}
-\Delta_{p(x)}:=T 2 & :=\Phi_{2}^{\prime}: W_{0}^{1, p(.)}(\Omega) \rightarrow W^{-1, p^{\prime}(.)}(\Omega) \text { as } \\
\left\langle-\Delta_{p(x)}(u), v\right\rangle & =\left\langle T_{2}(u), v\right\rangle \\
& =\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \quad \text { for } u, v \in W_{0}^{1, p(.)}(\Omega),
\end{aligned}
$$

Lemma 2.6 The following statements hold

(i) T_{1} is continuous, bounded and strictly monotone.
(ii) T_{1} is of $\left(S_{+}\right)$type.
(iii) T_{2} is a homeomorphism.

Proof.

(i) We recall the following well-known inequalities, which hold for any three real a, b and p

$$
\begin{align*}
& \left(a|a|^{p-2}-b|b|^{p-2}\right)(a-b) \\
& \geq c(p)\left\{\begin{array}{cl}
|a-b|^{p}, & \text { if } p \geq 2 \\
\frac{|a-b|^{2}}{(|a|+|b|)^{2-p}}, & \text { if } 1<p<2,
\end{array}\right. \tag{2.3}
\end{align*}
$$

where $c(p)=2^{2-p}$ when $p \geq 2$ and $c(p)=p-1$ when $1<p<2$.
Let $\left(u_{n}\right)_{n} \subset W_{0}^{2, p(.)}(\Omega)$ and $u_{n} \rightharpoonup u$ (weakly) in $W_{0}^{2, p(.)}(\Omega)$. Therefore we have for $p(\cdot) \geq 2$.

$$
\begin{align*}
& 2^{2-p^{+}} \int_{\{x \in \Omega: p(x) \geq 2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \\
& \leq \int_{\{x \in \Omega: p(x) \geq 2\}}\left(\left|\Delta u_{n}\right|^{p(x)-2} \Delta u_{n}-|\Delta u|^{p(x)-2} \Delta u\right) \\
& \left(\Delta u_{n}-\Delta u\right) d x \\
& \leq \int_{\Omega}\left(\left|\Delta u_{n}\right|^{p(x)-2} \Delta u_{n}-|\Delta u|^{p(x)-2} \Delta u\right)\left(\Delta u_{n}-\Delta u\right) d x \\
& :=\varepsilon\left(\frac{1}{n}\right) . \tag{2.4}
\end{align*}
$$

On the set where $1<p(\cdot)<2$, we employ 2.3 as follows:

$$
\begin{align*}
& \int_{\{x \in \Omega: 1<p(x)<2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \\
& \leq \int_{\{x \in \Omega: 1<p(x)<2\}} \frac{\left|\Delta u_{n}-\Delta u\right|^{p(x)}}{\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{\frac{p(x)(2-p(x))}{2}}} \\
& \left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{\frac{p(x)(2-p(x))}{2}} d x \\
& \leq 2\left\|\frac{\left|\Delta u_{n}-\Delta u\right|^{p(x)}}{\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{\frac{p(x)(2-p(x))}{2}}}\right\|_{L^{2 / p(x)}(\Omega)} \\
& \times\left\|\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{\frac{p(x)(2-p(x))}{2}}\right\|_{L^{\frac{2}{2-p(x)}(\Omega)}} \\
& \leq 2 \max \left\{\left(\int_{\Omega} \frac{\left|\Delta u_{n}-\Delta u\right|^{2}}{\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{2-p(x)}} d x\right)^{\frac{p^{-}}{2}},\right. \\
& \left.\left(\int_{\Omega} \frac{\left|\Delta u_{n}-\Delta u\right|^{2}}{\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{2-p(x)}} d x\right)^{\frac{p^{+}}{2}}\right\} \\
& \times \max \left\{\left(\int_{\Omega}\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{p(x)} d x\right)^{\frac{2-p^{-}}{2}} ;\right. \\
& \left.\left(\int_{\Omega}\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{p(x)} d x\right)^{\frac{2-p^{+}}{2}}\right\} \\
& \leq 2 \max \left\{\left(p^{-}-1\right)^{\frac{-p^{-}}{2}}\left(\varepsilon\left(\frac{1}{n}\right)\right)^{\frac{p^{-}}{2}} ;\left(p^{-}-1\right)^{\frac{-p^{+}}{2}}\left(\varepsilon\left(\frac{1}{n}\right)\right)^{\frac{p^{+}}{2}}\right\} \\
& \times \max \left\{\left(\int_{\Omega}\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{p(x)} d x\right)^{\frac{2-p^{-}}{2}} ;\right. \\
& \left.\left(\int_{\Omega}\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{p(x)} d x\right)^{\frac{2-p^{+}}{2}}\right\} \text {. } \tag{2.5}
\end{align*}
$$

Since u_{n} is bounded in X, implies that $\varepsilon\left(\frac{1}{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, sending n to ∞ in 2.4 and 2.5, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x=0
$$

Since T_{1} is the Fréchet derivative of Φ_{1}, it follows that T_{1} is continuous and bounded so that we deduce that for all $u, v \in W_{0}^{2, p(.)}(\Omega)$ such that $u \neq v$,

$$
\left\langle T_{1}(u)-T_{1}(v), u-v\right\rangle>0 .
$$

This means that T_{1} is strictly monotone.
(ii) Let $\left(u_{n}\right)_{n}$ be a sequence of X such that $u_{n} \quad \rightharpoonup u$ weakly in $W_{0}^{2, p(.)}(\Omega)$ and $\limsup _{n \rightarrow+\infty}\left\langle T_{1}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$. From 2.3, we have

$$
\begin{equation*}
\left\langle T_{1}\left(u_{n}\right)-T_{1}(u), u_{n}-u\right\rangle \geq 0, \tag{2.6}
\end{equation*}
$$

and since $u_{n} \rightharpoonup u$ weakly in $W_{0}^{2, p(.)}(\Omega)$, it follows that

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left\langle T_{1}\left(u_{n}\right)-T_{1}(u), u_{n}-u\right\rangle=0 . \tag{2.7}
\end{equation*}
$$

Thus again from 2.3, we have

$$
\begin{aligned}
& \int_{\{x \in \Omega: p(x) \geq 2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \\
& \leq 2^{\left(p^{-}-2\right)} \int_{\Omega} A\left(u_{n}, u\right) d x \\
& \int_{\{x \in \Omega: 1<p(x)<2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \\
& \leq\left(p^{+}-1\right) \int_{\Omega}\left(A\left(u_{n}, u\right)\right)^{\frac{p(x)}{2}}\left(B\left(u_{n}, u\right)\right)^{(2-p(x)) \frac{p(x)}{2}} d x
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
A\left(u_{n}, u\right)= \\
\left(\left|\Delta u_{n}\right|^{p(x)-2} \Delta u_{n}-|\Delta u|^{p(x)-2} \Delta u\right)\left(\Delta u_{n}-\Delta u\right), \\
B\left(u_{n}, u\right)=\left(\left|\Delta u_{n}\right|+|\Delta u|\right)^{2-p(x)}
\end{array}\right.
$$

On the other hand, by 2.6 and since

$$
\int_{\Omega} A\left(u_{n}, u\right) d x=\left\langle T_{1}\left(u_{n}\right)-T_{1}(u), u_{n}-u\right\rangle
$$

we can consider $0 \leq \int_{\Omega} A\left(u_{n}, u\right) d x<1$.
We distinguish two cases:
First, If $\int_{\Omega} A\left(u_{n}, u\right) d x=0$, then $A\left(u_{n}, u\right)=0$, since $A\left(u_{n}, u\right) \geq 0$ a.e. in Ω.
Second, If $0<\int_{\Omega} A\left(u_{n}, u\right) d x<1$. Thus

$$
t^{p(x)}:=\left(\int_{\{x \in \Omega: 1<p(x)<2\}} A\left(u_{n}, u\right) d x\right)^{-1} \text { is positive }
$$

and by applying Young's inequality we deduce that
$\int_{\{x \in \Omega: 1<p(x)<2\}}\left[t\left(A\left(u_{n}, u\right)\right)^{\frac{p(x)}{2}}\right]\left(B\left(u_{n}, u\right)\right)^{(2-p(x)) \frac{p(x)}{2}} d x$
$\leq \int_{\{x \in \Omega: 1<p(x)<2\}}\left(A\left(u_{n}, u\right)(t)^{\frac{2}{p(x)}}+\left(B\left(u_{n}, u\right)\right)^{p(x)}\right) d x$
The fact that $\frac{2}{p(x)}<2$, we have
$\int_{\{x \in \Omega: 1<p(x)<2\}}\left(A\left(u_{n}, u\right)(t)^{\frac{2}{p(x)}}+\left(B\left(u_{n}, u\right)\right)^{p(x)}\right) d x$
$\leq \int_{\{x \in \Omega: 1<p(x)<2\}}\left(A\left(u_{n}, u\right) t^{2}+\left(B\left(u_{n}, u\right)\right)^{p(x)}\right) d x$
$\leq 1+\int_{\{x \in \Omega: 1<p(x)<2\}}\left(B\left(u_{n}, u\right)\right)^{p(x)} d x$.

Hence.

$$
\begin{aligned}
& \int_{\{x \in \Omega: 1<p(x)<2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \\
& \leq\left(\int_{\{x \in \Omega: 1<p(x)<2\}} A\left(u_{n}, u\right) d x\right)^{\frac{1}{2}}\left(1+\int_{\Omega}\left(B\left(u_{n}, u\right)\right)^{p(x)} d x\right) .
\end{aligned}
$$

Since $\int_{\Omega}\left(B\left(u_{n}, u\right)\right)^{p(x)} d x$ is bounded, then

$$
\int_{\{x \in \Omega: 1<p(x)<2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \rightarrow 0 \text { as } n \rightarrow \infty
$$

(iii) Note that the strict monotonicity of T_{1} implies that T_{1} is into operator.

Moreover, T_{1} is a coercive operator. Indeed, from Proposition 2.3 and since $p^{-}-1>0$, for each $u \in W_{0}^{2, p(x)}(\Omega)$ such that $\|u\| \geq 1$, we have $\frac{\left\langle T_{1}(u), u\right\rangle}{\|u\|}=\frac{\Phi^{\prime}(u)}{\|u\|} \geq\|u\|^{p^{-}-1} \rightarrow \infty, \quad$ as $\|u\| \rightarrow \infty$.

Finally, thanks to Minty-Browder Theorem [12], the operator T_{1} is an surjection and admits an inverse mapping.
To complete the proof of (iii), it suffices then to show the continuity of T_{1}^{-1}. Indeed, let $\left(f_{n}\right)_{n}$ be a sequence of $W^{-2, p^{\prime}(.)}(\Omega)$ such that $f_{n} \rightarrow f$ in $W^{-2, p^{\prime}(.)}(\Omega)$. Let u_{n} and u in $W_{0}^{2, p(.)}(\Omega)$ such that Since $\int_{\Omega}\left(B\left(u_{n}, u\right)\right)^{p(x)} d x$ is bounded, then $\int_{\{x \in \Omega: 1<p(x)<2\}}\left|\Delta u_{n}-\Delta u\right|^{p(x)} d x \rightarrow 0$ as $n \rightarrow \infty$
(iii) Note that the strict monotonicity of T_{1} implies that T_{1} is into operator.
Moreover, T_{1} is a coercive operator. Indeed, from Proposition 2.3 and since $p^{-}-1>0$, for each $u \in W_{0}^{2, p(x)}(\Omega)$ such that $\|u\| \geq 1$, we have $\frac{\left\langle T_{1}(u), u\right\rangle}{\|u\|}=\frac{\Phi^{\prime}(u)}{\|u\|} \geq\|u\|^{p^{--1}} \rightarrow \infty, \quad$ as $\|u\| \rightarrow \infty$.

$$
T_{1}^{-1}\left(f_{n}\right)=u_{n} \text { and } T_{1}^{-1}(f)=u
$$

By the coercivity of T_{1}, we deduce that the sequence $\left(u_{n}\right)_{n}$ is bounded in the reflexive space $W_{0}^{2, p(.)}(\Omega)$. For a subsequence if necessary, we have $u_{n} \rightharpoonup \widehat{u}$ in $W_{0}^{2, p(.)}(\Omega)$, for a some \widehat{u}. Then
$\lim _{n \rightarrow+\infty}\left\langle T_{1}\left(u_{n}\right)-T_{1}(u), u_{n}-\widehat{u}\right\rangle=\lim _{n \rightarrow+\infty}\left\langle f_{n}-f, u_{n}-\widehat{u}\right\rangle=0$.
It follows by the second assertion and the continuity of T_{1} that

$$
\begin{aligned}
& u_{n} \rightarrow \widehat{u} \text { in } W_{0}^{2, p(x)}(\Omega) \text { strongly and } \\
& T_{1}\left(u_{n}\right) \rightarrow T_{1}(\widehat{u})=T_{1}(u) \text { in } W^{-2, p^{\prime}(x)}(\Omega)
\end{aligned}
$$

Further, since T_{1} is an into operator, we conclude that $u \equiv \widehat{u}$. This completes the proof.

Lemma 2.7 [13] The following statements hold
(i) $-\Delta_{p(x)}:=T_{2}$ is continuous, bounded and strictly monotone.
(ii) $-\Delta_{p(x)}:=T_{2}$ is of $\left(S_{+}\right)$type.
(iii) $-\Delta_{p(x)}:=T_{2}$ is a homeomorphism.

The following lemma plays a central key to prove our main result related to the existence.

Lemma 2.8 We have the following statements
(i) φ^{\prime} is completely continuous.
(ii) The functional Φ satisfies the Palais-Smale condition on \mathcal{M}, i.e., for
$\left\{u_{n}\right\} \subset \mathcal{M}$, if $\left\{\Phi\left(u_{n}\right)\right\}_{n}$ is bounded and

$$
\begin{equation*}
\Phi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.8}
\end{equation*}
$$

$\left\{u_{n}\right\}$ has a convergent subsequence in X.
Proof (i) First let us prove that φ^{\prime} is well defined. Let $u, v \in X$. We have

$$
\left\langle\varphi^{\prime}(u), v\right\rangle=\int_{\Omega}|u|^{p(x)-1} v d x
$$

By applying Hölder's inequality, we obtain

$$
\left\langle\varphi^{\prime}(u), v\right\rangle \leq|u|_{p(x)}^{p(x)-1}|v|_{p(x)}
$$

Then

$$
\left|\left\langle\varphi^{\prime}(u), v\right\rangle\right| \leq C\|u\|^{p(x)-1}\|v\|,
$$

where C is the constant given by the embedding of $W_{0}^{2, p(.)}(\Omega)$ in $L^{p(.)}(\Omega)$. Hence

$$
\left\|\varphi^{\prime}(u)\right\|_{*} \leq C\|u\|^{p(x)-1}
$$

where $\|.\|_{*}$ is the dual norm associated with $\|$.$\| .$
For the complete continuity of φ^{\prime}, we argue as follow. Let $\left(u_{n}\right)_{n} \subset X$ be a bounded sequence and $u_{n} \rightharpoonup u$ (weakly) in X. Due the fact that the embedding $W_{0}^{2, p(.)}(\Omega) \hookrightarrow L^{p(.)}(\Omega)$ is compact u_{n} converges strongly to u in $L^{p(.)}(\Omega)$, and there exists a positive function $g \in L^{p(.)}(\Omega)$ such that

$$
|u| \leq g \text { a.e. in } \Omega .
$$

Since $g \in L^{p(.)-1}(\Omega)$, it follows from the Dominated Convergence Theorem that

$$
\left|u_{n}\right|^{p(x)-2} u_{n} \rightarrow|u|^{p(x)-2} u \text { in } L^{p^{\prime}(.)}(\Omega)
$$

That is,

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u) \text { in } L^{p^{\prime}(.)}(\Omega)
$$

Recall that the embedding

$$
L^{p^{\prime}(.)}(\Omega) \hookrightarrow W^{-2, p^{\prime}(.)}(\Omega)
$$

is compact. Thus

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow \varphi^{\prime}(u) \text { in } X^{*}
$$

This proves the assertion (i).
(ii) by the definition of Φ we have

$$
\Phi(u) \geq \frac{1}{p^{+}}\|u\|^{p^{-}}
$$

then u_{n} is bounded in X. So we deduce that there exists a subsequence, again denoted $\left\{u_{n}\right\}$, and $u \in X$ such that $\left\{u_{n}\right\}$ converges weakly to u in X. On the other hend, by 2.8 we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle\Phi^{\prime}\left(u_{n}\right),\left(u_{n}-u\right)\right\rangle=0 \tag{2.9}
\end{equation*}
$$

Then, by (ii) of lemma 2.6 and (ii) of lemma 2.7, we conclude that $\left\{u_{n}\right\}$ converges strongly to $u \in X$. This achieves the proof the lemma.

3 Existence results

Set
$\Gamma_{j}=\{K \subset \mathcal{M}: K$ symmetric, compact and $\gamma(K) \geq j\}$,
where $\gamma(K)=j$ being the Krasnoselskii's genus of set K, i.e., the smallest integer j, such that there exists an odd continuous map from K to $\mathbb{R}^{j} \backslash\{0\}$.

Now, let us establish some useful properties of Krasnoselskii genus proved by Szulkin [12].
Lemma 3.1 Let X be a real Banach space and A, B be symmetric subsets of $E \backslash\{0\}$ which are closed in X. Then
(a) If there exists an odd continuous mapping

$$
f: A \rightarrow B \text {, then } \gamma(A) \leq \gamma(B)
$$

(b) If $A \subset B$ then $\gamma(A) \leq \gamma(B)$.
(c) $\gamma(A \cup B) \leq \gamma(A)+\gamma(B)$.
(d) If $\gamma(B)<+\infty$ then $\gamma(\overline{A-B} \geq \gamma(A)-\gamma(B)$.
(e) If A is compact then $\gamma(A)<+\infty$ and there exists a neighborhood \mathcal{N} of A, N is a symmetric subset of $X \backslash\{0\}$, closed in X such that $\gamma(N)=\gamma(A)$.
(f) If \mathcal{N} is a symmetric and bounded neighborhood of the origin in \mathbb{R}^{k} and if A is homeomorphic to the boundary of \mathcal{N} by an odd homeomorphism then $\gamma(A)=k$.
(g) If X_{0} is a subspace of X of codimension k and if $\gamma(A)>k$ then $A \cap X_{0} \neq \phi$.
Let us now state the first our main result of this paper using Ljusternick-Schnirelmann theory:

Theorem 3.2 For any integer $j \in \mathbb{N}^{*}$,

$$
\lambda_{j}=\inf _{K \in \Gamma_{j}} \max _{u \in K} \Phi(u),
$$

is a critical value of Φ restricted on \mathcal{M}. More precisely, there exist $u_{j} \in K$, such that

$$
\lambda_{j}=\Phi\left(u_{j}\right)=\sup _{u \in K} \Phi(u),
$$

and u_{j} is a solution of 1.1 associated to positive eigenvalue λ_{j}. Moreover,

$$
\lambda_{j} \rightarrow \infty \text {, as } j \rightarrow \infty
$$

Proof We only need to prove that for any $j \in \mathbb{N}^{*}, \Gamma_{j} \neq \emptyset$ and the last assertion. Indeed, since $W_{0}^{2, p(.)}(\Omega)$ is separable, there exists $\left(e_{i}\right)_{i \geq 1}$ linearly dense in $W_{0}^{2, p(.)}(\Omega)$ such that
$\operatorname{supp} e_{i} \cap \operatorname{supp} e_{n}=\emptyset$ if $i \neq n$. We may assume that $e_{i} \in \mathcal{M}$ (if not, we take $e_{i}^{\prime} \equiv \frac{e_{i}}{\left[p(x) \varphi\left(e_{i}\right)\right]^{\frac{1}{p(x)}}}$).
Let now $j \in \mathbb{N}^{*}$ and denote

$$
F_{j}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{j}\right\}
$$

Clearly, F_{j} is a vector subspace with $\operatorname{dim} F_{j}=j$. If $v \in F_{j}$, then there exist $\alpha_{1}, \ldots \alpha_{j}$ in \mathbb{R}, such that
$v=\sum_{i=1}^{j} \alpha_{i} e_{i}$.
Thus

$$
\varphi(v)=\sum_{i=1}^{j}\left|\alpha_{i}\right|^{p(.)} \varphi\left(e_{i}\right)=\sum_{i=1}^{j}\left|\alpha_{i}\right|^{p(.)} .
$$

It follows that the map

$$
v \mapsto(\varphi(v))^{\frac{1}{p(.)}}=\| \| v \|
$$

defines a norm on F_{j}. Consequently, there is a constant $c>0$ such that

$$
c\|v\| \leq\|v\|\left\|\leq \frac{1}{c}\right\| v \| .
$$

This implies that the set

$$
\mathcal{V}_{j}=F_{j} \cap\left\{v \in W_{0}^{2, p(.)}(\Omega): \varphi(v) \leq 1\right\},
$$

is bounded because $\mathcal{V}_{k} \subset B\left(0, \frac{1}{c}\right)$, where

$$
B\left(0, \frac{1}{c}\right)=\left\{u \in W_{0}^{2, p(.)}(\Omega), \text { such that }\|u\| \leq \frac{1}{c}\right\}
$$

Thus, \mathcal{V}_{j} is a symmetric bounded neighborhood of $0 \in F_{j}$. Moreover, $F_{j} \cap \mathcal{M}$ is a compact set. By (f) of Lemma 2.7, we conclude that $\gamma\left(F_{j} \cap \mathcal{M}\right)=j$ and then we obtain finally that $\Gamma_{j} \neq \emptyset$. This completes the proof of first part of the theorem.
Now, we claim that

$$
\lambda_{j} \rightarrow \infty, \text { as } j \rightarrow \infty
$$

Let $\left(e_{k}, e_{n}^{*}\right)_{k, n}$ be a bi-orthogonal system such that $e_{k} \in$ $W_{0}^{2, p(.)}(\Omega)$ and $e_{n}^{*} \in W^{-2, p^{\prime}(.)}(\Omega)$, the $\left(e_{k}\right)_{k}$ are linearly dense in $W_{0}^{2, p(.)}(\Omega)$ and the $\left(e_{n}^{*}\right)_{n}$ are total for the dual $\left.W^{-2, p^{\prime}(.)}(\Omega)\right)$. For $k \in \mathbb{N}^{*}$, set

$$
F_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\} \text { and } F_{k}^{\perp}=\operatorname{span}\left\{e_{k+1}, e_{k+2}, \ldots\right\}
$$

By (g) of Lemma 2.7, we have for any $K \in \Gamma_{k}, K \cap F_{k-1}^{\perp} \neq$ \emptyset. Thus

$$
t_{k}=\inf _{K \in \Gamma_{k}} \sup _{u \in K \cap F_{k-1}^{\perp}} \Phi(u) \rightarrow \infty \text {, as } k \rightarrow \infty
$$

Indeed, if not, for k is large, there exists $u_{k} \in F_{k-1}^{\perp}$ with $\left|u_{k}\right|_{p(.)}=1$ such that

$$
t_{k} \leq \Phi\left(u_{k}\right) \leq M,
$$

for some $M>0$ independent of k. Thus $\left\|u_{k}\right\|_{p(.)} \leq M$. This implies that $\left(u_{k}\right)_{k}$ is bounded in X. For a subsequence of $\left\{u_{k}\right\}$ if necessary, we can assume that $\left\{u_{k}\right\}$ converges weakly in X and strongly in $L^{p(.)}(\Omega)$. By our choice of F_{k-1}^{\perp}, we have $u_{k} \rightharpoonup 0$ weakly in X, because $\left\langle e_{n}^{*}, e_{k}\right\rangle=0$, for any $k>n$. This contradicts the fact that $\left|u_{k}\right|_{p(.)}=1$ for all k. Since $\lambda_{k} \geq t_{k}$ the claim is proved.
Corrolary 3.3 we have the following statements:
(i) $\lambda_{1}=$

$$
\inf \left\{\int_{\Omega} \frac{1}{p(x)}\left(|\Delta u|^{p(x)}+|\nabla u|^{p(x)}\right) d x, u \in X, \int_{\Omega} \frac{1}{p(x)}|u|^{p(x)} d x=1\right\} .
$$

(ii) $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty$,
(iii) $\lambda_{1}=\operatorname{Inf} \Lambda$ (i.e., λ_{1} is the smallest eigenvalue in the spectrum of (1.1)).

Proof

(i) For $u \in \mathcal{M}$, set $K_{1}=\{u,-u\}$. It is clear that $\gamma\left(K_{1}\right)=1, \Phi$ is even and that

$$
\Phi(u)=\max _{K_{1}} \Phi \geq \inf _{K \in \Gamma_{1}} \max _{u \in K} \Phi(u) .
$$

Thus

$$
\inf _{u \in \mathcal{M}} \Phi(u) \geq \inf _{K \in \Gamma_{1}} \max _{u \in K} \Phi(u)=\lambda_{1} .
$$

On the other hand, $\forall K \in \Gamma_{1}, \forall u \in K$, we have

$$
\sup _{u \in K} \Phi \geq \Phi(u) \geq \inf _{u \in \mathcal{M}} \Phi(u) .
$$

It follows that

$$
\inf _{K \in \Gamma_{1}} \max _{K} \Phi=\lambda_{1} \geq \inf _{u \in \mathcal{M}} \Phi(u) .
$$

Then

$$
\begin{aligned}
& \lambda_{1}=\inf \left\{\int_{\Omega} \frac{1}{p(x)}\left(|\Delta u|^{p(x)}+|\nabla u|^{p(x)}\right)\right. \\
& \left.\quad d x, u \in X, \int_{\Omega} \frac{1}{p(x)}|u|^{p(x)} d x=1\right\} .
\end{aligned}
$$

(ii) For all $i \geq j$, we have $\Gamma_{i} \subset \Gamma_{j}$ and in view of definition of $\lambda_{i}, i \in \mathbb{N}^{*}$, we get $\lambda_{i} \geq \lambda_{j}$. As regards to $\lambda_{n} \rightarrow \infty$, it is proved before in Theorem 3.2
(iii) Let $\lambda \in \Lambda$. Thus there exists u_{λ} an eigenfunction of λ such that

$$
\int_{\Omega} \frac{1}{p(x)}\left|u_{\lambda}\right|^{p(x)} d x=1
$$

Therefore

$$
\Delta_{p(x)}^{2} u_{\lambda}-\Delta_{p(x)} u_{\lambda}=\lambda\left|u_{\lambda}\right|^{p(x)-2} u_{\lambda} \text { in } \Omega .
$$

Then

$$
\int_{\Omega} \frac{1}{p(x)}\left(\left|\Delta u_{\lambda}\right|^{p(x)}+\left|\nabla u_{\lambda}\right|^{p(x)}\right) d x=\lambda \int_{\Omega} \frac{1}{p(x)}\left|u_{\lambda}\right|^{p(x)} d x .
$$

In view of the characterization of λ_{1} in 2.1, we conclude that

$$
\begin{aligned}
\lambda & =\frac{\int_{\Omega} \frac{1}{p(x)}\left(\left|\Delta u_{\lambda}\right|^{p(x)}+\left|\nabla u_{\lambda}\right|^{p(x)}\right) d x}{\int_{\Omega} \frac{1}{p(x)}\left|u_{\lambda}\right|^{p(x)} d x} \\
& =\int_{\Omega} \frac{1}{p(x)}\left(\left|\Delta u_{\lambda}\right|^{p(x)}+\left|\nabla u_{\lambda}\right|^{p(x)}\right) d x \geq \lambda_{1} .
\end{aligned}
$$

This implies that $\lambda_{1}=\inf \Lambda$.

References

1. A. Ferrero and G. Warnaut, On a solution of second and fourth order elliptic with power type nonlinearities, Nonlinear Analysis TMA, (70), 2889-2902, 2009.
2. T.G. Myers, Thin films with high surface tension, SIAM Review, 40 (3), 441-462, 1998.
3. R. K. Giri, D. Choudhuri and Sh. Pradhan, Existence and Concentration of solutions for a class of elliptic PDEs involving p-biharmonic operator, [math.AP] 8 Jun 2016. http://arxiv.org/abs/ 1606.02512.
4. L. Lieu and C.Chen
5. L. Diening, P. Harjulehto, P. Hästö and M. Rŭz̆ička, Lecture Notes in Mathematics, issue 2017, Springer Science and business Media, 2011.
6. X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., (263), 424-446, 2001.
7. X. L. Fan and X. Fan, A Knobloch-type result for $\mathrm{p}(\mathrm{t})$ Laplacian systems, J. Math. Anal. Appl., (282), 453-464, 2003.
8. M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator, Nonlinear Anal. T. M. A., (67), 1419-1425, 2007.
9. J. H. Yao, Solution for Neumann boundary problems involving the $p(x)$-Laplace operators, Nonlinear Anal. T.M.A., (68), 1271-1283, 2008.
10. A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. (69), 3629-3636, 2008.
11. A. Szulkin, Ljusternick-Schnirelmann theory on C^{1} manifolds, Ann. Inst. Henri Poincaré Anal. Non. (5), 11939, 1988.
12. E. Zeidler, Nonlinear functional analysis and its applications, II/B, Springer-Verlag, New York, 1990.
13. X.L. Fan and Q.H. Zhang, Existence of solutions for $p(x)$-laplacian Dirichlet problem, Nonlinear Anal. (52), 18431852, 2003.

[^0]: *Corresponding Author: My Driss Morchid Alaoui, FSDM , Fez, Morocco\& morchid_driss@yahoo.fr

