@ASTES

Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 5, 152-159 (2017)
www.astesj.com

ASTES Journal
ISSN: 2415-6698

Proceedings of International Conference on Applied Mathematics
(ICAM2017), Taza, Morocco

Nonresonance between the first two Eigencurves of Laplacian
for a Nonautonomous Neumann Problem

Ahmed Sanhajilj Ahmed Dakkak

Sidi Mohamed Ben Abdellah University, Mathematics Physics and Computer Science, LSI, FP, Taza, Morocco

ARTICLEINEFO

ABSTRACT

Article history:
Received: 25 May, 2017
Accepted: 13 July, 2017

Online: 29 December, 2017 2
Keywords: v
Laplacian

Nonresonance
Neumann problem

—Au =amy(x)u+my(x)g(u)+h(x)

=0

We consider the following Neumann elliptic problem

inQ),

on dQ).

By means of Leray-Schauder degree and under some assumptions on
the asymptotic behavior of the potential of the nonlinearity g, we prove
an existence result for our equation for every given h € L*(Q).

1 Introduction

Let Q) be a bounded domain of IRN (N > 1), with C!'!
boundary and let v be the outward unit normal vector
on dQ).

D. Del Santo and P. Omari, have studied in [1] the
Dirichlet problem

—Au = g(u)+ h(x) in Q

u=0 on JdQ,

They have proved the existence of nontrivial weak so-
lutions for this problem for every given h € LP(Q)) un-
der some assumptions on the function g. In the case of
Neumann elliptic problem J.-P. Gossez and P. Omari,
have considered in [2] the following problem

—Au = g(u)+ h(x) in Q
z—z =0 on 0Q,

They have shown the existence of weak solutions for
this problem for every given h € L*(Q)) under some
conditions on function g. A.Dakkak and A. Anane
studied in [3] the existence of weak solutions for the
problem

—Au = Aym(x)u + g(u) + h(x) in Q

‘3—” =0 on JdQ,
v
where A, = A,(m) is the second eigenvalue

of —A with weight m, with m € M*(Q) =

{m e L*(Q) : meas({x € Q : m(x) > 0}) = 0}.

We investigate in the present work the following
Neumann elliptic problem

—Au = amy(x)u +my(x)g(u)+ h(x) in Q,
(P)
g—z =0 on JdQ.

where —A is the Laplacian operator. The functions
my,my € M*(Q), h € L*(Q), g : R — IR is a con-
tinuous function and « is a real parameter such that
a > Ay(my)or a < A_2(my), with A_2(my) = —A,(—my).
By a solution of (P) we mean a function u € H'(Q) N
L*®(Q), such that

f VuVw = f (amyu+myg(u)+hw
Q Q

for every w e HY(Q).

This paper is organized as follows. In section 2, we
recall some results that we will use later. Section 3 is
concerned with the existence of principal eigencurve
of the Laplacian operator with Neumann boundary
conditions. In section 4, we show a theorem of nonres-
onance between the first and second eigenvalue (see
theorem . In section 5, we prove the nonresonance
between the first two eigencurves for problem (P).
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2 Preliminary

Let us briefly recall some properties of the spectrum
of —A with weight and with Neumann boundary con-
dition to be used later. Let be () a smooth bounded
domain in RN (N > 1) and let m € M*(Q). the eigen-
value problem is

—Au = Am(x)u in Q
(1)
3—” =0 on 0Q,
v

this spectrum contains a sequence of nonnegative
eigenvalues (1,),0 given by

1 1 Jo i

— = = sup min )
An o Au(m) Ker, #€K J-Q [Vul|?

(2)

lowing Neumann problem

—Au = amy(x)u+ fmy(x)u in Q
g—” =0 on dQ,
v

has a nontrivial solution u € H'(Q) (i.e. C, =
{(a,/ﬂ) € R% Ay(amy + fmy) = 1}), where m; and m,
satisfies the condition (A). For more details see [5, 6].
The purpose in this section is to study the following
problem: For f < 0, we prove the existence and the
uniqueness of reel aj (B) such that (a](B), B) € C,).
Given m € M%(Q), we denote by QF =
{x e Q;m(x) >0} and Q;, = {x € Q;m(x) < 0}.

Remark 1 Let (o, 8) € Cs.

where T, = {K C S : K is symetric, compact and y(K) > n}1- If @ > A2(my), then we have g < 0.

S is the unit sphere of H'(Q) and y is the genus func-
tion. This formulation can be found in [4], the se-
quence (A,),sq verify:

i) A, = 40 as 1 — +o0

ii) If m change its sign in QO and IQ mdx < 0, then the
first eigenvalue defined by

A(m) = inf{J‘O IVul?,u e HI(Q)/JQ mu’dx = 1} (3)

it is known that A, (m)is > 0, simple and the associated
eigenfunction ¢; can be chosen such that ¢; > 0in Q
and ||@1]lg1 = 1 hold. Moreover A, (m) is isolated in the
spectrum, which allows to define the second positive
eigenvalue A,(m) as

Ay(m) =min{) € IR: dis eigenvalue and A > A;(m)}
(4)

it is also known that any eigenfunction associated to a

positive eigenvalue different from A; () changes sign

in Q.

iii) A;(m) is strictly monotone decreasing with respect

to m (i.e. m < m’ implies Ay (m) > Ay (m’)).

Throughout this work, the functions m; and m, satis-

fies the following assumptions:

(A) my, my € MT(Q) and essigfm2>0.
Proposition 1 ([3]). Let m,m € M*(Q).
1.Ifm< m’, then Ay(m) > Ay (m).

2. Ay i m — Ay(m) is continuous in (M (Q),||.||e)-

Proposition 2 ([3]). Let (my )y be a sequence in M*(Q)
such that my — m in L*(Q). then klim Ay (my) = +oo if

and only if m < 0 almost everywhere in ().

3 Existence of the second eigen-
curve of the —A with weighs in
the Neumann case

The second eigencurve of the —A with weighs is de-
fined as a set C, of those (a, f) € IR? such that the fol-
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2. If meas(Q);,,) > 0 and a < A_2(my), we have  <O0.

m)

Indeed, assume by contradiction if a > A,(my) and
B =0, then

am; <amy+ pmy,
using the monotony property of A,, we obtain

Aa(my)

Aylamy +Bmy) < Ay(amy) = "

<1,

since, (a, B) € Cp, we have Ay(amy + fm,) =1, thus nec-
essarily p < 0. The proof of the second assertion is similar.

Theorem 1 Let my, m, satisfy (A), then we have:

i) For all B <0, there exists a3 (B) > Ay(my) such that
(a3 (B).B) € Ca.

ii) If meas(Q,, ) > 0, then for all B <0, there exists
a5 (B) < A_2(my) such that (a5 (B), B) € C,.

Proof To prove i), we consider f < 0 and we define
a3 (p) as follows

2
1 myu
= sup inf IQ !

KeT, 4€K IQ [Vl — ﬁfQ my u?

(5)

by definition of aj(f) and, using the fact that for any
eigenfunction associated to A,(m;) changes sign in
(), we obtain that there exists eigenfunction u which
change sign in Q) such that

J.QVM.Vv—ﬁLmzuv:Lag(ﬁ)mlv, (6)

for all v € H(Q), we deduce also that, if w e H'(Q) is
eigenfunction of operator —A(.) - m,(.) which change
singe in () with the corresponding eigenvalue A > 0,
then 1 > a;(ﬁ). In view of the @, we have

J Vu.Vv :J (af(B)ymy +pmyu)v forallve H'(Q)
Q o)
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it follows that the real 1 is eigenvalue of —A with

weight (@ (B) + pm;), since the corresponding eigen-

function u change singe in QQ, we conclude that
Aax(az(B)my + Bmy) < 1. (7)

On the other hand, using for all K € T, there exists
ug € K such that

. Jomiv?
min 5 2
uek IQ |Vu| —ﬁJQ mzlu
oM UE 1

= < ’
Jo Vuxl? = B Jo myug ~ a3 (B)
it follows that

Jo (@3 (Bymy + Bmy)u}

<1.
[Q IVMK|2
So that
. IQ(a;(ﬁ)m1+ﬂm2)u2
min
uek IQ [Vu|?
at(B)my + Bmo)uz
IQ( 2 () + fmo) KSlforallKeI‘z,
Jo IVukl?

this implies

Jo(ad(B)ymy +pmy)u?

sup min <L

KeT, 4€K Jo IVul?
Since

1 — supmin IQ(Oé;(ﬁ)m1+ﬂm2)u2
Ay(az (B)my + pmy) Keg uek IQ [Vul?

we deduce that
Aa(az (B)my +pmy) > 1.
By combining (7) and (8), we obtain
Aa(az (B)my +pmy) = 1.
Let ¥ > 0 such that A,(ymy + fm,) = 1, there exists

eigenfunction w change singe in () and

J Vu.Vw:J (ymy +Bmyu)w VweHY Q)
Q Q

hence

j Vu.Va)—J ﬁmzuw:yj mo YoweH Q)
Q Q Q
(9)
from (9), we obtain that y is eigenvalue of the operator
—A(.)— B my(.) with weight m, since the eigenfunction
w change singe, we conclude that
yz a3 (B).

Assume by contradiction that y > a3 (), then

IQ mq u2
= sup min > >
KeT, 4eK [0 [Vul2 =B [ mayu

www.astesj.com

by the inequality above we deduce that there exists
Ky €T, such that

1 Jo rmw?

< min > >
Y uekp JQ |Vu| —ﬁfQ My U

since K, is compact, we conclude that, there exists
Uy € KO

1 JQ my ug
— < 5
v o Vuol? = B [y mau

hence

Jo (v my+ pma)ug

1 < min 5
JQ |VMO|

MEKO

it follows that

2
my + fmy)u 1
1<supminIQ(V 1+pm) L =1,
KeT, “€Ko IQ e Ay (y my + pmy)

which gives a contradiction, thus we have y = aJ (B).

4 Nonresonance between the first
and second eigenvalue

In this section we are interesting to the study of the
existence results for the following Neumann problem

—Au = Ay my(x)u + my(x)g(u) + h(x) in Q
(P2)
‘3—3 =0 on 0Q),

where A, = A,(m;) is the second eigenvalue of —A with
weight m; under the Neumann boundary condition.

Lemma 1 Let my, my € MT(Q). Assume that (A) is ver-
ified, then there exists a unique real ¢ > 0 such that

/\1(/\271’11—(!7}’12):1 (10)

essinfg Aymy esssupg Aty

Proof Put a = and b =

essinfq m, essinfq m,
since m is a nonconstant function, then we have a < b.
So for t € [a,b[ we consider the weight m; = A,m; —
t m, and the corresponding increasing and continuous
function:

f:lab[> R
tr—>/\1(12m1—tm2) (11)

which satisfy f(a) = 0 and lin;f(t) = +o00. According
t—

to be strict monotony property of A; with weights we
observe that f is strictly increasing on [4’,b] where
a’ =max{t: f(t) = 0}.

Therefore, f(a’) = 0 < f(0) = Ay (Aymy) < Ay(Aymy) =
1, so the conclusion follows from the intermediate val-
ues theorem.
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Theorem 2 Let my, my € M*(Q). Assume that the
weights my and m; satisfy (A) and the function g satisfy
the following hypotheses

—cSliminf&Slimsup&S)SO (12)
o0 S s—xo0 S
2 2
—c<limsup Gz(s); liminf Gz(s) <0 (13)
S $—>+000r—00 §

|s]—00

where c is given in , then problem (P,) admits at least
one solution for any h € L*(Q)).

For the proof of theorem [2) we observe that the main
trick introduce in [7] can be adapted in our situation.
Furthermore the proof needs some technical lemmas,
the two next lemmas concern an a-priori estimates
on the possible solutions of the following homotopic
problem.

—Au=((1-p)0 + puly)myu + umyog(u)+ph inQ
% =0 on 0Q),
v
(14)

where y € [0,1] and 6 €]A;, A;[ to be variable and
Ay = Ay (my).

Lemma 2 Suppose that (A) and hold and assume
that for some 6 €]y, Ay[ there exists p, ¢ € [0,1] and
Un,g be a solution of (T4), for all n. Then we have

1) (up,p)y is a sequence of L®(Q) and if |lu,ellce —
+00 when n — +oo, then

Uy

Vo = — vg stongly in CH(Q),  (15)

4,601l

for some subsequence.
2) Assume that the following hypothesis holds

(H) 36 €], A[/limsupp,g =1

n—oo

then one of the following assertions i) or ii) holds, where

i) vg = ¢, ¢ is a normed (||[P|lo =
associated to A,(my) and

1) eigenfunction

u
( ”’6)|dx—>0whenn—>+oo. (16)
a l(uell
Furthermore, there exists 11 > 0, 11, > 0 such that
< max{it,o) < I h (17)
m “min(i, ) 1, for nlarge enough.

ii) vg = ¢, @ is a normed (||pll = 1) eigenfunction
associated to Ay(A,my —cmy) =1 and

f |8 (14n,0) + iy 6l

=7 7 dx — Qwhenn — +oo.
(w0l

(18)

Furthermore, u, g not changes sign for n large enough.
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3) If (H) is false, then there exists a sequence (Oy); C
|A1, Ao and a strictly increasing sequence (ny)y C IN
such that

a) lim O = Ay, lim p,, g =1 and lim [Jwi|| = +oo
k—+oc0 k—o0 ’ k—oo

where wi = uy, g, .
b) % — +¢ strongly in C1(Q) and

W)+ cw
J 18(we) kld — OQwhenn — +oo.
[lwell

Proof: 1) From the Anane’s L™-estimation [8] and
the Tolksdorf’s -regularity [9] we can see that (u,,¢), C
Ccl(Q)), since the embedding C*(Q) — L®(Q) is
continuous for some « €]0,1[ independent on n, fur-

thermore v, g = ﬁ remains a bounded sequence
in C12(QQ).
By wusing the following compact embedding

Cl2(Q)) << C1(Q), then there exists a subsequence
still denoted (v,,0), such that

v,,0 — Vg stongly in ¢ (Q)and |lvglle, = 1. (19)

2) According to the function g satisfy the hypothesis
, we deduce that for all s € IR, we can write

8(s)=q(s)s+r(s) (20)

where —c < ¢(s) < 0 and )9 uniformly, when
|s| — +oo. Since u,, g is a solution of (P, g, ), we get

JQ Vun,Qdex = IQ[(I _l‘n)e + ﬂn/\Z)mlun,G
(21)

+l’lnm2g(un,6) + l"nh]w‘ix
for all w e H(Q).

On the other hand, since (u, ), C L*°(Q)) and q is a
continuous function, it follows that g(u,,) is bonded in

L*®(Q2), then for a subsequence we get
q(it,9) = qo in L¥(Q) weak —+,
and
:(:E:Zﬁ: — Ostrongly in L®(Q))

where —c < gg(x) < 0a.e. in Q.
Dividing by |4, ¢ll., and passing to the limit as # — oo

in (20), we get

J VvgVwdx = J- (Apmy + gomy)vgwdx Yw € HY(Q).
o) Q

(22)
Since vy # 0, then 1 is an eigenvalue of Laplacain with
weight mg, = Aymy +ggm,.
By using the monotony property of A, with respect to
the weight, we obtain

Aa(mg,) > Aa(Agmy) =1

hence Ay(mg,) =1 or Ay(mg,) > 1.
First case: Ay(m,,) = 1.
So, we have

qQZO and ‘VQZII).
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Moreover, let us denotes by F), be the eigenspace as-
sociated to Ay = Ay(my), since F,, is a vector space of
finite dimension then, we can take

< min max(v) max(v)

and > max
veF),NS —min(v) 2

veF),NS —min(v)

where S = {v €F), /vl = 1}-

It is clear to see that rﬁ:ﬁg") max(¥) -\ hen
- n,Q) _mln(lp)
n — +o00.
It follows that for n large enough
- max(v,,g)
1< ———— <.
1 —min(v, g) T
According to (20), we get
Jo "zl <llmollu, fo, ~q(tn0)vnol
Himallss fo 1 i

Q Munolloo

by passage to the limit in the above inequality, we find

(L6).

Second case: Ay(m,,) > 1.

So, we get Ay(my,) = 1 and by using the strict
monotony property of 1;, we can see that

go=—c and vy =¢.

The rest of the proof follows directly as in first case.
3) We take (6y)r C]Aq, Ay[ such that klim Or = Ay. Let
—+00
us denotes by i, = lir{l Hk,0,, as in 2) it is clear to see
n—-+oo
that

—Au = [((1 = pp)Ok + P A2)my + prqe, malvg, in Q
0
;9" =0 on dQ),
v

*

we recall that 0 <7 <1, -c < gg, <0and g(u,g,) —
ge, in L=(Q) when n — 400, where g(s) = q(s)s + r(s),

—cSq()<0and —>0When|s|—>+oo
Let us consider the following weight

Mi(x) = (1= Fi)Ox + i A2)m (%) + iy o, 2 (x)

we have

Mi(x) < (1= 7Ok + A2 )y (x)

because gg, < 0.
Then

Aa(Mi(x)) = Aa(((1 = pip) O + g A2)my (x))

> "2 5

Thus it is clear to see that
Ax(M(x)) = 1. (23)

Let 31, — 7 and q(u,0,) —" g, in L*(Q) when k —
+00, where —c < g, < 0. Then by letting k tends to
infinity in (23), it follows that

A (Agmy +pgomy) = 1. (24)
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In view of lemmal |l we get

7i=1,qy=-c andug — +¢pstrongly in C'(Q)

when k — +co.

On the other hand, using , we have

f 1g(wy) + cwy| +ka|
il

f gt + cwy + rlwy)l
el
fm( o+ d g
0 el
|7 (wy)|
o Twrlle

Since @ — 0 when |s| — oo, then for all ¢ > 0 there
exists 71, ; such that for all n > n,

Ig wy) +ka|

e

x < J g0, +cllvg,ldx + €.
Q

If we take € = %,n = ny = n.; and we replace in the
last formula, then we can see that the second member
of this last inequality goes to 0 when m goes to +oo. Fi-
nally, we conclude by the fact that n; will be adjusted

such that [lu,, g,llc >k and ||v,, g, —Vek”cl@) < %

Lemma 3 Let us consider the assumptions and nota-
tions of lemma [2} We take a € Q and 1 > 0 such that
B(a,n) c Q.

1) Assume that the hypothesis (H) holds, so, if
lt1,6]lc0 = +00 when n — +oo then limsup p,, 9 = 1 and

n—+oo
i) If vg = ¢ then

J\ |g un@ ox(t

a.e. x € dB(a,n)

IV, 0(0x(t))llx - al

dt=0
llt,0l0

lim
n—o00

(25)
where o,(t) = a+t(x—a).
ii) If vg = ¢ then

J |g ”n@ oy (t

a.e. x € dB(a,n).

lim

n—oo

llunollco

(26)
2) Assume that (H) is false then we have

J |g wy (0 (¢

a.e. x € dB(a,n).

lim
n—o00

llwilleo
(27)

Proof: We only show the relation since the proof
of the and one proceeds in the same way.

Firstly we have
< [ lgtnol,
a llunelle

J;?(tw)

According to (16), we obtain

u
i [ st
= JB(a,n) “un,9”oo

|8 (s,
ll4n,601lc0

=0.
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Which gives by passing in spherical coordinates
N-1 |g un@ a+tw))

271
lim J J J
e 071 ” un@ ||oo

st N-1-j40. idOn_1dt =0
(28)
where, w = £2 € dB(0, 1).

The above equality imply

|8 (10,0 (0(7)))]

—0 whenn— o
lt4,0lc0

a.e. x€dB(a,n)and a.e. T €[0,1].

By using we can see that g satisfy the following
growth condition:

|g(s)| < als| + b, for some positive realsa,band Vs € IR

ol [
in L*=([0,1]).
By using the Lebesgue dominated convergence theo-
rem, we conclude this proof.

hence (w) and (M) are bounded
n

G()

Lemma 4 1) If G satisfy —c < limsup < 0. then

s—+00
for all r €]0,1], there exists p, > —c(1 -
of positive real numbers (S,,) such that

r?) and a sequence

lim S, =+ocoand lim 2G(Sy) —22G(rSn) =p;.
n—+oo n—+00 S;
G( )
2) If G satisfy —c <limsup <0and

S—+00

—c < liminf
S—+00
Pr

> —c(1 —r2) and a sequence of positive real numbers
(S,) such that

< 0, then for all r €]0, 1], there exists

2G(s)
52

’

2G(Sy)

. ’ .
hmn—>+oo Sn = too, hmn—>+°° T2 =p
n

and lim,,_, ,

The same conclusion is obtained when we replace +00
par—oo, in this case we should note p and p, in place
of p and p, respectively.

2
Proof: We pose L; = 1im+inf GZ(S) and L, =
$—+00 S
2
limsup Gz(s)‘
s—+00 S

We distinguish the following two cases:
Casel: If Ly = L,, it is enough to take p = L, and
or=(1-7r2)L,.
Case2: If L; < L,, then we choose p €]Ly, L,[ neighbor
of L, in such a way that:

p —12Ly > —c(1-1?).

According to the definition of L; and L,, we con-
clude that, there existence a sequence (S,,) such that

lirP S, =400 and w =p. We put
n—+oo n
2 -2 2
liminf G(Sw) 5 G(rSy) _ p - r*limsup —G(Tzs”)
n—-+0o Sii n—+oo ISy

www.astesj.com

2
Since limsup G(rSy) < L,, then we have:

n—>+00 (rSn)z

pr=p— r’Ly > —c(1-12).

5 Proof of Theorem

Our purpose now, consists in building in C(Q) an

open bounded set O such that, there exist 8 €], A,[

such that, no solution of with p € [0, 1[ occurs on

the boundary dO. Homotopy invariance of the degree

then yields the conclusion. The set O will have the

following form
O=0sr={ueC(Q); T<u<S}

where, S and T satisfy T <0 < S.

Firstly, according to, we will assume the follow-

ing hypothesis holds

G) 2 nd limint 286

s2 s—+oc0  §

2
—c <limsup <0 (13;).

|S|—>oo

An analogous proof will be adapted to the hypothesis
(13_) where represents (13,) or (13_). Assume
by contradiction, that for all 8 €]y, A,[ and for all
S,T (T <0 <S), there exists y = pg s € [0,1[ and
u =ugg 1 € dO such that u is a solution of which
gives

Sor min(u)=T.

max(u) = (29)

According to (13,), then owing to lemma (4} there ex-
ists two sequence (T;) and (S,,) such that

2G(T,,) - 2G(rT,
lim T, = —oo, lim 20U =260T) _
n—+oo n—+oo Tn2

2G(Sy) 2G(Sy) - 2G(rS,)

lim S, =+oco, lim , lim =p

n—+o0 n—+oo

Si Sit
(31)
min ¢

ax @

where r = and p, p, and p;, provides from

lemmal4
So, we remark that, without loss of generality we can
assume that

<. (32)

We use the following notations:
T=T, S=Su pno = po,1,s and uy 9 = ig,T,5.

According to and (31)), we obtain

llt,0llco = +00 when n — +o0.

We will distinguish two cases.

First case: We assume that the hypothesis (H) is sat-
isfied (c.f. lemma|2).

According to lemma 2] we get

U0

Vo = — vg where vg = P or vg = 2.

4,0/l
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i) If vg = ¢, we assert that for every n large enough we
have

max(uy,g) = Sy,

Indeed, if not we have
max(u, g) < S, and min(u,g) =T,

thus,
max(u S
M < n < 17

—min(u,9) =S, t

which gives a contradiction from the definition of 7,

given in lemma On the other hand, we have u, ¢

changes sign on Q, so there exists x,, € Q, v, € Q such
that

”n,@(xn) =S, and ”n,@(yn) =0,
we write

2G(Sn) _ 2G(un,6(xn))_ZG(un,G(xn))

sz [l 0113 max(vy,¢)*
2

_ J\ d(Goun'Q)
max(v,0)> Je, lunoll%

where
d(G o 1,,0)(Cyy) = g(1t,0(Cp))Vity,0(Cy).Cpy ace.
and C, is a C! with morsels line which connects ex-

tremity x,, and v,,.
According to lemma (3} we have

lim j
n—teo Jo

Since max(v, g) — max(i) when n — +oco0, we deduce
that

d(GO Mnl@)

”un,Q”go .

p= lim &fn) =0,
n—+00 Sn
which is a contradiction since p €] —¢,0[.
ii) If v9 = +¢: then, for n large enough u,» not
changes sign on Q.
so,

max(u, g) =S, or min(u,g)=T,,.

Assume that max(u,g) = S, (the same gait will be
used for the case min(u, ) = T,), so it is clear to see
that v, 9 = +¢ and min(u, ¢) > 0 for n large enough.
We put

3(s) = g(5) + s, G(s) = L 2(5)ds.

Let x,, v, € Q such that u, g(x,) = S, and u,6(v,) =
min(u,g).
We write
E(Sn) _E(rnsn) _ za(un,e(xn)) - za(un,e(xn))
S% _“”n,@“go

_J A(Goyg)
¢, ltnolls

www.astesj.com

_ min(u,g) _ min(gp)
where 7 = faxtung) ~ 7= maxp)’
Using the Lemma (3| we deduce that

. d(éounB)
lim .

——=0.
n—teo Je, ””n,@”czx:

(33)

On the other hand, it is easy to verify that

0= lim E(Sn)_a(rnsn) — pr+C(1 _72)

n—+oo S% 2

>0

which gives a contradiction.

Second case: Assume that the hypothesis (H) is not
verified, so for all 6 €], A,[ such that

limsupp, g <1.

n—-+oo
We take a sequence () such that
lim 6, = A,,
k—+0c0

and we consider the subsequences

(Tnk )k: (Snk )k and Wk = Upy,0;-

Similarly, as in the second point of the previous case
we obtain a contradiction. This completes the proof
of theorem [2

6 Nonresonance between the first
two Eigencurves
In this section we will prove an existence result for

problem (P). We need more restrictive hypotheses on
the nonlinearities g and G.

(Ag) p1 < liminf@ <limsup @ <pB2
§—t00 s—*o0
+ ) 2G(s) . . 2G(s)
(Ag) Ay <limsup—=—; liminf —5—=<p,

|s]—o0

where (1, ,) € IR* with 8, — f; = c and c is given in
(10).

Theorem 3 Let my, my € M*(Q). Assume that (A), (A,)
and (AJE';) holds. Moreover, if (a, f1) € Cy and (a, B3) € Cy,
where a > Ay(my) or a < A_2(my). Then the problem (P)
has at least one nontrivial weak solution u € H'(Q) for
any given h e L*(Q)).

Proof: The problem (P) can be written in the follow-
ing equivalent form

—Au = mlulP~?u + m,g(u) + h in Q
(Pe)
g_u =0 on 0dQ,
v
where
g(s) =g(s)— Bz,
and

rﬁ:am1+ﬂ2m2.

Since (a,f;) € C,, then 1 is the second eigenvalue
of laplacian operator with weight 7 relating to Neu-
mann boundary conditions. In view of theorem
there exists at least one weak solution u € H'(Q) of
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the problem (P,) for all h € L*(Q) if the function §

and his potential G satisfy the two conditions (12) and
. Indeed, in view of (A,)

B1—Po <lim inf (g(s) —ﬁz)s 0

|s|]—00 T
thus _
—c <lim inf (&) <0.

|s]—00 S

Consequently, g satisfy (12).
On the other hand, using (A¢), we have

B1—P2 < limsup(ZG(S) —ﬁz); liminf (232(5) - ﬁz) <0

2 —
Is|—c0 S §—+0007 —00

hence

—c< limsup(zcz(s) ); liminf (ZG(S)) <0

S §—+0007 —00

|s|]—00

which means that G satisfy .
Finally, since the problem (7,) is a equivalent to the
problem (P). Then the problem (P) has at least one

nontrivial weak solution u € H'(Q) for any given
heL*(Q).
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