Nonresonance between the first two Eigencurves of Laplacian for a Nonautonomous Neumann Problem

Ahmed Sanhajif Ahmed Dakkak
Sidi Mohamed Ben Abdellah University, Mathematics Physics and Computer Science, LSI, FP, Taza, Morocco

A R TICLEINFO

Article history:
Received: 25 May, 2017
Accepted: 13 July, 2017
Online: 29 December, 2017
Keywords:
Laplacian
Nonresonance
Neumann problem

A B S TRACT
We consider the following Neumann elliptic problem

$$
\begin{cases}-\Delta u=\alpha m_{1}(x) u+m_{2}(x) g(u)+h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega .\end{cases}
$$

By means of Leray-Schauder degree and under some assumptions on the asymptotic behavior of the potential of the nonlinearity g, we prove an existence result for our equation for every given $h \in L^{\infty}(\Omega)$.

1 Introduction

Let Ω be a bounded domain of $\mathbb{R}^{N}(N \geq 1)$, with $C^{1,1}$ boundary and let v be the outward unit normal vector on $\partial \Omega$.
D. Del Santo and P. Omari, have studied in [1] the Dirichlet problem

$$
\begin{cases}-\Delta u=g(u)+h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

They have proved the existence of nontrivial weak solutions for this problem for every given $h \in L^{p}(\Omega)$ under some assumptions on the function g. In the case of Neumann elliptic problem J.-P. Gossez and P. Omari, have considered in [2] the following problem

$$
\begin{cases}-\Delta u=g(u)+h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}
$$

They have shown the existence of weak solutions for this problem for every given $h \in L^{\infty}(\Omega)$ under some conditions on function g. A.Dakkak and A. Anane studied in [3] the existence of weak solutions for the problem

$$
\begin{cases}-\Delta u=\lambda_{2} m(x) u+g(u)+h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda_{2}=\lambda_{2}(m)$ is the second eigenvalue of $-\Delta$ with weight m, with $m \in M^{+}(\Omega)=$
$\left\{m \in L^{\infty}(\Omega): \operatorname{meas}(\{x \in \Omega: m(x)>0\}) \neq 0\right\}$.

We investigate in the present work the following Neumann elliptic problem
$(\mathcal{P}) \begin{cases}-\Delta u=\alpha m_{1}(x) u+m_{2}(x) g(u)+h(x) & \text { in } \Omega, \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega .\end{cases}$
where $-\Delta$ is the Laplacian operator. The functions $m_{1}, m_{2} \in M^{+}(\Omega), h \in L^{\infty}(\Omega), g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and α is a real parameter such that $\alpha \geq \lambda_{2}\left(m_{1}\right)$ or $\alpha \leq \lambda_{-} 2\left(m_{1}\right)$, with $\lambda_{-} 2\left(m_{1}\right)=-\lambda_{2}\left(-m_{1}\right)$. By a solution of (\mathcal{P}) we mean a function $u \in H^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$, such that

$$
\int_{\Omega} \nabla u \nabla w=\int_{\Omega}\left(\alpha m_{1} u+m_{2} g(u)+h\right) w
$$

for every $w \in H^{1}(\Omega)$.

This paper is organized as follows. In section 2 , we recall some results that we will use later. Section 3 is concerned with the existence of principal eigencurve of the Laplacian operator with Neumann boundary conditions. In section 4, we show a theorem of nonresonance between the first and second eigenvalue (see theorem 22. In section 5, we prove the nonresonance between the first two eigencurves for problem (\mathcal{P}).

[^0]
2 Preliminary

Let us briefly recall some properties of the spectrum of $-\Delta$ with weight and with Neumann boundary condition to be used later. Let be Ω a smooth bounded domain in $\mathbb{R}^{N}(N \geq 1)$ and let $m \in M^{+}(\Omega)$. the eigenvalue problem is

$$
\left\{\begin{array}{rlr}
-\Delta u=\lambda m(x) u & \text { in } \quad \Omega \tag{1}\\
\frac{\partial u}{\partial v}=0 & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

this spectrum contains a sequence of nonnegative eigenvalues $\left(\lambda_{n}\right)_{n>0}$ given by

$$
\begin{equation*}
\frac{1}{\lambda_{n}}=\frac{1}{\lambda_{n}(m)}=\sup _{K \in \Gamma_{n}} \min _{u \in K} \frac{\int_{\Omega} m u^{2}}{\int_{\Omega}|\nabla u|^{2}}, \tag{2}
\end{equation*}
$$

where $\Gamma_{n}=\{K \subset S: K$ is symetric, compact and $\gamma(K) \geq n\}$ S is the unit sphere of $H^{1}(\Omega)$ and γ is the genus function. This formulation can be found in [4], the sequence $\left(\lambda_{n}\right)_{n>0}$ verify:
i) $\lambda_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$
ii) If m change its sign in Ω and $\int_{\Omega} m d x<0$, then the first eigenvalue defined by

$$
\begin{equation*}
\lambda_{1}(m)=\inf \left\{\int_{\Omega}|\nabla u|^{2}, u \in H^{1}(\Omega) / \int_{\Omega} m u^{2} d x=1\right\} \tag{3}
\end{equation*}
$$

it is known that $\lambda_{1}(m)$ is >0, simple and the associated eigenfunction φ_{1} can be chosen such that $\varphi_{1}>0$ in Ω and $\left\|\varphi_{1}\right\|_{H^{1}}=1$ hold. Moreover $\lambda_{1}(m)$ is isolated in the spectrum, which allows to define the second positive eigenvalue $\lambda_{2}(m)$ as
$\lambda_{2}(m)=\min \left\{\lambda \in \mathbb{R}: \lambda\right.$ is eigenvalue and $\left.\quad \lambda>\lambda_{1}(m)\right\}$
it is also known that any eigenfunction associated to a positive eigenvalue different from $\lambda_{1}(m)$ changes sign in Ω.
iii) $\lambda_{1}(m)$ is strictly monotone decreasing with respect to m (i.e. $m \not m^{\prime}$ implies $\lambda_{1}(m)>\lambda_{1}\left(m^{\prime}\right)$).
Throughout this work, the functions m_{1} and m_{2} satisfies the following assumptions:
(A) $\quad m_{1}, m_{2} \in M^{+}(\Omega)$ and $\operatorname{ess} \inf _{\Omega} m_{2}>0$.

Proposition 1 ([3]). Let $m, m^{\prime} \in M^{+}(\Omega)$.

1. If $m \leq m^{\prime}$, then $\lambda_{2}(m) \geq \lambda_{2}\left(m^{\prime}\right)$.
2. $\lambda_{2}: m \rightarrow \lambda_{2}(m)$ is continuous in $\left(M^{+}(\Omega),\|.\|_{\infty}\right)$.

Proposition 2 ([3]). Let $\left(m_{k}\right)_{k}$ be a sequence in $M^{+}(\Omega)$ such that $m_{k} \rightarrow m$ in $L^{\infty}(\Omega)$. then $\lim _{k \rightarrow \infty} \lambda_{2}\left(m_{k}\right)=+\infty$ if and only if $m \leq 0$ almost everywhere in Ω.

3 Existence of the second eigencurve of the $-\Delta$ with weighs in the Neumann case

The second eigencurve of the $-\Delta$ with weighs is defined as a set \mathcal{C}_{2} of those $(\alpha, \beta) \in \mathbb{R}^{2}$ such that the fol-
lowing Neumann problem

$$
\begin{cases}-\Delta u=\alpha m_{1}(x) u+\beta m_{2}(x) u & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

has a nontrivial solution $u \in H^{1}(\Omega)$ (i.e. $\mathcal{C}_{2}=$ $\left.\left\{(\alpha, \beta) \in \mathbb{R}^{2} ; \lambda_{2}\left(\alpha m_{1}+\beta m_{2}\right)=1\right\}\right)$, where m_{1} and m_{2} satisfies the condition (A). For more details see [5, 6]. The purpose in this section is to study the following problem: For $\beta<0$, we prove the existence and the uniqueness of reel $\alpha_{2}^{+}(\beta)$ such that $\left.\left(\alpha_{2}^{+}(\beta), \beta\right) \in \mathcal{C}_{2}\right)$.
Given $m \in M^{+}(\Omega)$, we denote by $\Omega_{m}^{+}=$ $\{x \in \Omega ; m(x)>0\}$ and $\Omega_{m}^{-}=\{x \in \Omega ; m(x)<0\}$.

Remark 1 Let $(\alpha, \beta) \in \mathcal{C}_{2}$.

1. If $\alpha>\lambda_{2}\left(m_{1}\right)$, then we have $\beta<0$.
2. If meas $\left(\Omega_{m}^{-}\right)>0$ and $\alpha<\lambda_{-} 2\left(m_{1}\right)$, we have $\beta<0$.

Indeed, assume by contradiction if $\alpha>\lambda_{2}\left(m_{1}\right)$ and $\beta \geq 0$, then

$$
\alpha m_{1} \leq \alpha m_{1}+\beta m_{2}
$$

using the monotony property of λ_{2}, we obtain

$$
\lambda_{2}\left(\alpha m_{1}+\beta m_{2}\right) \leq \lambda_{2}\left(\alpha m_{1}\right)=\frac{\lambda_{2}\left(m_{1}\right)}{\alpha}<1,
$$

since, $(\alpha, \beta) \in \mathcal{C}_{2}$, we have $\lambda_{2}\left(\alpha m_{1}+\beta m_{2}\right)=1$, thus necessarily $\beta<0$. The proof of the second assertion is similar.

Theorem 1 Let m_{1}, m_{2} satisfy (\boldsymbol{A}), then we have:
i) For all $\beta<0$, there exists $\alpha_{2}^{+}(\beta)>\lambda_{2}\left(m_{1}\right)$ such that $\left(\alpha_{2}^{+}(\beta), \beta\right) \in \mathcal{C}_{2}$.
ii) If meas $\left(\Omega_{m_{1}}^{-}\right)>0$, then for all $\beta<0$, there exists $\alpha_{2}^{-}(\beta)<\lambda _2\left(m_{1}\right)$ such that $\left(\alpha_{2}^{-}(\beta), \beta\right) \in \mathcal{C}_{2}$.

Proof To prove \mathbf{i}), we consider $\beta<0$ and we define $\alpha_{2}^{+}(\beta)$ as follows

$$
\begin{equation*}
\frac{1}{\alpha_{2}^{+}(\beta)}=\sup _{K \in \Gamma_{2}} \inf _{u \in K} \frac{\int_{\Omega} m_{1} u^{2}}{\int_{\Omega}|\nabla u|^{2}-\beta \int_{\Omega} m_{1} u^{2}} \tag{5}
\end{equation*}
$$

by definition of $\alpha_{2}^{+}(\beta)$ and, using the fact that for any eigenfunction associated to $\lambda_{2}\left(m_{1}\right)$ changes sign in Ω, we obtain that there exists eigenfunction u which change sign in Ω such that

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v-\beta \int_{\Omega} m_{2} u v=\int_{\Omega} \alpha_{2}^{+}(\beta) m_{1} v, \tag{6}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$, we deduce also that, if $w \in H^{1}(\Omega)$ is eigenfunction of operator $-\Delta()-.\beta m_{2}($.$) which change$ singe in Ω with the corresponding eigenvalue $\lambda>0$, then $\lambda \geq \alpha_{2}^{+}(\beta)$. In view of the $\sqrt{6}$, we have
$\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2} u\right) v \quad$ for all $v \in H^{1}(\Omega)$
it follows that the real 1 is eigenvalue of $-\Delta$ with weight $\left(\alpha_{2}^{+}(\beta)+\beta m_{2}\right)$, since the corresponding eigenfunction u change singe in Ω, we conclude that

$$
\begin{equation*}
\lambda_{2}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) \leq 1 \tag{7}
\end{equation*}
$$

On the other hand, using (5) for all $K \in \Gamma_{2}$, there exists $u_{K} \in K$ such that

$$
\begin{aligned}
\min _{u \in K} & \frac{\int_{\Omega} m_{1} u^{2}}{\int_{\Omega}|\nabla u|^{2}-\beta \int_{\Omega} m_{1} u^{2}} \\
& =\frac{\int_{\Omega} m_{1} u_{K}^{2}}{\int_{\Omega}\left|\nabla u_{K}\right|^{2}-\beta \int_{\Omega} m_{2} u_{K}^{2}} \leq \frac{1}{\alpha_{2}^{+}(\beta)},
\end{aligned}
$$

it follows that

$$
\frac{\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) u_{K}^{2}}{\int_{\Omega}\left|\nabla u_{K}\right|^{2}} \leq 1
$$

So that

$$
\begin{aligned}
\min _{u \in K} & \frac{\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) u^{2}}{\int_{\Omega}|\nabla u|^{2}} \\
& \leq \frac{\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) u_{K}^{2}}{\int_{\Omega}\left|\nabla u_{K}\right|^{2}} \leq 1 \text { for all } K \in \Gamma_{2}
\end{aligned}
$$

this implies

$$
\sup _{K \in \Gamma_{2}} \min _{u \in K} \frac{\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) u^{2}}{\int_{\Omega}|\nabla u|^{2}} \leq 1
$$

Since

$$
\frac{1}{\lambda_{2}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right)}=\sup _{K \in \Gamma_{2}} \min _{u \in K} \frac{\int_{\Omega}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) u^{2}}{\int_{\Omega}|\nabla u|^{2}}
$$

we deduce that

$$
\begin{equation*}
\lambda_{2}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right) \geq 1 \tag{8}
\end{equation*}
$$

By combining (7) and (8), we obtain

$$
\lambda_{2}\left(\alpha_{2}^{+}(\beta) m_{1}+\beta m_{2}\right)=1
$$

Let $\gamma>0$ such that $\lambda_{2}\left(\gamma m_{1}+\beta m_{2}\right)=1$, there exists eigenfunction ω change singe in Ω and

$$
\int_{\Omega} \nabla u \cdot \nabla \omega=\int_{\Omega}\left(\gamma m_{1}+\beta m_{2} u\right) \omega \quad \forall \omega \in H^{1}(\Omega)
$$

hence

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \omega-\int_{\Omega} \beta m_{2} u \omega=\gamma \int_{\Omega} m_{1} \omega \quad \forall \omega \in H^{1}(\Omega) \tag{9}
\end{equation*}
$$

from (9), we obtain that γ is eigenvalue of the operator $-\Delta()-.\beta m_{2}($.$) with weight m_{1}$, since the eigenfunction ω change singe, we conclude that

$$
\gamma \geq \alpha_{2}^{+}(\beta)
$$

Assume by contradiction that $\gamma>\alpha_{2}^{+}(\beta)$, then

$$
\frac{1}{\gamma}<\frac{1}{\alpha_{2}^{+}(\beta)}=\sup _{K \in \Gamma_{2}} \min _{u \in K} \frac{\int_{\Omega} m_{1} u^{2}}{\int_{\Omega}|\nabla u|^{2}-\beta \int_{\Omega} m_{2} u^{2}}
$$

by the inequality above we deduce that there exists $K_{0} \in \Gamma_{2}$ such that

$$
\frac{1}{\gamma}<\min _{u \in K_{0}} \frac{\int_{\Omega} m_{1} u^{2}}{\int_{\Omega}|\nabla u|^{2}-\beta \int_{\Omega} m_{2} u^{2}},
$$

since K_{0} is compact, we conclude that, there exists $u_{0} \in K_{0}$

$$
\frac{1}{\gamma}<\frac{\int_{\Omega} m_{1} u_{0}^{2}}{\int_{\Omega}\left|\nabla u_{0}\right|^{2}-\beta \int_{\Omega} m_{2} u_{0}^{2}},
$$

hence

$$
1<\min _{u \in K_{0}} \frac{\int_{\Omega}\left(\gamma m_{1}+\beta m_{2}\right) u_{0}^{2}}{\int_{\Omega}\left|\nabla u_{0}\right|^{2}}
$$

it follows that

$$
1<\sup _{K \in \Gamma_{2}} \min _{u \in K_{0}} \frac{\int_{\Omega}\left(\gamma m_{1}+\beta m_{2}\right) u_{0}^{2}}{\int_{\Omega}\left|\nabla u_{0}\right|^{2}}=\frac{1}{\lambda_{2}\left(\gamma m_{1}+\beta m_{2}\right)}=1,
$$

which gives a contradiction, thus we have $\gamma=\alpha_{2}^{+}(\beta)$.

4 Nonresonance between the first and second eigenvalue

In this section we are interesting to the study of the existence results for the following Neumann problem
$\left(\mathcal{P}_{2}\right) \begin{cases}-\Delta u=\lambda_{2} m_{1}(x) u+m_{2}(x) g(u)+h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}$
where $\lambda_{2}=\lambda_{2}\left(m_{1}\right)$ is the second eigenvalue of $-\Delta$ with weight m_{1} under the Neumann boundary condition.

Lemma 1 Let $m_{1}, m_{2} \in M^{+}(\Omega)$. Assume that (\boldsymbol{A}) is verified, then there exists a unique real $c>0$ such that

$$
\begin{equation*}
\lambda_{1}\left(\lambda_{2} m_{1}-c m_{2}\right)=1 \tag{10}
\end{equation*}
$$

Proof Put $a=\frac{e s s \inf _{\Omega} \lambda_{2} m_{1}}{e s s \inf _{\Omega} m_{2}}$ and $b=\frac{e s s \sup _{\Omega} \lambda_{2} m_{1}}{e s s \inf _{\Omega} m_{2}}$ since m is a nonconstant function, then we have $a<b$. So for $t \in\left[a, b\right.$ [we consider the weight $m_{t}=\lambda_{2} m_{1}-$ $t m_{2}$ and the corresponding increasing and continuous function:

$$
\begin{align*}
f:[a, b & {[\rightarrow \mathbb{R}} \\
t & \mapsto \lambda_{1}\left(\lambda_{2} m_{1}-t m_{2}\right) \tag{11}
\end{align*}
$$

which satisfy $f(a)=0$ and $\lim _{t \rightarrow b} f(t)=+\infty$. According to be strict monotony property of λ_{1} with weights we observe that f is strictly increasing on $\left[a^{\prime}, b[\right.$ where $a^{\prime}=\max \{t: f(t)=0\}$.
Therefore, $f\left(a^{\prime}\right)=0 \leq f(0)=\lambda_{1}\left(\lambda_{2} m_{1}\right)<\lambda_{2}\left(\lambda_{2} m_{1}\right)=$ 1 , so the conclusion follows from the intermediate values theorem.

Theorem 2 Let $m_{1}, m_{2} \in M^{+}(\Omega)$. Assume that the weights m_{1} and m_{2} satisfy (\boldsymbol{A}) and the function g satisfy the following hypotheses

$$
\begin{array}{r}
-c \leq \liminf _{s \rightarrow \pm \infty} \frac{g(s)}{s} \leq \limsup _{s \rightarrow \pm \infty} \frac{g(s)}{s} \leq 0 \\
-c<\limsup _{|s| \rightarrow \infty}^{\lim } \frac{2 G(s)}{s^{2}} ; \liminf _{s \rightarrow+\infty} \text { or }-\infty \tag{13}\\
\frac{2 G(s)}{s^{2}}<0
\end{array}
$$

where c is given in 10, then problem $\left(\mathcal{P}_{2}\right)$ admits at least one solution for any $h \in L^{\infty}(\Omega)$.

For the proof of theorem 2, we observe that the main trick introduce in [7] can be adapted in our situation. Furthermore the proof needs some technical lemmas, the two next lemmas concern an a-priori estimates on the possible solutions of the following homotopic problem.
$\begin{cases}-\Delta u=\left((1-\mu) \theta+\mu \lambda_{2}\right) m_{1} u+\mu m_{2} g(u)+\mu h & \\ \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}$
where $\mu \in[0,1]$ and $\theta \in] \lambda_{1}, \lambda_{2}[$ to be variable and $\lambda_{1}=\lambda_{1}\left(m_{1}\right)$.

Lemma 2 Suppose that (A) and $\sqrt{12}$ hold and assume that for some $\theta \in] \lambda_{1}, \lambda_{2}$ [there exists $\mu_{n, \theta} \in[0,1]$ and $u_{n, \theta}$ be a solution of (14), for all n. Then we have

1) $\left(u_{n, \theta}\right)_{n}$ is a sequence of $L^{\infty}(\Omega)$ and if $\left\|u_{n, \theta}\right\|_{\infty} \rightarrow$ $+\infty$ when $n \rightarrow+\infty$, then

$$
\begin{equation*}
v_{n, \theta}=\frac{u_{n, \theta}}{\left\|u_{n, \theta}\right\|_{\infty}} \rightarrow v_{\theta} \text { stongly in } C^{1}(\Omega), \tag{15}
\end{equation*}
$$

for some subsequence.
2) Assume that the following hypothesis holds

$$
\text { (H) } \exists \theta \in] \lambda_{1}, \lambda_{2}\left[/ \limsup _{n \rightarrow \infty} \mu_{n, \theta}=1\right.
$$

then one of the following assertions i) or ii) holds, where
i) $v_{\theta}=\psi, \psi$ is a normed $\left(\|\psi\|_{\infty}=1\right)$ eigenfunction associated to $\lambda_{2}\left(m_{1}\right)$ and

$$
\begin{equation*}
\int_{\Omega} \frac{\left|g\left(u_{n, \theta}\right)\right|}{\|\left(u_{n, \theta} \|\right.} d x \longrightarrow 0 \text { when } n \rightarrow+\infty . \tag{16}
\end{equation*}
$$

Furthermore, there exists $\eta_{1}>0, \eta_{2}>0$ such that

$$
\begin{equation*}
\eta_{1}<\frac{\max \left(u_{n, \theta}\right)}{-\min \left(u_{n, \theta}\right)}<\eta_{2} \text { for nlarge enough. } \tag{17}
\end{equation*}
$$

ii) $v_{\theta}= \pm \varphi, \varphi$ is a normed $\left(\|\varphi\|_{\infty}=1\right)$ eigenfunction associated to $\lambda_{1}\left(\lambda_{2} m_{1}-c m_{2}\right)=1$ and

$$
\begin{equation*}
\int_{\Omega} \frac{\left|g\left(u_{n, \theta}\right)+c u_{n, \theta}\right|}{\|\left(u_{n, \theta} \|\right.} d x \rightarrow 0 \text { when } n \rightarrow+\infty . \tag{18}
\end{equation*}
$$

Furthermore, $u_{n, \theta}$ not changes sign for n large enough.
3) If (\mathbf{H}) is false, then there exists a sequence $\left(\theta_{k}\right)_{k} \subset$ $] \lambda_{1}, \lambda_{2}\left[\right.$ and a strictly increasing sequence $\left(n_{k}\right)_{k} \subset \mathbb{I}$ such that
a) $\lim _{k \rightarrow+\infty} \theta_{k}=\lambda_{2}, \lim _{k \rightarrow \infty} \mu_{n_{k}, \theta_{k}}=1$ and $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|=+\infty$ where $w_{k}=u_{n_{k}, \theta_{k}}$.
b) $\frac{w_{k}}{\left\|w_{k}\right\|} \longrightarrow \pm \varphi$ strongly in $C^{1}(\bar{\Omega})$ and

$$
\int_{\Omega} \frac{\left|g\left(w_{k}\right)+c w_{k}\right|}{\left\|w_{k}\right\|} d x \rightarrow 0 \text { when } n \rightarrow+\infty
$$

Proof: 1) From the Anane's L^{∞}-estimation [8] and the Tolksdorf's-regularity [9] we can see that $\left(u_{n, \theta}\right)_{n} \subset$ $\mathcal{C}^{1, \alpha}(\bar{\Omega})$, since the embedding $\mathcal{C}^{1, \alpha}(\bar{\Omega}) \hookrightarrow L^{\infty}(\Omega)$ is continuous for some $\alpha \in] 0,1$ [independent on n, furthermore $v_{n, \theta}=\frac{u_{n, \theta}}{\left\|u_{n, \theta}\right\|_{\infty}}$ remains a bounded sequence in $\mathcal{C}^{1, \alpha}(\bar{\Omega})$.
By using the following compact embedding $\mathcal{C}^{1, \alpha}(\bar{\Omega}) \hookrightarrow \hookrightarrow \mathcal{C}^{1}(\bar{\Omega})$, then there exists a subsequence still denoted $\left(v_{n, \theta}\right)_{n}$ such that

$$
\begin{equation*}
v_{n, \theta} \rightarrow v_{\theta} \text { stongly in } \mathcal{C}^{1}(\bar{\Omega}) \text { and }\left\|v_{\theta}\right\|_{\infty}=1 \tag{19}
\end{equation*}
$$

2) According to the function g satisfy the hypothesis (12), we deduce that for all $s \in \mathbb{R}$, we can write

$$
\begin{equation*}
g(s)=q(s) s+r(s) \tag{20}
\end{equation*}
$$

where $-c \leq q(s) \leq 0$ and $\frac{r(s)}{s} \longrightarrow 0$ uniformly, when $|s| \rightarrow+\infty$. Since $u_{n, \theta}$ is a solution of $\left(\mathcal{P}_{2, \theta, \mu_{n}}\right)$, we get

$$
\begin{align*}
\int_{\Omega} \nabla u_{n, \theta} \nabla w d x= & \int_{\Omega}\left[\left(1-\mu_{n}\right) \theta+\mu_{n} \lambda_{2}\right) m_{1} u_{n, \theta} \tag{21}\\
& \left.+\mu_{n} m_{2} g\left(u_{n, \theta}\right)+\mu_{n} h\right] w d x
\end{align*}
$$

for all $w \in H^{1}(\Omega)$.
On the other hand, since $\left(u_{n, \theta}\right)_{n} \subset L^{\infty}(\Omega)$ and q is a continuous function, it follows that $q\left(u_{n}\right)$ is bonded in $L^{\infty}(\Omega)$, then for a subsequence we get

$$
q\left(u_{n, \theta}\right) \rightharpoonup q_{\theta} \text { in } L^{\infty}(\Omega) \text { weak }-*,
$$

and

$$
\frac{\left|r\left(u_{n, \theta}\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} \rightarrow 0 \text { strongly in } L^{\infty}(\Omega)
$$

where $-c \leq q_{\theta}(x) \leq 0$ a.e. in Ω.
Dividing by $\left\|u_{n, \theta}\right\|_{\infty}$ and passing to the limit as $n \rightarrow \infty$ in 20, we get

$$
\begin{equation*}
\int_{\Omega} \nabla v_{\theta} \nabla w d x=\int_{\Omega}\left(\lambda_{2} m_{1}+q_{\theta} m_{2}\right) v_{\theta} w d x \forall w \in H^{1}(\Omega) . \tag{22}
\end{equation*}
$$

Since $v_{\theta} \neq 0$, then 1 is an eigenvalue of Laplacain with weight $m_{q_{\theta}}=\lambda_{2} m_{1}+q_{\theta} m_{2}$.
By using the monotony property of λ_{2} with respect to the weight, we obtain

$$
\lambda_{2}\left(m_{q_{\theta}}\right) \geq \lambda_{2}\left(\lambda_{2} m_{1}\right)=1
$$

hence $\lambda_{2}\left(m_{q_{\theta}}\right)=1$ or $\lambda_{2}\left(m_{q_{\theta}}\right)>1$.
First case: $\lambda_{2}\left(m_{q_{\theta}}\right)=1$.
So, we have

$$
q_{\theta}=0 \quad \text { and } \quad v_{\theta}=\psi
$$

Moreover, let us denotes by $F_{\lambda_{2}}$ be the eigenspace associated to $\lambda_{2}=\lambda_{2}\left(m_{1}\right)$, since $F_{\lambda_{2}}$ is a vector space of finite dimension then, we can take

$$
\eta_{1}<\min _{v \in F_{X_{2}} \cap S} \frac{\max (v)}{-\min (v)} \text { and } \eta_{2}>\max _{v \in F_{\lambda_{2}} \cap S} \frac{\max (v)}{-\min (v)}
$$

where $S=\left\{v \in F_{\lambda_{2}} /\|v\|_{\infty}=1\right\}$.
It is clear to see that $\frac{\max \left(v_{n, \theta}\right)}{-\min \left(v_{n, \theta}\right)} \rightarrow \frac{\max (\psi)}{-\min (\psi)}$ when $n \rightarrow+\infty$.
It follows that for n large enough

$$
\eta_{1}<\frac{\max \left(v_{n, \theta}\right)}{-\min \left(v_{n, \theta}\right)}<\eta_{2}
$$

According to 20, we get

$$
\begin{aligned}
\int_{\Omega} \frac{\left|m_{2}(x) g\left(u_{n, \theta}\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} d x & \leq\left\|m_{2}\right\|_{\infty} \int_{\Omega}-q\left(u_{n, \theta}\right)\left|v_{n, \theta}\right| \\
& +\left\|m_{2}\right\|_{\infty} \int_{\Omega} \frac{\left|r\left(u_{n \theta}\right)\right|}{\left\|u_{n \theta}\right\|_{\infty}} d x
\end{aligned}
$$

by passage to the limit in the above inequality, we find 16.

Second case: $\lambda_{2}\left(m_{q_{\theta}}\right)>1$.
So, we get $\lambda_{1}\left(m_{q_{\theta}}\right)=1$ and by using the strict monotony property of λ_{1}, we can see that

$$
q_{\theta}=-c \quad \text { and } \quad v_{\theta}=\varphi .
$$

The rest of the proof follows directly as in first case.
3) We take $\left.\left(\theta_{k}\right)_{k} \subset\right] \lambda_{1}, \lambda_{2}$ [such that $\lim _{k \rightarrow+\infty} \theta_{k}=\lambda_{2}$. Let us denotes by $\bar{\mu}_{k}=\lim _{n \rightarrow+\infty} \mu_{k, \theta_{k}}$, as in 2) it is clear to see that
$\begin{cases}-\Delta u=\left[\left(\left(1-\bar{\mu}_{k}\right) \theta_{k}+\bar{\mu}_{k} \lambda_{2}\right) m_{1}+\bar{\mu}_{k} q_{\theta_{k}} m_{2}\right] v_{\theta_{k}} & \\ \text { in } \Omega \\ \frac{\partial v_{\theta_{k}}}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}$
we recall that $0 \leq \bar{\mu}_{k}<1,-c \leq q_{\theta_{k}} \leq 0$ and $q\left(u_{n, \theta_{k}}\right) \longrightarrow^{*}$ $q_{\theta_{k}}$ in $L^{\infty}(\Omega)$ when $n \rightarrow+\infty$, where $g(s)=q(s) s+r(s)$, $-c \leq q(s) \leq 0$ and $\frac{r(s)}{r} \rightarrow 0$ when $|s| \rightarrow+\infty$.
Let us consider the following weight

$$
\bar{M}_{k}(x)=\left(\left(1-\bar{\mu}_{k}\right) \theta_{k}+\bar{\mu}_{k} \lambda_{2}\right) m_{1}(x)+\bar{\mu}_{k} q_{\theta_{k}} m_{2}(x)
$$

we have

$$
\bar{M}_{k}(x) \leq\left(\left(1-\bar{\mu}_{k}\right) \theta_{k}+\bar{\mu}_{k} \lambda_{2}\right) m_{1}(x)
$$

because $q_{\theta_{k}} \leq 0$.
Then

$$
\begin{aligned}
\lambda_{2}\left(\bar{M}_{k}(x)\right) & \geq \lambda_{2}\left(\left(\left(1-\bar{\mu}_{k}\right) \theta_{k}+\bar{\mu}_{k} \lambda_{2}\right) m_{1}(x)\right) \\
& \geq \frac{\lambda_{2}}{\left(1-\bar{\mu}_{k}\right) \theta_{k}+\bar{\mu}_{k} \lambda_{2}}>1
\end{aligned}
$$

Thus it is clear to see that

$$
\begin{equation*}
\lambda_{2}\left(\bar{M}_{k}(x)\right)=1 \tag{23}
\end{equation*}
$$

Let $\bar{\mu}_{k} \rightarrow \bar{\mu}$ and $q\left(u_{n, \theta_{k}}\right) \longrightarrow{ }^{*} \bar{q}_{0}$ in $L^{\infty}(\Omega)$ when $k \rightarrow$ $+\infty$, where $-c \leq \bar{q}_{0} \leq 0$. Then by letting k tends to infinity in 23, it follows that

$$
\begin{equation*}
\lambda_{1}\left(\lambda_{2} m_{1}+\bar{\mu} \bar{q}_{0} m_{2}\right)=1 . \tag{24}
\end{equation*}
$$

In view of lemma 1 , we get

$$
\begin{array}{ll}
\bar{\mu}=1, \bar{q}_{0}=-c & \text { and } u_{\theta_{k}} \rightarrow \pm \varphi \text { strongly in } C^{1}(\Omega) \\
& \text { when } k \rightarrow+\infty .
\end{array}
$$

On the other hand, using 20, we have

$$
\begin{aligned}
\int_{\Omega} \frac{\left|g\left(w_{k}\right)+c w_{k}\right|}{\left\|w_{k}\right\|_{\infty}} d x & =\int_{\Omega} \frac{\left|q\left(w_{k}\right) w_{k}+c w_{k}+r\left(w_{k}\right)\right|}{\left\|w_{k}\right\|_{\infty}} d x \\
& \leq \int_{\Omega}\left|q\left(w_{k}\right)+c\right| \frac{w_{k} \mid}{\left\|w_{k}\right\|_{\infty}} d x \\
& +\int_{\Omega} \frac{\left|r\left(w_{k}\right)\right|}{\left\|w_{k}\right\|_{\infty}} .
\end{aligned}
$$

Since $\frac{r(s)}{s} \rightarrow 0$ when $|s| \rightarrow \infty$, then for all $\varepsilon>0$ there exists $n_{\varepsilon, k}$ such that for all $n \geq n_{\varepsilon, k}$

$$
\int_{\Omega} \frac{\left|g\left(w_{k}\right)+c w_{k}\right|}{\left\|w_{k}\right\|_{\infty}} d x \leq \int_{\Omega}\left|\bar{q}_{\theta_{k}}+c \| v_{\theta_{k}}\right| d x+\varepsilon .
$$

If we take $\varepsilon=\frac{1}{k}, n=n_{k}=n_{\varepsilon, k}$ and we replace in the last formula, then we can see that the second member of this last inequality goes to 0 when m goes to $+\infty$. Finally, we conclude by the fact that n_{k} will be adjusted such that $\left\|u_{n_{k}, \theta_{k}}\right\|_{\infty}>k$ and $\left\|v_{n_{k}, \theta_{k}}-v_{\theta_{k}}\right\|_{C^{1}(\bar{\Omega})} \leq \frac{1}{k}$.

Lemma 3 Let us consider the assumptions and notations of lemma 2 We take $a \in \Omega$ and $\eta>0$ such that $B(a, \eta) \subset \Omega$.

1) Assume that the hypothesis (\boldsymbol{H}) holds, so, if $\left\|u_{n, \theta}\right\|_{\infty} \rightarrow+\infty$ when $n \rightarrow+\infty$ then $\limsup \mu_{n, \theta}=1$ and i) If $v_{\theta}=\psi$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\left|g\left(u_{n, \theta}\left(\sigma_{x}(t)\right)\right)\left\|\nabla u_{n, \theta}\left(\sigma_{x}(t)\right)\right\| x-a\right|}{\left\|u_{n, \theta}\right\|_{\infty}} d t=0 \tag{25}
\end{equation*}
$$

where $\sigma_{x}(t)=a+t(x-a)$.
ii) If $v_{\theta}= \pm \varphi$ then

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \int_{\text {a.e. }}^{1} \frac{\mid g\left(u_{n, \theta}\left(\sigma_{x}(t)\right)\right)+c u_{n, \theta}\left(\sigma_{x}(t) \| B(a, \eta)\right. \text {. }}{\left\|u_{n, \theta}\right\|_{\infty}}\left(\sigma_{x}(t)\right) \| x-a \right\rvert\, \tag{26}
\end{equation*}
$$

2) Assume that $\mathbf{(H)}$ is false then we have

$$
\lim _{n \rightarrow \infty} \int_{\text {a.e. } x \in \partial B(a, \eta) .}^{1} \frac{\mid g\left(w_{k}\left(\sigma_{x}(t)\right)\right)+c w_{k}\left(\sigma_{x}(t)\left\|\nabla w_{k}\left(\sigma_{x}(t)\right)\right\| x-a \mid\right.}{\left\|w_{k}\right\|_{\infty}} d t=0
$$

Proof: We only show the relation 25 since the proof of the 26 and 27 one proceeds in the same way. Firstly we have

$$
\int_{B(a, \eta)} \frac{\left|g\left(u_{n, \theta}\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} d x \leq \int_{\Omega} \frac{\left|g\left(u_{n, \theta}\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} d x
$$

According to 16, we obtain

$$
\lim _{n \rightarrow \infty} \int_{B(a, \eta)} \frac{\left|g\left(u_{n, \theta}\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} d x=0
$$

Which gives by passing in spherical coordinates

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{[0, \pi]^{n}} & \int_{0}^{2 \pi} \int_{0}^{\eta} t^{N-1} \frac{\left|g\left(u_{n, \theta}(a+t \omega)\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} \\
& \prod_{j=1}^{N-2}\left(\sin \theta_{j}\right)^{N-1-j} d \theta_{j} d \theta_{N-1} d t=0
\end{aligned}
$$

where, $\omega=\frac{x-a}{\eta} \in \partial B(0,1)$.
The above equality imply

$$
\frac{\left|g\left(u_{n, \theta}\left(\sigma_{x}(\tau)\right)\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}} \rightarrow 0 \quad \text { when } n \rightarrow \infty
$$

$$
\text { a.e. } x \in \partial B(a, \eta) \text { and a.e. } \tau \in[0,1]
$$

By using (12) we can see that g satisfy the following growth condition:
$|g(s)| \leq a|s|+b$, for some positive reals a, b and $\forall s \in \mathbb{R}$
hence $\left(\frac{\left|g\left(u_{n, \theta}\left(\sigma_{x}(\cdot)\right)\right)\right|}{\left\|u_{n, \theta}\right\|_{\infty}}\right)_{n}$ and $\left(\frac{\| \nabla\left(u_{n, \theta}\left(\sigma_{x}(.)\right)\right) \mid}{\left\|u_{n, \theta}\right\|_{\infty}}\right)_{n}$ are bounded in $L^{\infty}([0,1])$.
By using the Lebesgue dominated convergence theorem, we conclude this proof.

Lemma 4 1) If G satisfy $-c<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}} \leq 0$. then for all $r \in] 0,1\left[\right.$, there exists $\rho_{r}>-c\left(1-r^{2}\right)$ and a sequence of positive real numbers $\left(S_{n}\right)$ such that

$$
\lim _{n \rightarrow+\infty} S_{n}=+\infty \text { and } \lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}\right)-2 G\left(r S_{n}\right)}{S_{n}^{2}}=\rho_{r}
$$

2) If G satisfy $-c<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}} \leq 0$ and
$-c<\liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}<0$, then for all $\left.r \in\right] 0,1[$, there exists $\rho_{r}>-c\left(1-r^{2}\right)$ and a sequence of positive real numbers $\left(S_{n}^{\prime}\right)$ such that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} S_{n}^{\prime}=+\infty, & \lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}^{\prime}\right)}{S_{n}^{\prime 2}}=\rho \\
& \text { and } \lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}^{\prime}\right)-2 G\left(r S_{n}^{\prime}\right)}{S_{n}^{\prime 2}}=\rho_{r}
\end{aligned}
$$

The same conclusion is obtained when we replace $+\infty$ par $-\infty$, in this case we should note ρ^{\prime} and ρ_{r} in place of ρ and ρ_{r} respectively.
Proof: We pose $L_{1}=\liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}$ and $L_{2}=$ $\underset{s \rightarrow+\infty}{\limsup } \frac{2 G(s)}{s^{2}}$.

We distinguish the following two cases:
Case1: If $L_{1}=L_{2}$, it is enough to take $\rho=L_{2}$ and $\rho_{r}=\left(1-r^{2}\right) L_{2}$.
Case2: If $L_{1}<L_{2}$, then we choose $\left.\rho \in\right] L_{1}, L_{2}[$ neighbor of L_{2} in such a way that:

$$
\rho-r^{2} L_{2}>-c\left(1-r^{2}\right) .
$$

According to the definition of L_{1} and L_{2}, we conclude that, there existence a sequence $\left(S_{n}\right)$ such that $\lim _{n \rightarrow+\infty} S_{n}=+\infty$ and $\frac{2 G\left(S_{n}\right)-2 G\left(r S_{n}\right)}{S_{n}^{2}}=\rho$. We put

$$
\liminf _{n \rightarrow+\infty} \frac{2 G\left(S_{n}\right)-2 G\left(r S_{n}\right)}{S_{n}^{2}}=\rho-r^{2} \limsup _{n \rightarrow+\infty} \frac{2 G\left(r S_{n}\right)}{r S_{n}^{2}}
$$

Since $\limsup _{n \rightarrow+\infty} \frac{2 G\left(r S_{n}\right)}{\left(r S_{n}\right)^{2}} \leq L_{2}$, then we have:

$$
\rho_{r} \geq \rho-r^{2} L_{2}>-c\left(1-r^{2}\right) .
$$

5 Proof of Theorem 2

Our purpose now, consists in building in $C(\bar{\Omega})$ an open bounded set \mathcal{O} such that, there exist $\theta \in] \lambda_{1}, \lambda_{2}[$ such that, no solution of 14 with $\mu \in[0,1$ [occurs on the boundary $\partial \mathcal{O}$. Homotopy invariance of the degree then yields the conclusion. The set \mathcal{O} will have the following form

$$
\mathcal{O}=\mathcal{O}_{S, T}=\{u \in \mathcal{C}(\bar{\Omega}) ; \quad T<u<S\},
$$

where, S and T satisfy $T<0<S$.
Firstly, according to, 13 we will assume the following hypothesis holds

$$
\begin{equation*}
-c<\limsup _{|s| \rightarrow \infty} \frac{2 G(s)}{s^{2}} \text { and } \liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}<0 \tag{+}
\end{equation*}
$$

An analogous proof will be adapted to the hypothesis (13-) where 13 represents (13_{+}) or (13_). Assume by contradiction, that for all $\theta \in] \lambda_{1}, \lambda_{2}[$ and for all $S, T(T<0<S)$, there exists $\mu=\mu_{\theta, S, T} \in[0,1[$ and $u=u_{\theta, S, T} \in \partial \mathcal{O}$ such that u is a solution of which gives

$$
\begin{equation*}
\max (u)=S \text { or } \min (u)=T . \tag{29}
\end{equation*}
$$

According to $\left(13_{+}\right)$, then owing to lemma 4, there exists two sequence $\left(T_{n}\right)$ and $\left(S_{n}\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} T_{n}=-\infty, \lim _{n \rightarrow+\infty} \frac{2 G\left(T_{n}\right)-2 G\left(r T_{n}\right)}{T_{n}^{2}}=\rho_{r}^{\prime} \tag{30}
\end{equation*}
$$

$\lim _{n \rightarrow+\infty} S_{n}=+\infty, \lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}\right)}{S_{n}^{2}}, \lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}\right)-2 G\left(r S_{n}\right)}{S_{n}^{2}}=\rho_{r}$
where $r=\frac{\min \varphi}{\max \varphi}$ and ρ, ρ_{r} and ρ_{r}^{\prime} provides from lemma 4
So, we remark that, without loss of generality we can assume that

$$
\begin{equation*}
\frac{S_{n}}{-T_{n}} \leq \eta_{1} \tag{32}
\end{equation*}
$$

We use the following notations:

$$
T=T_{n}, S=S_{n}, \mu_{n, \theta}=\mu_{\theta, T, S} \text { and } u_{n, \theta}=u_{\theta, T, S}
$$

According to 29 and 31 , we obtain

$$
\left\|u_{n, \theta}\right\|_{\infty} \rightarrow+\infty \text { when } n \rightarrow+\infty .
$$

We will distinguish two cases.
First case: We assume that the hypothesis $\mathbf{(H)}$ is satisfied (c.f. lemma 2 .
According to lemma 2 we get

$$
v_{n, \theta}=\frac{u_{n, \theta}}{\left\|u_{n, \theta}\right\|_{\infty}} \rightarrow v_{\theta} \text { where } v_{\theta}=\psi \text { or } v_{\theta}= \pm \varphi
$$

i) If $v_{\theta}=\psi$, we assert that for every n large enough we have

$$
\max \left(u_{n, \theta}\right)=S_{n} .
$$

Indeed, if not we have

$$
\max \left(u_{n, \theta}\right)<S_{n} \text { and } \min \left(u_{n, \theta}\right)=T_{n}
$$

thus,

$$
\frac{\max \left(u_{n, \theta}\right)}{-\min \left(u_{n, \theta}\right)}<\frac{S_{n}}{-S_{n}} \leq \eta_{1}
$$

which gives a contradiction from the definition of η_{1} given in lemma 2 On the other hand, we have $u_{n, \theta}$ changes sign on Ω, so there exists $x_{n} \in \bar{\Omega}, y_{n} \in \Omega$ such that

$$
u_{n, \theta}\left(x_{n}\right)=S_{n} \text { and } u_{n, \theta}\left(y_{n}\right)=0
$$

we write

$$
\begin{aligned}
\frac{2 G\left(S_{n}\right)}{S_{n}^{2}}= & \frac{2 G\left(u_{n, \theta}\left(x_{n}\right)\right)-2 G\left(u_{n, \theta}\left(x_{n}\right)\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2} \max \left(v_{n, \theta}\right)^{2}} \\
& =\frac{2}{\max \left(v_{n, \theta}\right)^{2}} \int_{\mathcal{C}_{n}} \frac{d\left(G \circ u_{n, \theta}\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2}}
\end{aligned}
$$

where

$$
d\left(G \circ u_{n, \theta}\right)\left(\mathcal{C}_{n}\right)=g\left(u_{n, \theta}\left(\mathcal{C}_{n}\right)\right) \nabla u_{n, \theta}\left(\mathcal{C}_{n}\right) \cdot \mathcal{C}_{n}^{\prime} \text {, a.e. }
$$

and \mathcal{C}_{n} is a \mathcal{C}^{1} with morsels line which connects extremity x_{n} and y_{n}.
According to lemma 3, we have

$$
\lim _{n \rightarrow+\infty} \int_{\mathcal{C}_{n}} \frac{d\left(G \circ u_{n, \theta}\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2}}
$$

Since $\max \left(v_{n, \theta}\right) \rightarrow \max (\psi)$ when $n \rightarrow+\infty$, we deduce that

$$
\rho=\lim _{n \rightarrow+\infty} \frac{2 G\left(S_{n}\right)}{S_{n}^{2}}=0
$$

which is a contradiction since $\rho \in]-c, 0[$.
ii) If $v_{\theta}= \pm \varphi$: then, for n large enough $u_{n, \theta}$ not changes sign on Ω.
so,

$$
\max \left(u_{n, \theta}\right)=S_{n} \text { or } \min \left(u_{n, \theta}\right)=T_{n}
$$

Assume that $\max \left(u_{n, \theta}\right)=S_{n}$ (the same gait will be used for the case $\left.\min \left(u_{n, \theta}\right)=T_{n}\right)$, so it is clear to see that $v_{n, \theta}=+\varphi$ and $\min \left(u_{n, \theta}\right)>0$ for n large enough. We put

$$
\bar{g}(s)=g(s)+c s, \bar{G}(s)=\int_{0}^{s} \bar{g}(s) d s
$$

Let $x_{n}, y_{n} \in \bar{\Omega}$ such that $u_{n, \theta}\left(x_{n}\right)=S_{n}$ and $u_{n, \theta}\left(y_{n}\right)=$ $\min \left(u_{n, \theta}\right)$.
We write

$$
\begin{aligned}
\frac{\bar{G}\left(S_{n}\right)-\bar{G}\left(r_{n} S_{n}\right)}{S_{n}^{2}}= & \frac{2 \bar{G}\left(u_{n, \theta}\left(x_{n}\right)\right)-2 \bar{G}\left(u_{n, \theta}\left(x_{n}\right)\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2}} \\
& =\int_{\mathcal{C}_{n}} \frac{d\left(\bar{G} \circ u_{n, \theta}\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2}}
\end{aligned}
$$

where $r_{n}=\frac{\min \left(u_{n, \theta}\right)}{\max \left(u_{n, \theta}\right)} \rightarrow r=\frac{\min (\varphi)}{\max (\varphi)}$.
Using the Lemma 3. we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\mathcal{C}_{n}} \frac{d\left(\bar{G} \circ u_{n, \theta}\right)}{\left\|u_{n, \theta}\right\|_{\infty}^{2}}=0 \tag{33}
\end{equation*}
$$

On the other hand, it is easy to verify that

$$
0=\lim _{n \rightarrow+\infty} \frac{\bar{G}\left(S_{n}\right)-\bar{G}\left(r_{n} S_{n}\right)}{S_{n}^{2}}=\frac{\rho_{r}+c\left(1-r^{2}\right)}{2}>0
$$

which gives a contradiction.
Second case: Assume that the hypothesis (H) is not verified, so for all $\theta \in] \lambda_{1}, \lambda_{2}$ [such that
$\limsup \mu_{n, \theta}<1$.
$n \rightarrow+\infty$
We take a sequence $\left(\theta_{k}\right)$ such that

$$
\lim _{k \rightarrow+\infty} \theta_{k}=\lambda_{2}
$$

and we consider the subsequences

$$
\left(T_{n_{k}}\right)_{k},\left(S_{n_{k}}\right)_{k} \text { and } w_{k}=u_{n_{k}, \theta_{k}}
$$

Similarly, as in the second point of the previous case we obtain a contradiction. This completes the proof of theorem 2

6 Nonresonance between the first two Eigencurves

In this section we will prove an existence result for problem (\mathcal{P}). We need more restrictive hypotheses on the nonlinearities g and G.

$$
\left(\mathbf{A}_{g}\right) \quad \beta_{1} \leq \liminf _{s \rightarrow \pm \infty} \frac{g(s)}{s} \leq \limsup _{s \rightarrow \pm \infty} \frac{g(s)}{s} \leq \beta_{2}
$$

$\left(\mathbf{A}_{G}^{ \pm}\right) \quad \beta_{1}<\limsup _{|s| \rightarrow \infty} \frac{2 G(s)}{s^{2}} ; \liminf _{s \rightarrow+\infty} \operatorname{or}_{-\infty} \frac{2 G(s)}{s^{2}}<\beta_{2}$
where $\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}$ with $\beta_{2}-\beta_{1}=c$ and c is given in (10).

Theorem 3 Let $m_{1}, m_{2} \in M^{+}(\Omega)$. Assume that $(\boldsymbol{A}),\left(\boldsymbol{A}_{g}\right)$ and $\left(A_{G}^{ \pm}\right)$holds. Moreover, if $\left(\alpha, \beta_{1}\right) \in \mathcal{C}_{1}$ and $\left(\alpha, \beta_{2}\right) \in \mathcal{C}_{2}$, where $\alpha \geq \lambda_{2}\left(m_{1}\right)$ or $\alpha \leq \lambda_{-} 2\left(m_{1}\right)$. Then the problem (\mathcal{P}) has at least one nontrivial weak solution $u \in H^{1}(\Omega)$ for any given $h \in L^{\infty}(\Omega)$.
Proof: The problem (\mathcal{P}) can be written in the following equivalent form
$\left(\mathcal{P}_{e}\right) \begin{cases}-\Delta u=\widetilde{m}|u|^{p-2} u+m_{2} \widetilde{g}(u)+h & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}$
where

$$
\widetilde{g}(s)=g(s)-\beta_{2} s,
$$

and

$$
\widetilde{m}=\alpha m_{1}+\beta_{2} m_{2} .
$$

Since $\left(\alpha, \beta_{2}\right) \in \mathcal{C}_{2}$, then 1 is the second eigenvalue of laplacian operator with weight \widetilde{m} relating to Neumann boundary conditions. In view of theorem 2 , there exists at least one weak solution $u \in H^{1}(\Omega)$ of
the problem $\left(\mathcal{P}_{e}\right)$ for all $h \in L^{\infty}(\Omega)$ if the function \widetilde{g} and his potential \widetilde{G} satisfy the two conditions 12 and 13. Indeed, in view of $\left(\mathbf{A}_{g}\right)$

$$
\beta_{1}-\beta_{2} \leq \lim \inf _{|s| \rightarrow \infty}\left(\frac{g(s)}{s}-\beta_{2}\right) \leq 0
$$

thus

$$
-c \leq \lim \inf _{|s| \rightarrow \infty}\left(\frac{\widetilde{g}(s)}{s}\right) \leq 0
$$

Consequently, \widetilde{g} satisfy 12 .
On the other hand, using $\left(\mathbf{A}_{G}^{ \pm}\right)$, we have
$\beta_{1}-\beta_{2}<\limsup _{|s| \rightarrow \infty}\left(\frac{2 G(s)}{s^{2}}-\beta_{2}\right) ; \liminf _{s \rightarrow+\infty}\left(\frac{2 G(s)}{s^{2}}-\beta_{2}\right)<0$
hence

$$
-c<\limsup _{|s| \rightarrow \infty}\left(\frac{2 \widetilde{G}(s)}{s^{2}}\right) ; \liminf _{s \rightarrow+\infty}\left(\frac{2 \widetilde{G}(s)}{s^{2}}\right)<0
$$

which means that \widetilde{G} satisfy 13 .
Finally, since the problem $\left(\overline{\mathcal{P}_{e}}\right)$ is a equivalent to the problem (\mathcal{P}). Then the problem (\mathcal{P}) has at least one nontrivial weak solution $u \in H^{1}(\Omega)$ for any given $h \in L^{\infty}(\Omega)$.

References

1. D. Del Santo et P. Omari, Nonresonance conditions on the potential for a semilinear elliptic problem. J. Diff. Equ. pp.

120-138, (1994).
2. J.-P. Gossez and P. Omari, A necessary and sufficient condition of nonresonance for a semilinear Neumann problem, Proc. Amer. Math. Soc. Vol. 114, No. 2 (Feb., 1992), pp. 433-442.
3. A. Dakkak, A. Anane, Nonresonance Conditions on the Potential for a Neumann Problem, proceedings of the international conference held in Fez , partial differential equations pp. 85-102.
4. A. Dakkak, Etude sur le spectre et la résonance pour des problèmes elliptiques de Neumann, Thèse de 3eme cycle, Faculté des sciences, Oujda, Maroc, (1995).
5. A. Dakkak , M. Hadda, Eigencurves of the p-Laplacian with weights and their asymptotic behavior EJDE, Vol 2007(2007), No. 35, pp. 1-7.
6. A. Dakkak and M. Moussaoui On the second eigencurve for the p-laplacian operator with weight, Bol. Soc. Paran. Mat., (3s.) v. 351 (2017): 281289.
7. J.-P. Gossez and P. Omari, On a semilinear elliptic Neumann problem with asymmetric nonlinearities. Transactions of Amer. Math. Soc. Volume 347, Number 7, pp. 2553-2562, July 1995.
8. A. Anane, Etude des valeurs propres et de la résonance pour l'operateur p-Laplacien , these de Doctorat, Universite Libre de Bruxelles, (1988).
9. P.Tolksdorf, Regularity for more general class of quasilinear elliptic equation J.Diff. Eq. 8, (1983), pp. 773-817.

[^0]: *Corresponding Author: Ahmed Sanhaji, Laboratory-LSI- sidi Mohamed ben Abdellah University, polydisciplinary, Faculty of TAZA, MOROCCO, \& ahmed.sanhaji1@usmba.ac.ma

