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We consider the following Neumann elliptic problem
−∆u = αm1(x)u +m2(x)g(u) + h(x) inΩ,

∂u
∂ν = 0 on∂Ω.

By means of Leray-Schauder degree and under some assumptions on
the asymptotic behavior of the potential of the nonlinearity g, we prove
an existence result for our equation for every given h ∈ L∞(Ω).
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1 Introduction
Let Ω be a bounded domain of IRN (N ≥ 1), with C1,1

boundary and let ν be the outward unit normal vector
on ∂Ω.
D. Del Santo and P. Omari, have studied in [1] the
Dirichlet problem

−∆u = g(u) + h(x) in Ω

u = 0 on ∂Ω,

They have proved the existence of nontrivial weak so-
lutions for this problem for every given h ∈ Lp(Ω) un-
der some assumptions on the function g. In the case of
Neumann elliptic problem J.-P. Gossez and P. Omari,
have considered in [2] the following problem

−∆u = g(u) + h(x) in Ω

∂u
∂ν = 0 on ∂Ω,

They have shown the existence of weak solutions for
this problem for every given h ∈ L∞(Ω) under some
conditions on function g. A.Dakkak and A. Anane
studied in [3] the existence of weak solutions for the
problem

−∆u = λ2m(x)u + g(u) + h(x) in Ω

∂u
∂ν = 0 on ∂Ω,

where λ2 = λ2(m) is the second eigenvalue
of −∆ with weight m, with m ∈ M+(Ω) =

{m ∈ L∞(Ω) : meas({x ∈Ω :m(x) > 0}) , 0}.

We investigate in the present work the following
Neumann elliptic problem

(P )


−∆u = αm1(x)u +m2(x)g(u) + h(x) in Ω,

∂u
∂ν = 0 on ∂Ω.

where −∆ is the Laplacian operator. The functions
m1,m2 ∈ M+(Ω), h ∈ L∞(Ω), g : IR → IR is a con-
tinuous function and α is a real parameter such that
α ≥ λ2(m1) or α ≤ λ−2(m1), with λ−2(m1) = −λ2(−m1).
By a solution of (P ) we mean a function u ∈ H1(Ω)∩
L∞(Ω), such that

∫
Ω

∇u∇w =
∫
Ω

(αm1u +m2g(u) + h)w

for every w ∈H1(Ω).

This paper is organized as follows. In section 2, we
recall some results that we will use later. Section 3 is
concerned with the existence of principal eigencurve
of the Laplacian operator with Neumann boundary
conditions. In section 4, we show a theorem of nonres-
onance between the first and second eigenvalue (see
theorem 2). In section 5, we prove the nonresonance
between the first two eigencurves for problem (P ).
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2 Preliminary

Let us briefly recall some properties of the spectrum
of −∆ with weight and with Neumann boundary con-
dition to be used later. Let be Ω a smooth bounded
domain in IRN (N ≥ 1) and let m ∈M+(Ω). the eigen-
value problem is

−∆u = λm(x)u in Ω

∂u
∂ν = 0 on ∂Ω,

(1)

this spectrum contains a sequence of nonnegative
eigenvalues (λn)n>0 given by

1
λn

=
1

λn(m)
= sup
K∈Γn

min
u∈K

∫
Ω
mu2∫

Ω
|∇u|2

, (2)

where Γn = {K ⊂ S : K is symetric, compact andγ(K) ≥ n},
S is the unit sphere of H1(Ω) and γ is the genus func-
tion. This formulation can be found in [4], the se-
quence (λn)n>0 verify:
i) λn→ +∞ as n→ +∞
ii) If m change its sign in Ω and

∫
Ω
mdx < 0, then the

first eigenvalue defined by

λ1(m) = inf
{∫

Ω

|∇u|2,u ∈H1(Ω)/
∫
Ω

mu2dx = 1
}

(3)

it is known that λ1(m) is > 0, simple and the associated
eigenfunction ϕ1 can be chosen such that ϕ1 > 0 in Ω

and ‖ϕ1‖H1 = 1 hold. Moreover λ1(m) is isolated in the
spectrum, which allows to define the second positive
eigenvalue λ2(m) as

λ2(m) = min {λ ∈ IR : λ is eigenvalue and λ > λ1(m)}
(4)

it is also known that any eigenfunction associated to a
positive eigenvalue different from λ1(m) changes sign
in Ω.
iii) λ1(m) is strictly monotone decreasing with respect
to m (i.e. m �m′ implies λ1(m) > λ1(m′)).
Throughout this work, the functions m1 and m2 satis-
fies the following assumptions:

(A) m1, m2 ∈M+(Ω) and ess inf
Ω
m2 > 0.

Proposition 1 ([3]). Let m,m
′ ∈M+(Ω).

1. If m ≤m′ , then λ2(m) ≥ λ2(m
′
).

2. λ2 :m→ λ2(m) is continuous in (M+(Ω),‖.‖∞).

Proposition 2 ([3]). Let (mk)k be a sequence in M+(Ω)
such that mk → m in L∞(Ω). then lim

k→∞
λ2(mk) = +∞ if

and only if m ≤ 0 almost everywhere in Ω.

3 Existence of the second eigen-
curve of the −∆ with weighs in
the Neumann case

The second eigencurve of the −∆ with weighs is de-
fined as a set C2 of those (α,β) ∈ IR2 such that the fol-

lowing Neumann problem
−∆u = αm1(x)u + βm2(x)u in Ω

∂u
∂ν = 0 on ∂Ω,

has a nontrivial solution u ∈ H1(Ω) (i.e. C2 ={
(α,β) ∈ IR2;λ2(αm1 + βm2) = 1

}
), where m1 and m2

satisfies the condition (A). For more details see [5, 6].
The purpose in this section is to study the following
problem: For β < 0, we prove the existence and the
uniqueness of reel α+

2 (β) such that (α+
2 (β),β) ∈ C2).

Given m ∈ M+(Ω), we denote by Ω+
m =

{x ∈Ω;m(x) > 0} and Ω−m = {x ∈Ω;m(x) < 0}.

Remark 1 Let (α,β) ∈ C2.
1. If α > λ2(m1), then we have β < 0.
2. If meas(Ω−m) > 0 and α < λ−2(m1), we have β < 0.

Indeed, assume by contradiction if α > λ2(m1) and
β ≥ 0, then

αm1 ≤ αm1 + βm2,

using the monotony property of λ2, we obtain

λ2(αm1 + βm2) ≤ λ2(αm1) =
λ2(m1)
α

< 1,

since, (α,β) ∈ C2, we have λ2(αm1 +βm2) = 1, thus nec-
essarily β < 0. The proof of the second assertion is similar.

Theorem 1 Let m1, m2 satisfy (A), then we have:

i) For all β < 0, there exists α+
2 (β) > λ2(m1) such that

(α+
2 (β),β) ∈ C2.

ii) If meas(Ω−m1
) > 0, then for all β < 0, there exists

α−2 (β) < λ−2(m1) such that (α−2 (β),β) ∈ C2.

Proof To prove i), we consider β < 0 and we define
α+

2 (β) as follows

1
α+

2 (β)
= sup
K∈Γ2

inf
u∈K

∫
Ω
m1u

2∫
Ω
|∇u|2 − β

∫
Ω
m1u2

(5)

by definition of α+
2 (β) and, using the fact that for any

eigenfunction associated to λ2(m1) changes sign in
Ω, we obtain that there exists eigenfunction u which
change sign in Ω such that∫

Ω

∇u.∇v − β
∫
Ω

m2u v =
∫
Ω

α+
2 (β)m1 v, (6)

for all v ∈H1(Ω), we deduce also that, if w ∈H1(Ω) is
eigenfunction of operator −∆(.)−βm2(.) which change
singe in Ω with the corresponding eigenvalue λ > 0,
then λ ≥ α+

2 (β). In view of the (6), we have∫
Ω

∇u.∇v =
∫
Ω

(α+
2 (β)m1 +βm2u )v for allv ∈H1(Ω)
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it follows that the real 1 is eigenvalue of −∆ with
weight (α+

2 (β) + βm2), since the corresponding eigen-
function u change singe in Ω, we conclude that

λ2(α+
2 (β)m1 + βm2) ≤ 1. (7)

On the other hand, using (5) for all K ∈ Γ2, there exists
uK ∈ K such that

min
u∈K

∫
Ω
m1u

2∫
Ω
|∇u|2 − β

∫
Ω
m1u2

=

∫
Ω
m1u

2
K∫

Ω
|∇uK |2 − β

∫
Ω
m2u

2
K

≤ 1
α+

2 (β)
,

it follows that∫
Ω

(α+
2 (β)m1 + βm2)u2

K∫
Ω
|∇uK |2

≤ 1.

So that

min
u∈K

∫
Ω

(α+
2 (β)m1 + βm2)u2∫

Ω
|∇u|2

≤

∫
Ω

(α+
2 (β)m1 + βm2)u2

K∫
Ω
|∇uK |2

≤ 1 for allK ∈ Γ2,

this implies

sup
K∈Γ2

min
u∈K

∫
Ω

(α+
2 (β)m1 + βm2)u2∫

Ω
|∇u|2

≤ 1.

Since

1
λ2(α+

2 (β)m1 + βm2)
= sup
K∈Γ2

min
u∈K

∫
Ω

(α+
2 (β)m1 + βm2)u2∫

Ω
|∇u|2

we deduce that

λ2(α+
2 (β)m1 + βm2) ≥ 1. (8)

By combining (7) and (8), we obtain

λ2(α+
2 (β)m1 + βm2) = 1.

Let γ > 0 such that λ2(γm1 + βm2) = 1, there exists
eigenfunction ω change singe in Ω and∫

Ω

∇u.∇ω =
∫
Ω

(γm1 + βm2u )ω ∀ω ∈H1(Ω)

hence∫
Ω

∇u.∇ω −
∫
Ω

βm2uω = γ
∫
Ω

m1ω ∀ω ∈H1(Ω)

(9)
from (9), we obtain that γ is eigenvalue of the operator
−∆(.)−βm2(.) with weightm1, since the eigenfunction
ω change singe, we conclude that

γ ≥ α+
2 (β).

Assume by contradiction that γ > α+
2 (β), then

1
γ
<

1
α+

2 (β)
= sup
K∈Γ2

min
u∈K

∫
Ω
m1u

2∫
Ω
|∇u|2 − β

∫
Ω
m2u2

,

by the inequality above we deduce that there exists
K0 ∈ Γ2 such that

1
γ
< min
u∈K0

∫
Ω
m1u

2∫
Ω
|∇u|2 − β

∫
Ω
m2u2

,

since K0 is compact, we conclude that, there exists
u0 ∈ K0

1
γ
<

∫
Ω
m1u

2
0∫

Ω
|∇u0|2 − β

∫
Ω
m2u

2
0

,

hence

1 < min
u∈K0

∫
Ω

(γm1 + βm2)u2
0∫

Ω
|∇u0|2

it follows that

1 < sup
K∈Γ2

min
u∈K0

∫
Ω

(γm1 + βm2)u2
0∫

Ω
|∇u0|2

=
1

λ2(γm1 + βm2)
= 1,

which gives a contradiction, thus we have γ = α+
2 (β).

4 Nonresonance between the first
and second eigenvalue

In this section we are interesting to the study of the
existence results for the following Neumann problem

(P2)


−∆u = λ2m1(x)u +m2(x)g(u) + h(x) in Ω

∂u
∂ν = 0 on ∂Ω,

where λ2 = λ2(m1) is the second eigenvalue of −∆ with
weight m1 under the Neumann boundary condition.

Lemma 1 Let m1, m2 ∈M+(Ω). Assume that (A) is ver-
ified, then there exists a unique real c > 0 such that

λ1(λ2m1 − cm2) = 1 (10)

Proof Put a =
ess infΩλ2m1

ess infΩm2
and b =

ess supΩλ2m1

ess infΩm2
since m is a nonconstant function, then we have a < b.
So for t ∈ [a,b[ we consider the weight mt = λ2m1 −
tm2 and the corresponding increasing and continuous
function:

f : [a,b[→ IR
t 7→ λ1(λ2m1 − tm2) (11)

which satisfy f (a) = 0 and lim
t→b

f (t) = +∞. According

to be strict monotony property of λ1 with weights we
observe that f is strictly increasing on [a′ ,b[ where
a′ = max {t : f (t) = 0}.
Therefore, f (a′) = 0 ≤ f (0) = λ1(λ2m1) < λ2(λ2m1) =
1, so the conclusion follows from the intermediate val-
ues theorem.
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Theorem 2 Let m1, m2 ∈ M+(Ω). Assume that the
weights m1 and m2 satisfy (A) and the function g satisfy
the following hypotheses

− c ≤ liminf
s→±∞

g(s)
s
≤ limsup

s→±∞

g(s)
s
≤ 0 (12)

− c < limsup
|s|→∞

2G(s)
s2

; liminf
s→+∞or−∞

2G(s)
s2

< 0 (13)

where c is given in (10), then problem (P2) admits at least
one solution for any h ∈ L∞(Ω).

For the proof of theorem 2, we observe that the main
trick introduce in [7] can be adapted in our situation.
Furthermore the proof needs some technical lemmas,
the two next lemmas concern an a-priori estimates
on the possible solutions of the following homotopic
problem.
−∆u = ((1−µ)θ +µλ2)m1u +µm2g(u) +µh inΩ

∂u
∂ν = 0 on∂Ω,

(14)
where µ ∈ [0,1] and θ ∈]λ1,λ2[ to be variable and
λ1 = λ1(m1).

Lemma 2 Suppose that (A) and (12) hold and assume
that for some θ ∈]λ1,λ2[ there exists µn,θ ∈ [0,1] and
un,θ be a solution of (14), for all n. Then we have

1) (un,θ)n is a sequence of L∞(Ω) and if ‖un,θ‖∞ →
+∞ when n→ +∞, then

vn,θ =
un,θ
‖un,θ‖∞

→ vθ stongly in C1(Ω), (15)

for some subsequence.
2) Assume that the following hypothesis holds

(H) ∃θ ∈]λ1,λ2[/ limsup
n→∞

µn,θ = 1

then one of the following assertions i) or ii) holds, where

i) vθ = ψ, ψ is a normed (‖ψ‖∞ = 1) eigenfunction
associated to λ2(m1) and∫

Ω

|g(un,θ)|
‖(un,θ‖

dx −→ 0 whenn→ +∞. (16)

Furthermore, there exists η1 > 0, η2 > 0 such that

η1 <
max(un,θ)
−min(un,θ)

< η2 for n large enough. (17)

ii) vθ = ±ϕ, ϕ is a normed (‖ϕ‖∞ = 1) eigenfunction
associated to λ1(λ2m1 − cm2) = 1 and∫

Ω

|g(un,θ) + cun,θ |
‖(un,θ‖

dx −→ 0 whenn→ +∞. (18)

Furthermore, un,θ not changes sign for n large enough.

3) If (H) is false, then there exists a sequence (θk)k ⊂
]λ1,λ2[ and a strictly increasing sequence (nk)k ⊂ IN
such that

a) lim
k→+∞

θk = λ2, lim
k→∞

µnk ,θk = 1 and lim
k→∞
‖wk‖ = +∞

where wk = unk ,θk .

b) wk
‖wk‖
−→ ±ϕ strongly in C1(Ω) and∫

Ω

|g(wk) + cwk |
‖wk‖

dx −→ 0 whenn→ +∞.

Proof: 1) From the Anane’s L∞-estimation [8] and
the Tolksdorf’s-regularity [9] we can see that (un,θ)n ⊂
C1,α(Ω), since the embedding C1,α(Ω) ↪→ L∞(Ω) is
continuous for some α ∈]0,1[ independent on n, fur-
thermore vn,θ = un,θ

‖un,θ‖∞
remains a bounded sequence

in C1,α(Ω).
By using the following compact embedding
C1,α(Ω) ↪→↪→ C1(Ω), then there exists a subsequence
still denoted (vn,θ)n such that

vn,θ→ vθ stongly in C1(Ω) and ‖vθ‖∞ = 1. (19)

2) According to the function g satisfy the hypothesis
(12), we deduce that for all s ∈ IR, we can write

g(s) = q(s)s+ r(s) (20)

where −c ≤ q(s) ≤ 0 and r(s)
s −→ 0 uniformly, when

|s| → +∞. Since un,θ is a solution of (P2,θ,µn ), we get

∫
Ω
∇un,θ∇wdx =

∫
Ω

[(1−µn)θ +µnλ2)m1un,θ

+µnm2g(un,θ) +µnh]wdx
(21)

for all w ∈H1(Ω).
On the other hand, since (un,θ)n ⊂ L∞(Ω) and q is a
continuous function, it follows that q(un) is bonded in
L∞(Ω), then for a subsequence we get

q(un,θ)⇀qθ in L∞(Ω) weak− ∗,

and
|r(un,θ)|
‖un,θ‖∞

→ 0 strongly in L∞(Ω)

where −c ≤ qθ(x) ≤ 0 a.e. in Ω.
Dividing by ‖un,θ‖∞ and passing to the limit as n→∞
in (20), we get∫

Ω

∇vθ∇wdx =
∫
Ω

(λ2m1 + qθm2)vθwdx ∀w ∈H1(Ω).

(22)
Since vθ , 0, then 1 is an eigenvalue of Laplacain with
weight mqθ = λ2m1 + qθm2.
By using the monotony property of λ2 with respect to
the weight, we obtain

λ2(mqθ ) ≥ λ2(λ2m1) = 1

hence λ2(mqθ ) = 1 or λ2(mqθ ) > 1.
First case: λ2(mqθ ) = 1.
So, we have

qθ = 0 and vθ = ψ.
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Moreover, let us denotes by Fλ2
be the eigenspace as-

sociated to λ2 = λ2(m1), since Fλ2
is a vector space of

finite dimension then, we can take

η1 < min
v∈Fλ2∩S

max(v)
−min(v)

and η2 > max
v∈Fλ2∩S

max(v)
−min(v)

where S =
{
v ∈ Fλ2

/ ‖v‖∞ = 1
}
.

It is clear to see that max(vn,θ)
−min(vn,θ) →

max(ψ)
−min(ψ) when

n→ +∞.
It follows that for n large enough

η1 <
max(vn,θ)
−min(vn,θ)

< η2.

According to (20), we get∫
Ω

|m2(x)g(un,θ)|
‖un,θ‖∞

dx ≤ ‖m2‖∞
∫
Ω
−q(un,θ)|vn,θ |

+‖m2‖∞
∫
Ω

|r(unθ)|
‖unθ‖∞

dx

by passage to the limit in the above inequality, we find
(16).
Second case: λ2(mqθ ) > 1.
So, we get λ1(mqθ ) = 1 and by using the strict
monotony property of λ1, we can see that

qθ = −c and vθ = ϕ.

The rest of the proof follows directly as in first case.
3) We take (θk)k ⊂]λ1,λ2[ such that lim

k→+∞
θk = λ2. Let

us denotes by µk = lim
n→+∞

µk,θk , as in 2) it is clear to see

that
−∆u = [((1−µk)θk +µkλ2)m1 +µkqθkm2]vθk in Ω

∂vθk
∂ν = 0 on∂Ω,

we recall that 0 ≤ µk < 1, −c ≤ qθk ≤ 0 and q(un,θk ) −→
∗

qθk in L∞(Ω) when n→ +∞, where g(s) = q(s)s + r(s),

−c ≤ q(s) ≤ 0 and r(s)
r → 0 when |s| → +∞.

Let us consider the following weight

Mk(x) = ((1−µk)θk +µkλ2)m1(x) +µkqθkm2(x)

we have

Mk(x) ≤ ((1−µk)θk +µkλ2)m1(x)

because qθk ≤ 0.
Then

λ2(Mk(x)) ≥ λ2(((1−µk)θk +µkλ2)m1(x))

≥ λ2

(1−µk)θk +µkλ2
> 1.

Thus it is clear to see that

λ2(Mk(x)) = 1. (23)

Let µk → µ and q(un,θk ) −→
∗ q0 in L∞(Ω) when k →

+∞, where −c ≤ q0 ≤ 0. Then by letting k tends to
infinity in (23), it follows that

λ1(λ2m1 +µq0m2) = 1. (24)

In view of lemma 1, we get

µ = 1, q0 = −c anduθk →±ϕ strongly inC1(Ω)
when k→ +∞.

On the other hand, using (20), we have∫
Ω

|g(wk) + cwk |
‖wk‖∞

dx =
∫
Ω

|q(wk)wk + cwk + r(wk)|
‖wk‖∞

dx

≤
∫
Ω

|q(wk) + c| wk |
‖wk‖∞

dx

+
∫
Ω

|r(wk)|
‖wk‖∞

.

Since r(s)
s → 0 when |s| → ∞, then for all ε > 0 there

exists nε,k such that for all n ≥ nε,k∫
Ω

|g(wk) + cwk |
‖wk‖∞

dx ≤
∫
Ω

|qθk + c||vθk |dx+ ε.

If we take ε = 1
k ,n = nk = nε,k and we replace in the

last formula, then we can see that the second member
of this last inequality goes to 0 whenm goes to +∞. Fi-
nally, we conclude by the fact that nk will be adjusted
such that ‖unk ,θk ‖∞ > k and ‖vnk ,θk − vθk ‖C1(Ω) ≤

1
k .

Lemma 3 Let us consider the assumptions and nota-
tions of lemma 2. We take a ∈ Ω and η > 0 such that
B(a,η) ⊂Ω.

1) Assume that the hypothesis (H) holds, so, if
‖un,θ‖∞→ +∞ when n→ +∞ then limsup

n→+∞
µn,θ = 1 and

i) If vθ = ψ then

lim
n→∞

∫ 1

0

|g(un,θ(σx(t)))||∇un,θ(σx(t))||x − a|
‖un,θ‖∞

dt = 0

a.e. x ∈ ∂B(a,η)
(25)

where σx(t) = a+ t(x − a).
ii) If vθ = ±ϕ then

lim
n→∞

∫ 1

0

|g(un,θ(σx(t))) + cun,θ(σx(t)||∇un,θ(σx(t))||x − a|
‖un,θ‖∞

dt = 0

a.e. x ∈ ∂B(a,η).
(26)

2) Assume that (H) is false then we have

lim
n→∞

∫ 1

0

|g(wk(σx(t))) + cwk(σx(t)||∇wk(σx(t))||x − a|
‖wk‖∞

dt = 0

a.e. x ∈ ∂B(a,η).
(27)

Proof: We only show the relation (25) since the proof
of the (26) and (27) one proceeds in the same way.
Firstly we have∫

B(a,η)

|g(un,θ)|
‖un,θ‖∞

dx ≤
∫
Ω

|g(un,θ)|
‖un,θ‖∞

dx.

According to (16), we obtain

lim
n→∞

∫
B(a,η)

|g(un,θ)|
‖un,θ‖∞

dx = 0.
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Which gives by passing in spherical coordinates

limn→∞

∫
[0,π]n

∫ 2π

0

∫ η

0
tN−1 |g(un,θ(a+ tω))|

‖ un,θ ‖∞∏N−2
j=1 (sinθj )N−1−jdθjdθN−1dt = 0

(28)
where, ω = x−a

η ∈ ∂B(0,1).
The above equality imply

|g(un,θ(σx(τ)))|
‖un,θ‖∞

→ 0 when n→∞

a.e. x ∈ ∂B(a,η) and a.e. τ ∈ [0,1].

By using (12) we can see that g satisfy the following
growth condition:

|g(s)| ≤ a|s|+ b, for some positive reals a,b and∀s ∈ IR

hence
(
|g(un,θ(σx(.)))|
‖un,θ‖∞

)
n

and
(
|∇(un,θ(σx(.)))|
‖un,θ‖∞

)
n

are bounded

in L∞([0,1]).
By using the Lebesgue dominated convergence theo-
rem, we conclude this proof.

Lemma 4 1) If G satisfy −c < limsup
s→+∞

2G(s)
s2

≤ 0. then

for all r ∈]0,1[, there exists ρr > −c(1−r2) and a sequence
of positive real numbers (Sn) such that

lim
n→+∞

Sn = +∞ and lim
n→+∞

2G(Sn)− 2G(rSn)

S2
n

= ρr .

2) If G satisfy −c < limsup
s→+∞

2G(s)
s2
≤ 0 and

−c < liminf
s→+∞

2G(s)
s2

< 0, then for all r ∈]0,1[, there exists

ρr > −c(1 − r2) and a sequence of positive real numbers
(S
′
n) such that

limn→+∞S
′
n = +∞, limn→+∞

2G(S
′
n)

S
′2
n

= ρ

and limn→+∞
2G(S

′
n)−2G(rS

′
n)

S
′2
n

= ρr .

The same conclusion is obtained when we replace +∞
par−∞, in this case we should note ρ

′
and ρ

′
r in place

of ρ and ρr respectively.

Proof: We pose L1 = liminf
s→+∞

2G(s)
s2

and L2 =

limsup
s→+∞

2G(s)
s2

.

We distinguish the following two cases:
Case1: If L1 = L2, it is enough to take ρ = L2 and
ρr = (1− r2)L2.
Case2: If L1 < L2, then we choose ρ ∈]L1,L2[ neighbor
of L2 in such a way that:

ρ − r2L2 > −c(1− r2).

According to the definition of L1 and L2, we con-
clude that, there existence a sequence (Sn) such that
lim
n→+∞

Sn = +∞ and 2G(Sn)−2G(rSn)
S2
n

= ρ. We put

liminf
n→+∞

2G(Sn)− 2G(rSn)

S2
n

= ρ − r2 limsup
n→+∞

2G(rSn)

rS2
n

.

Since limsup
n→+∞

2G(rSn)
(rSn)2 ≤ L2, then we have:

ρr ≥ ρ − r2L2 > −c(1− r2).

5 Proof of Theorem 2

Our purpose now, consists in building in C(Ω) an
open bounded set O such that, there exist θ ∈]λ1,λ2[
such that, no solution of (14) with µ ∈ [0,1[ occurs on
the boundary ∂O. Homotopy invariance of the degree
then yields the conclusion. The set O will have the
following form

O = OS,T = {u ∈ C(Ω); T < u < S},

where, S and T satisfy T < 0 < S.
Firstly, according to, (13) we will assume the follow-
ing hypothesis holds

−c < limsup
|s|→∞

2G(s)
s2

and liminf
s→+∞

2G(s)
s2

< 0 (13+).

An analogous proof will be adapted to the hypothesis
(13−) where (13) represents (13+) or (13−). Assume
by contradiction, that for all θ ∈]λ1,λ2[ and for all
S, T (T < 0 < S), there exists µ = µθ,S,T ∈ [0,1[ and
u = uθ,S,T ∈ ∂O such that u is a solution of (14) which
gives

max(u) = S or min(u) = T . (29)

According to (13+), then owing to lemma 4, there ex-
ists two sequence (Tn) and (Sn) such that

lim
n→+∞

Tn = −∞, lim
n→+∞

2G(Tn)− 2G(rTn)

T 2
n

= ρ′r (30)

lim
n→+∞

Sn = +∞, lim
n→+∞

2G(Sn)

S2
n

, lim
n→+∞

2G(Sn)− 2G(rSn)

S2
n

= ρr

(31)

where r =
minϕ
maxϕ

and ρ, ρr and ρ′r provides from

lemma 4.
So, we remark that, without loss of generality we can
assume that

Sn
−Tn
≤ η1. (32)

We use the following notations:

T = Tn, S = Sn, µn,θ = µθ,T ,S and un,θ = uθ,T ,S .

According to (29) and (31), we obtain

‖un,θ‖∞→ +∞when n→ +∞.

We will distinguish two cases.
First case: We assume that the hypothesis (H) is sat-
isfied (c.f. lemma 2).
According to lemma 2 we get

vn,θ =
un,θ
‖un,θ‖∞

→ vθ where vθ = ψ or vθ = ±ϕ.
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i) If vθ = ψ, we assert that for every n large enough we
have

max(un,θ) = Sn.

Indeed, if not we have

max(un,θ) < Sn and min(un,θ) = Tn

thus,
max(un,θ)
−min(un,θ)

<
Sn
−Sn
≤ η1.

which gives a contradiction from the definition of η1
given in lemma 2. On the other hand, we have un,θ
changes sign on Ω, so there exists xn ∈Ω, yn ∈Ω such
that

un,θ(xn) = Sn and un,θ(yn) = 0,

we write

2G(Sn)

S2
n

=
2G(un,θ(xn))− 2G(un,θ(xn))
‖un,θ‖2∞max(vn,θ)2

=
2

max(vn,θ)2

∫
Cn

d(G ◦un,θ)
‖un,θ‖2∞

where

d(G ◦un,θ)(Cn) = g(un,θ(Cn))∇un,θ(Cn).C′n, a.e.

and Cn is a C1 with morsels line which connects ex-
tremity xn and yn.
According to lemma 3, we have

lim
n→+∞

∫
Cn

d(G ◦un,θ)
‖un,θ‖2∞

.

Since max(vn,θ)→ max(ψ) when n→ +∞, we deduce
that

ρ = lim
n→+∞

2G(Sn)

S2
n

= 0,

which is a contradiction since ρ ∈]− c,0[.
ii) If vθ = ±ϕ: then, for n large enough un,θ not
changes sign on Ω.
so,

max(un,θ) = Sn or min(un,θ) = Tn.

Assume that max(un,θ) = Sn (the same gait will be
used for the case min(un,θ) = Tn), so it is clear to see
that vn,θ = +ϕ and min(un,θ) > 0 for n large enough.
We put

g(s) = g(s) + cs, G(s) =
∫ s

0
g(s)ds.

Let xn, yn ∈ Ω such that un,θ(xn) = Sn and un,θ(yn) =
min(un,θ).
We write

G(Sn)−G(rnSn)

S2
n

=
2G(un,θ(xn))− 2G(un,θ(xn))

‖un,θ‖2∞

=
∫
Cn

d(G ◦un,θ)
‖un,θ‖2∞

where rn = min(un,θ)
max(un,θ) → r = min(ϕ)

max(ϕ) .

Using the Lemma 3, we deduce that

lim
n→+∞

∫
Cn

d(G ◦un,θ)
‖un,θ‖2∞

= 0. (33)

On the other hand, it is easy to verify that

0 = lim
n→+∞

G(Sn)−G(rnSn)

S2
n

=
ρr + c(1− r2)

2
> 0

which gives a contradiction.
Second case: Assume that the hypothesis (H) is not
verified, so for all θ ∈]λ1,λ2[ such that
limsup
n→+∞

µn,θ < 1.

We take a sequence (θk) such that

lim
k→+∞

θk = λ2,

and we consider the subsequences

(Tnk )k , (Snk )k and wk = unk ,θk .

Similarly, as in the second point of the previous case
we obtain a contradiction. This completes the proof
of theorem 2.

6 Nonresonance between the first
two Eigencurves

In this section we will prove an existence result for
problem (P ). We need more restrictive hypotheses on
the nonlinearities g and G.

(Ag ) β1 ≤ liminf
s→±∞

g(s)
s
≤ limsup

s→±∞

g(s)
s
≤ β2

(A±G) β1 < limsup
|s|→∞

2G(s)
s2

; liminf
s→+∞or−∞

2G(s)
s2

< β2

where (β1,β2) ∈ IR2 with β2 − β1 = c and c is given in
(10).

Theorem 3 Letm1, m2 ∈M+(Ω). Assume that (A), (Ag )
and (A±G) holds. Moreover, if (α,β1) ∈ C1 and (α,β2) ∈ C2,
where α ≥ λ2(m1) or α ≤ λ−2(m1). Then the problem (P )
has at least one nontrivial weak solution u ∈ H1(Ω) for
any given h ∈ L∞(Ω).

Proof: The problem (P ) can be written in the follow-
ing equivalent form

(Pe)


−∆u = m̃|u|p−2u +m2g̃(u) + h in Ω

∂u
∂ν = 0 on ∂Ω,

where
g̃(s) = g(s)− β2 s,

and
m̃ = αm1 + β2m2.

Since (α,β2) ∈ C2, then 1 is the second eigenvalue
of laplacian operator with weight m̃ relating to Neu-
mann boundary conditions. In view of theorem 2,
there exists at least one weak solution u ∈ H1(Ω) of
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the problem (Pe) for all h ∈ L∞(Ω) if the function g̃
and his potential G̃ satisfy the two conditions (12) and
(13). Indeed, in view of (Ag )

β1 − β2 ≤ lim inf
|s|→∞

(
g(s)
s
− β2

)
≤ 0

thus

−c ≤ lim inf
|s|→∞

(
g̃(s)
s

)
≤ 0.

Consequently, g̃ satisfy (12).
On the other hand, using (A±G), we have

β1−β2 < limsup
|s|→∞

(
2G(s)
s2
− β2

)
; liminf
s→+∞or−∞

(
2G(s)
s2
− β2

)
< 0

hence

−c < limsup
|s|→∞

(
2G̃(s)
s2

)
; liminf
s→+∞or−∞

(
2G̃(s)
s2

)
< 0

which means that G̃ satisfy (13).
Finally, since the problem (Pe) is a equivalent to the
problem (P ). Then the problem (P ) has at least one
nontrivial weak solution u ∈ H1(Ω) for any given
h ∈ L∞(Ω).
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