

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 152-159 (2017) www.astesj.com Proceedings of International Conference on Applied Mathematics (ICAM2017), Taza, Morocco

ASTES Journal ISSN: 2415-6698

Nonresonance between the first two Eigencurves of Laplacian for a Nonautonomous Neumann Problem

Ahmed Sanhaji^{*}, Ahmed Dakkak

Sidi Mohamed Ben Abdellah University, Mathematics Physics and Computer Science, LSI, FP, Taza, Morocco

A R T I C L E I N F O Article history:	A B S T R A C T We consider the following Neumann elliptic proble	m
Received: 25 May, 2017 Accepted: 13 July, 2017	$\int -\Delta u = \alpha m_1(x) u + m_2(x) g(u) + h(x)$	$in \Omega$,
Online: 29 December, 2017 Keywords:	$\begin{cases} \frac{\partial u}{\partial v} = 0 \end{cases}$	on $\partial \Omega$.
Laplacian	By means of Leray-Schauder degree and under some assumptions on	
Nonresonance	the asymptotic behavior of the potential of the nonlinearity g, we prove	
Neumann problem	an existence result for our equation for every given $h \in L^{\infty}(\Omega)$.	

1 Introduction

Let Ω be a bounded domain of \mathbb{R}^N ($N \ge 1$), with $C^{1,1}$ boundary and let ν be the outward unit normal vector on $\partial \Omega$.

D. Del Santo and P. Omari, have studied in [1] the Dirichlet problem

$$\begin{cases} -\Delta u = g(u) + h(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

They have proved the existence of nontrivial weak solutions for this problem for every given $h \in L^p(\Omega)$ under some assumptions on the function g. In the case of Neumann elliptic problem J.-P. Gossez and P. Omari, have considered in [2] the following problem

$$\begin{cases} -\Delta u = g(u) + h(x) & \text{ in } \Omega \\ \\ \frac{\partial u}{\partial v} = 0 & \text{ on } \partial \Omega, \end{cases}$$

They have shown the existence of weak solutions for this problem for every given $h \in L^{\infty}(\Omega)$ under some conditions on function *g*. A.Dakkak and A. Anane studied in [3] the existence of weak solutions for the problem

$$\begin{cases} -\Delta u = \lambda_2 m(x)u + g(u) + h(x) & \text{in } \Omega\\ \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\lambda_2 = \lambda_2(m)$ is the second eigenvalue of $-\Delta$ with weight m, with $m \in M^+(\Omega) =$ $\{m \in L^{\infty}(\Omega) : \operatorname{meas}(\{x \in \Omega : m(x) > 0\}) \neq 0\}.$

We investigate in the present work the following Neumann elliptic problem

$$(\mathcal{P}) \begin{cases} -\Delta u = \alpha \, m_1(x)u + m_2(x)g(u) + h(x) & \text{in } \Omega, \\ \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega. \end{cases}$$

where $-\Delta$ is the Laplacian operator. The functions $m_1, m_2 \in M^+(\Omega)$, $h \in L^{\infty}(\Omega)$, $g : \mathbb{R} \to \mathbb{R}$ is a continuous function and α is a real parameter such that $\alpha \ge \lambda_2(m_1)$ or $\alpha \le \lambda_2(m_1)$, with $\lambda_2(m_1) = -\lambda_2(-m_1)$. By a solution of (\mathcal{P}) we mean a function $u \in H^1(\Omega) \cap L^{\infty}(\Omega)$, such that

$$\int_{\Omega} \nabla u \nabla w = \int_{\Omega} (\alpha \, m_1 u + m_2 g(u) + h) w$$

for every $w \in H^1(\Omega)$.

This paper is organized as follows. In section 2, we recall some results that we will use later. Section 3 is concerned with the existence of principal eigencurve of the Laplacian operator with Neumann boundary conditions. In section 4, we show a theorem of nonresonance between the first and second eigenvalue (see theorem 2). In section 5, we prove the nonresonance between the first two eigencurves for problem (P).

^{*}Corresponding Author: Ahmed Sanhaji, Laboratory-LSI- sidi Mohamed ben Abdellah University, polydisciplinary, Faculty of TAZA, MOROCCO, & ahmed.sanhaji1@usmba.ac.ma

2 Preliminary

Let us briefly recall some properties of the spectrum of $-\Delta$ with weight and with Neumann boundary condition to be used later. Let be Ω a smooth bounded domain in \mathbb{R}^N ($N \ge 1$) and let $m \in M^+(\Omega)$. the eigenvalue problem is

$$\begin{cases} -\Delta u = \lambda m(x)u & \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{ on } \partial \Omega, \end{cases}$$
(1)

this spectrum contains a sequence of nonnegative eigenvalues $(\lambda_n)_{n>0}$ given by

$$\frac{1}{\lambda_n} = \frac{1}{\lambda_n(m)} = \sup_{K \in \Gamma_n} \min_{u \in K} \frac{\int_{\Omega} mu^2}{\int_{\Omega} |\nabla u|^2},$$
 (2)

where $\Gamma_n = \{K \subset S : K \text{ is symetric, compact and } \gamma(K) \ge n\}$. If $\alpha > \lambda_2(m_1)$, then we have $\beta < 0$. *S* is the unit sphere of $H^1(\Omega)$ and γ is the genus function. This formulation can be found in [4], the sequence $(\lambda_n)_{n>0}$ verify: Indeed, assume by contradiction

i) $\lambda_n \to +\infty$ as $n \to +\infty$

ii) If *m* change its sign in Ω and $\int_{\Omega} m dx < 0$, then the first eigenvalue defined by

$$\lambda_1(m) = \inf\left\{ \int_{\Omega} |\nabla u|^2, u \in H^1(\Omega) / \int_{\Omega} m u^2 dx = 1 \right\}$$
(3)

it is known that $\lambda_1(m)$ is > 0, simple and the associated eigenfunction φ_1 can be chosen such that $\varphi_1 > 0$ in Ω and $\|\varphi_1\|_{H^1} = 1$ hold. Moreover $\lambda_1(m)$ is isolated in the spectrum, which allows to define the second positive eigenvalue $\lambda_2(m)$ as

$$\lambda_2(m) = \min \{\lambda \in \mathbb{R} : \lambda \text{ is eigenvalue and } \lambda > \lambda_1(m) \}$$

(4)

it is also known that any eigenfunction associated to a positive eigenvalue different from $\lambda_1(m)$ changes sign in Ω .

iii) $\lambda_1(m)$ is strictly monotone decreasing with respect to *m* (i.e. $m \leq m'$ implies $\lambda_1(m) > \lambda_1(m')$).

Throughout this work, the functions m_1 and m_2 satisfies the following assumptions:

(A)
$$m_1, m_2 \in M^+(\Omega)$$
 and $essing m_2 > 0$.

Proposition 1 ([3]). Let $m, m' \in M^+(\Omega)$.

1. If $m \leq m'$, then $\lambda_2(m) \geq \lambda_2(m')$.

2.
$$\lambda_2: m \to \lambda_2(m)$$
 is continuous in $(M^+(\Omega), \|.\|_{\infty})$.

Proposition 2 ([3]). Let $(m_k)_k$ be a sequence in $M^+(\Omega)$ such that $m_k \to m$ in $L^{\infty}(\Omega)$. then $\lim_{k\to\infty} \lambda_2(m_k) = +\infty$ if and only if $m \leq 0$ almost everywhere in Ω .

3 Existence of the second eigencurve of the $-\Delta$ with weighs in the Neumann case

The second eigencurve of the $-\Delta$ with weighs is defined as a set C_2 of those $(\alpha, \beta) \in \mathbb{R}^2$ such that the fol-

$$\left\{ \begin{array}{ll} -\Delta u = \alpha \, m_1(x) u + \beta m_2(x) u & \mbox{in} \quad \Omega \\ \\ \frac{\partial u}{\partial \nu} = 0 & \mbox{on} \quad \partial \Omega, \end{array} \right.$$

has a nontrivial solution $u \in H^1(\Omega)$ (i.e. $C_2 = \{(\alpha, \beta) \in \mathbb{R}^2; \lambda_2(\alpha m_1 + \beta m_2) = 1\}$), where m_1 and m_2 satisfies the condition (**A**). For more details see [5, 6]. The purpose in this section is to study the following problem: For $\beta < 0$, we prove the existence and the uniqueness of reel $\alpha_2^+(\beta)$ such that $(\alpha_2^+(\beta), \beta) \in C_2$). Given $m \in M^+(\Omega)$, we denote by $\Omega_m^+ = \{x \in \Omega; m(x) > 0\}$ and $\Omega_m^- = \{x \in \Omega; m(x) < 0\}$.

Remark 1 Let $(\alpha, \beta) \in C_2$. **j.1.** If $\alpha > \lambda_2(m_1)$, then we have $\beta < 0$. **2.** If $meas(\Omega_m^-) > 0$ and $\alpha < \lambda_2(m_1)$, we have $\beta < 0$.

Indeed, assume by contradiction if $\alpha > \lambda_2(m_1)$ and $\beta \ge 0$, then

$$\alpha m_1 \leq \alpha m_1 + \beta m_2,$$

using the monotony property of λ_2 , we obtain

$$\lambda_2(\alpha m_1 + \beta m_2) \le \lambda_2(\alpha m_1) = \frac{\lambda_2(m_1)}{\alpha} < 1,$$

since, $(\alpha, \beta) \in C_2$, we have $\lambda_2(\alpha m_1 + \beta m_2) = 1$, thus necessarily $\beta < 0$. The proof of the second assertion is similar.

Theorem 1 Let m_1 , m_2 satisfy (A), then we have:

i) For all $\beta < 0$, there exists $\alpha_2^+(\beta) > \lambda_2(m_1)$ such that $(\alpha_2^+(\beta), \beta) \in C_2$.

ii) If $meas(\Omega_{m_1}^-) > 0$, then for all $\beta < 0$, there exists $\alpha_2^-(\beta) < \lambda_2(m_1)$ such that $(\alpha_2^-(\beta), \beta) \in C_2$.

Proof To prove **i**), we consider $\beta < 0$ and we define $\alpha_2^+(\beta)$ as follows

$$\frac{1}{\alpha_2^+(\beta)} = \sup_{K \in \Gamma_2} \inf_{u \in K} \frac{\int_{\Omega} m_1 u^2}{\int_{\Omega} |\nabla u|^2 - \beta \int_{\Omega} m_1 u^2}$$
(5)

by definition of $\alpha_2^+(\beta)$ and, using the fact that for any eigenfunction associated to $\lambda_2(m_1)$ changes sign in Ω , we obtain that there exists eigenfunction u which change sign in Ω such that

$$\int_{\Omega} \nabla u \cdot \nabla v - \beta \int_{\Omega} m_2 \, u \, v = \int_{\Omega} \alpha_2^+(\beta) \, m_1 \, v, \qquad (6)$$

for all $v \in H^1(\Omega)$, we deduce also that, if $w \in H^1(\Omega)$ is eigenfunction of operator $-\Delta(.) - \beta m_2(.)$ which change singe in Ω with the corresponding eigenvalue $\lambda > 0$, then $\lambda \ge \alpha_2^+(\beta)$. In view of the (6), we have

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2 u) v \quad \text{for all } v \in H^1(\Omega)$$

it follows that the real 1 is eigenvalue of $-\Delta$ with by the inequality above we deduce that there exists weight $(\alpha_2^+(\beta) + \beta m_2)$, since the corresponding eigenfunction u change singe in Ω , we conclude that

$$\lambda_2(\alpha_2^+(\beta)\,m_1 + \beta\,m_2) \le 1. \tag{7}$$

On the other hand, using (5) for all $K \in \Gamma_2$, there exists $u_K \in K$ such that

$$\min_{u \in K} \quad \frac{\int_{\Omega} m_1 u^2}{\int_{\Omega} |\nabla u|^2 - \beta \int_{\Omega} m_1 u^2} = \frac{\int_{\Omega} m_1 u_K^2}{\int_{\Omega} |\nabla u_K|^2 - \beta \int_{\Omega} m_2 u_K^2} \le \frac{1}{\alpha_2^+(\beta)},$$

it follows that

$$\frac{\int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2) u_K^2}{\int_{\Omega} |\nabla u_K|^2} \le 1.$$

So that

$$\min_{u \in K} \quad \frac{\int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2) u^2}{\int_{\Omega} |\nabla u|^2} \\ \leq \frac{\int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2) u_K^2}{\int_{\Omega} |\nabla u_K|^2} \leq 1 \text{ for all } K \in \Gamma_2,$$

this implies

$$\sup_{K\in\Gamma_2} \min_{u\in K} \frac{\int_{\Omega} (\alpha_2^+(\beta) m_1 + \beta m_2) u^2}{\int_{\Omega} |\nabla u|^2} \le 1.$$

Since

$$\frac{1}{\lambda_2(\alpha_2^+(\beta)m_1+\beta m_2)} = \sup_{K\in\Gamma_2} \min_{u\in K} \frac{\int_{\Omega} (\alpha_2^+(\beta)m_1+\beta m_2)u^2}{\int_{\Omega} |\nabla u|^2}$$

we deduce that

$$\lambda_2(\alpha_2^+(\beta)\,m_1 + \beta\,m_2) \ge 1. \tag{8}$$

By combining (7) and (8), we obtain

$$\lambda_2(\alpha_2^+(\beta)\,m_1+\beta\,m_2)=1.$$

Let $\gamma > 0$ such that $\lambda_2(\gamma m_1 + \beta m_2) = 1$, there exists eigenfunction ω change singe in Ω and

$$\int_{\Omega} \nabla u . \nabla \omega = \int_{\Omega} (\gamma \, m_1 + \beta m_2 \, u \,) \omega \quad \forall \, \omega \in H^1(\Omega)$$

hence

$$\int_{\Omega} \nabla u \cdot \nabla \omega - \int_{\Omega} \beta \, m_2 \, u \, \omega = \gamma \int_{\Omega} m_1 \omega \quad \forall \, \omega \in H^1(\Omega)$$
(9)

from (9), we obtain that γ is eigenvalue of the operator $-\Delta(.) - \beta m_2(.)$ with weight m_1 , since the eigenfunction ω change singe, we conclude that

 $\gamma \ge \alpha_2^+(\beta).$

Assume by contradiction that $\gamma > \alpha_2^+(\beta)$, then

$$\frac{1}{\gamma} < \frac{1}{\alpha_2^+(\beta)} = \sup_{K \in \Gamma_2} \min_{u \in K} \frac{\int_{\Omega} m_1 u^2}{\int_{\Omega} |\nabla u|^2 - \beta \int_{\Omega} m_2 u^2}$$

 $K_0 \in \Gamma_2$ such that

$$\frac{1}{\gamma} < \min_{u \in K_0} \frac{\int_{\Omega} m_1 u^2}{\int_{\Omega} |\nabla u|^2 - \beta \int_{\Omega} m_2 u^2}$$

since K_0 is compact, we conclude that, there exists $u_0 \in K_0$

$$\frac{1}{\gamma} < \frac{\int_\Omega m_1 \, u_0^2}{\int_\Omega |\nabla u_0|^2 - \beta \int_\Omega m_2 \, u_0^2},$$

hence

$$1 < \min_{u \in K_0} \frac{\int_{\Omega} (\gamma \, m_1 + \beta \, m_2) u_0^2}{\int_{\Omega} |\nabla u_0|^2}$$

it follows that

$$1 < \sup_{K \in \Gamma_2} \min_{u \in K_0} \frac{\int_{\Omega} (\gamma \, m_1 + \beta \, m_2) u_0^2}{\int_{\Omega} |\nabla u_0|^2} = \frac{1}{\lambda_2 (\gamma \, m_1 + \beta \, m_2)} = 1,$$

which gives a contradiction, thus we have $\gamma = \alpha_2^+(\beta)$.

4 Nonresonance between the first and second eigenvalue

In this section we are interesting to the study of the existence results for the following Neumann problem

$$(\mathcal{P}_2) \begin{cases} -\Delta u = \lambda_2 m_1(x)u + m_2(x)g(u) + h(x) & \text{in } \Omega \\ \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega \end{cases}$$

where $\lambda_2 = \lambda_2(m_1)$ is the second eigenvalue of $-\Delta$ with weight m_1 under the Neumann boundary condition.

Lemma 1 Let $m_1, m_2 \in M^+(\Omega)$. Assume that (A) is verified, then there exists a unique real c > 0 such that

$$\lambda_1(\lambda_2 m_1 - c m_2) = 1 \tag{10}$$

Proof Put $a = \frac{ess \inf_{\Omega} \lambda_2 m_1}{ess \inf_{\Omega} m_2}$ and $b = \frac{ess \sup_{\Omega} \lambda_2 m_1}{ess \inf_{\Omega} m_2}$ since *m* is a nonconstant function, then we have a < b. So for $t \in [a, b]$ we consider the weight $m_t = \lambda_2 m_1 - \lambda_2 m_1$ $t m_2$ and the corresponding increasing and continuous function:

$$f: [a, b[\to IR] \\ t \mapsto \lambda_1(\lambda_2 m_1 - t m_2)$$
(11)

which satisfy f(a) = 0 and $\lim_{t \to a} f(t) = +\infty$. According to be strict monotony property of λ_1 with weights we observe that f is strictly increasing on [a', b] where $a' = \max\{t : f(t) = 0\}.$

Therefore, $f(a') = 0 \le f(0) = \lambda_1(\lambda_2 m_1) < \lambda_2(\lambda_2 m_1) =$ 1, so the conclusion follows from the intermediate values theorem.

Theorem 2 Let $m_1, m_2 \in M^+(\Omega)$. Assume that the weights m_1 and m_2 satisfy (A) and the function g satisfy the following hypotheses

$$-c \le \liminf_{s \to \pm \infty} \frac{g(s)}{s} \le \limsup_{s \to \pm \infty} \frac{g(s)}{s} \le 0$$
 (12)

$$-c < \limsup_{|s| \to \infty} \frac{2G(s)}{s^2}; \liminf_{s \to +\infty \text{ or } -\infty} \frac{2G(s)}{s^2} < 0$$
(13)

where c is given in (10), then problem (\mathcal{P}_2) admits at least one solution for any $h \in L^{\infty}(\Omega)$.

For the proof of theorem 2, we observe that the main trick introduce in [7] can be adapted in our situation. Furthermore the proof needs some technical lemmas, the two next lemmas concern an a-priori estimates on the possible solutions of the following homotopic problem.

$$\begin{cases} -\Delta u = ((1-\mu)\theta + \mu\lambda_2)m_1u + \mu m_2g(u) + \mu h & \text{in }\Omega\\ \frac{\partial u}{\partial v} = 0 & \text{on }\partial\Omega, \end{cases}$$
(14)

where $\mu \in [0,1]$ and $\theta \in]\lambda_1, \lambda_2[$ to be variable and $\lambda_1 = \lambda_1(m_1)$.

Lemma 2 Suppose that (A) and (12) hold and assume that for some $\theta \in]\lambda_1, \lambda_2[$ there exists $\mu_{n,\theta} \in [0,1]$ and $u_{n,\theta}$ be a solution of (14), for all *n*. Then we have

1) $(u_{n,\theta})_n$ is a sequence of $L^{\infty}(\Omega)$ and if $||u_{n,\theta}||_{\infty} \rightarrow +\infty$ when $n \rightarrow +\infty$, then

$$v_{n,\theta} = \frac{u_{n,\theta}}{\|u_{n,\theta}\|_{\infty}} \to v_{\theta} \text{ stongly in } C^{1}(\Omega), \quad (15)$$

for some subsequence.

2) Assume that the following hypothesis holds

(*H*)
$$\exists \theta \in]\lambda_1, \lambda_2[/\limsup_{n \to \infty} \mu_{n,\theta} = 1$$

then one of the following assertions i) or ii) holds, where

i) $v_{\theta} = \psi$, ψ is a normed $(\|\psi\|_{\infty} = 1)$ eigenfunction associated to $\lambda_2(m_1)$ and

$$\int_{\Omega} \frac{|g(u_{n,\theta})|}{\|(u_{n,\theta})\|} dx \longrightarrow 0 \text{ when } n \to +\infty.$$
(16)

Furthermore, there exists $\eta_1 > 0$, $\eta_2 > 0$ *such that*

$$\eta_1 < \frac{\max(u_{n,\theta})}{-\min(u_{n,\theta})} < \eta_2 \text{ for n large enough.}$$
(17)

ii) $v_{\theta} = \pm \varphi$, φ *is a normed* ($\|\varphi\|_{\infty} = 1$) *eigenfunction associated to* $\lambda_1(\lambda_2 m_1 - cm_2) = 1$ *and*

$$\int_{\Omega} \frac{|g(u_{n,\theta}) + cu_{n,\theta}|}{\|(u_{n,\theta}\|]} dx \longrightarrow 0 \text{ when } n \to +\infty.$$
(18)

Furthermore, $u_{n,\theta}$ *not changes sign for n large enough.*

3) If (**H**) is false, then there exists a sequence $(\theta_k)_k \subset [\lambda_1, \lambda_2[$ and a strictly increasing sequence $(n_k)_k \subset \mathbb{N}$ such that

a) $\lim_{k \to +\infty} \theta_k = \lambda_2$, $\lim_{k \to \infty} \mu_{n_k, \theta_k} = 1$ and $\lim_{k \to \infty} ||w_k|| = +\infty$ where $w_k = u_{n_k, \theta_k}$.

b)
$$\frac{w_k}{\|w_k\|} \longrightarrow \pm \varphi$$
 strongly in $C^1(\overline{\Omega})$ and

$$\int_{\Omega} \frac{|g(w_k) + cw_k|}{\|w_k\|} dx \longrightarrow 0 \text{ when } n \to +\infty$$

Proof: 1) From the Anane's L^{∞} -estimation [8] and the Tolksdorf's-regularity [9] we can see that $(u_{n,\theta})_n \subset \mathcal{C}^{1,\alpha}(\overline{\Omega})$, since the embedding $\mathcal{C}^{1,\alpha}(\overline{\Omega}) \hookrightarrow L^{\infty}(\Omega)$ is continuous for some $\alpha \in]0,1[$ independent on n, furthermore $v_{n,\theta} = \frac{u_{n,\theta}}{\|u_{n,\theta}\|_{\infty}}$ remains a bounded sequence in $\mathcal{C}^{1,\alpha}(\overline{\Omega})$.

By using the following compact embedding $\mathcal{C}^{1,\alpha}(\overline{\Omega}) \hookrightarrow \hookrightarrow \mathcal{C}^1(\overline{\Omega})$, then there exists a subsequence still denoted $(v_{n,\theta})_n$ such that

$$v_{n,\theta} \to v_{\theta} \text{ stongly in } \mathcal{C}^1(\overline{\Omega}) \text{ and } \|v_{\theta}\|_{\infty} = 1.$$
 (19)

2) According to the function g satisfy the hypothesis (12), we deduce that for all $s \in \mathbb{R}$, we can write

$$g(s) = q(s)s + r(s) \tag{20}$$

where $-c \le q(s) \le 0$ and $\frac{r(s)}{s} \longrightarrow 0$ uniformly, when $|s| \to +\infty$. Since $u_{n,\theta}$ is a solution of $(\mathcal{P}_{2,\theta,\mu_n})$, we get

$$\int_{\Omega} \nabla u_{n,\theta} \nabla w dx = \int_{\Omega} [(1-\mu_n)\theta + \mu_n \lambda_2)m_1 u_{n,\theta} + \mu_n m_2 g(u_{n,\theta}) + \mu_n h] w dx$$
(21)

for all $w \in H^1(\Omega)$.

On the other hand, since $(u_{n,\theta})_n \subset L^{\infty}(\Omega)$ and q is a continuous function, it follows that $q(u_n)$ is bonded in $L^{\infty}(\Omega)$, then for a subsequence we get

$$q(u_{n,\theta}) \rightarrow q_{\theta}$$
 in $L^{\infty}(\Omega)$ weak – *,

and

$$\frac{|r(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}} \to 0 \text{ strongly in } L^{\infty}(\Omega)$$

where $-c \le q_{\theta}(x) \le 0$ a.e. in Ω .

Dividing by $||u_{n,\theta}||_{\infty}$ and passing to the limit as $n \to \infty$ in (20), we get

$$\int_{\Omega} \nabla v_{\theta} \nabla w dx = \int_{\Omega} (\lambda_2 m_1 + q_{\theta} m_2) v_{\theta} w dx \ \forall w \in H^1(\Omega).$$
(22)

Since $v_{\theta} \neq 0$, then 1 is an eigenvalue of Laplacain with weight $m_{q_{\theta}} = \lambda_2 m_1 + q_{\theta} m_2$.

By using the monotony property of λ_2 with respect to the weight, we obtain

$$\lambda_2(m_{q_\theta}) \ge \lambda_2(\lambda_2 m_1) = 1$$

hence $\lambda_2(m_{q_{\theta}}) = 1$ or $\lambda_2(m_{q_{\theta}}) > 1$. **First case:** $\lambda_2(m_{q_{\theta}}) = 1$. So, we have

$$q_{\theta} = 0$$
 and $v_{\theta} = \psi$.

Moreover, let us denotes by F_{λ_2} be the eigenspace associated to $\lambda_2 = \lambda_2(m_1)$, since F_{λ_2} is a vector space of finite dimension then, we can take

$$\eta_1 < \min_{v \in F_{\lambda_2} \cap S} \frac{\max(v)}{-\min(v)}$$
 and $\eta_2 > \max_{v \in F_{\lambda_2} \cap S} \frac{\max(v)}{-\min(v)}$

where $S = \{ v \in F_{\lambda_2} / ||v||_{\infty} = 1 \}.$ It is clear to see that $\frac{\max(v_{n,\theta})}{-\min(v_{n,\theta})}$ $\rightarrow \frac{\max(\psi)}{-\min(\psi)}$ when $n \to +\infty$. It follows that for *n* large enough

$$\eta_1 < \frac{\max(v_{n,\theta})}{-\min(v_{n,\theta})} < \eta_2$$

According to (20), we get

$$\int_{\Omega} \frac{|m_2(x)g(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}} dx \leq ||m_2||_{\infty} \int_{\Omega} -q(u_{n,\theta})|v_{n,\theta}| + ||m_2||_{\infty} \int_{\Omega} \frac{|r(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}} dx$$

by passage to the limit in the above inequality, we find (16).

Second case: $\lambda_2(m_{q_{\theta}}) > 1$.

So, we get $\lambda_1(m_{q_{\theta}}) = 1$ and by using the strict monotony property of λ_1 , we can see that

$$q_{\theta} = -c$$
 and $v_{\theta} = \varphi$.

The rest of the proof follows directly as in first case. 3) We take $(\theta_k)_k \subset]\lambda_1, \lambda_2[$ such that $\lim_{k \to +\infty} \theta_k = \lambda_2$. Let us denotes by $\overline{\mu}_k = \lim_{n \to +\infty} \mu_{k,\theta_k}$, as in 2) it is clear to see that

$$\begin{cases} -\Delta u = [((1 - \overline{\mu}_k)\theta_k + \overline{\mu}_k\lambda_2)m_1 + \overline{\mu}_kq_{\theta_k}m_2]v_{\theta_k} & \text{in } \Omega\\ \\ \frac{\partial v_{\theta_k}}{\partial v} = 0 & \text{on } \partial\Omega \end{cases}$$

we recall that $0 \le \overline{\mu}_k < 1$, $-c \le q_{\theta_k} \le 0$ and $q(u_{n,\theta_k}) \longrightarrow^*$ q_{θ_k} in $L^{\infty}(\Omega)$ when $n \to +\infty$, where g(s) = q(s)s + r(s), $-c \le q(s) \le 0$ and $\frac{r(s)}{r} \to 0$ when $|s| \to +\infty$. Let us consider the following weight

$$\overline{M}_k(x) = ((1 - \overline{\mu}_k)\theta_k + \overline{\mu}_k\lambda_2)m_1(x) + \overline{\mu}_kq_{\theta_k}m_2(x)$$

we have

$$\overline{M}_k(x) \le ((1 - \overline{\mu}_k)\theta_k + \overline{\mu}_k\lambda_2)m_1(x)$$

because $q_{\theta_k} \leq 0$. Then

$$\begin{split} \lambda_2(\overline{M}_k(x)) &\geq \lambda_2(((1-\overline{\mu}_k)\theta_k+\overline{\mu}_k\lambda_2)m_1(x)) \\ &\geq \frac{\lambda_2}{(1-\overline{\mu}_k)\theta_k+\overline{\mu}_k\lambda_2} > 1. \end{split}$$

Thus it is clear to see that

$$\lambda_2(\overline{M}_k(x)) = 1. \tag{23}$$

Let $\overline{\mu}_k \to \overline{\mu}$ and $q(u_{n,\theta_k}) \longrightarrow^* \overline{q}_0$ in $L^{\infty}(\Omega)$ when $k \to \infty$ $+\infty$, where $-c \leq \overline{q}_0 \leq 0$. Then by letting k tends to According to (16), we obtain infinity in (23), it follows that

$$\lambda_1(\lambda_2 m_1 + \overline{\mu}\overline{q}_0 m_2) = 1.$$
⁽²⁴⁾

In view of lemma 1, we get

$$\overline{\mu} = 1$$
, $\overline{q}_0 = -c$ and $u_{\theta_k} \to \pm \varphi$ strongly in $C^1(\Omega)$
when $k \to +\infty$.

On the other hand, using (20), we have

$$\int_{\Omega} \frac{|g(w_k) + cw_k|}{\|w_k\|_{\infty}} dx = \int_{\Omega} \frac{|q(w_k)w_k + cw_k + r(w_k)|}{\|w_k\|_{\infty}} dx$$
$$\leq \int_{\Omega} |q(w_k) + c| \frac{w_k|}{\|w_k\|_{\infty}} dx$$
$$+ \int_{\Omega} \frac{|r(w_k)|}{\|w_k\|_{\infty}}.$$

Since $\frac{r(s)}{s} \to 0$ when $|s| \to \infty$, then for all $\varepsilon > 0$ there exists $n_{\varepsilon,k}$ such that for all $n \ge n_{\varepsilon,k}$

$$\int_{\Omega} \frac{|g(w_k) + cw_k|}{||w_k||_{\infty}} dx \le \int_{\Omega} |\overline{q}_{\theta_k} + c||v_{\theta_k}| dx + \varepsilon.$$

If we take $\varepsilon = \frac{1}{k}$, $n = n_k = n_{\varepsilon,k}$ and we replace in the last formula, then we can see that the second member of this last inequality goes to 0 when m goes to $+\infty$. Finally, we conclude by the fact that n_k will be adjusted such that $||u_{n_k,\theta_k}||_{\infty} > k$ and $||v_{n_k,\theta_k} - v_{\theta_k}||_{C^1(\overline{\Omega})} \leq \frac{1}{k}$.

Lemma 3 Let us consider the assumptions and notations of lemma 2. We take $a \in \Omega$ and $\eta > 0$ such that $B(a,\eta) \subset \Omega$.

1) Assume that the hypothesis (\mathbf{H}) holds, so, if $||u_{n,\theta}||_{\infty} \to +\infty$ when $n \to +\infty$ then $\limsup \mu_{n,\theta} = 1$ and $n \rightarrow +\infty$ *i*) If $v_{\theta} = \psi$ then

$$\lim_{n \to \infty} \int_{0}^{1} \frac{|g(u_{n,\theta}(\sigma_{x}(t)))| |\nabla u_{n,\theta}(\sigma_{x}(t))| |x-a|}{\|u_{n,\theta}\|_{\infty}} dt = 0$$

a.e. $x \in \partial B(a, \eta)$ (25)

where $\sigma_x(t) = a + t(x - a)$. *ii)* If $v_{\theta} = \pm \varphi$ then

$$\lim_{n \to \infty} \int_0^1 \frac{|g(u_{n,\theta}(\sigma_x(t))) + cu_{n,\theta}(\sigma_x(t))||\nabla u_{n,\theta}(\sigma_x(t))||x-a|}{||u_{n,\theta}||_{\infty}} dt = 0$$

a.e. $x \in \partial B(a, \eta)$.

2) Assume that (H) is false then we have

$$\lim_{n \to \infty} \int_{0}^{1} \frac{|g(w_k(\sigma_x(t))) + cw_k(\sigma_x(t))||\nabla w_k(\sigma_x(t))||x-a|}{\|w_k\|_{\infty}} dt = 0$$

a.e. $x \in \partial B(a, \eta).$ (27)

Proof: We only show the relation (25) since the proof of the (26) and (27) one proceeds in the same way. Firstly we have

$$\int_{B(a,\eta)} \frac{|g(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}} dx \leq \int_{\Omega} \frac{|g(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}} dx.$$

$$\lim_{n\to\infty}\int_{B(a,\eta)}\frac{|g(u_{n,\theta})|}{||u_{n,\theta}||_{\infty}}dx=0.$$

www.astesj.com

(26)

Which gives by passing in spherical coordinates

$$\lim_{n \to \infty} \int_{[0,\pi]^n} \int_0^{2\pi} \int_0^{\eta} t^{N-1} \frac{|g(u_{n,\theta}(a+t\omega))|}{||u_{n,\theta}||_{\infty}} \prod_{j=1}^{N-2} (\sin\theta_j)^{N-1-j} d\theta_j d\theta_{N-1} dt = 0$$
(28)

where, $\omega = \frac{x-a}{\eta} \in \partial B(0,1)$. The above equality imply

$$\frac{|g(u_{n,\theta}(\sigma_x(\tau)))|}{||u_{n,\theta}||_{\infty}} \to 0 \quad \text{when } n \to \infty$$

a.e. $x \in \partial B(a,\eta) \text{ and a.e. } \tau \in [0,1]$

By using (12) we can see that *g* satisfy the following growth condition:

 $|g(s)| \le a|s| + b$, for some positive reals *a*, *b* and $\forall s \in \mathbb{R}$

hence $\left(\frac{|g(u_{n,\theta}(\sigma_x(.)))|}{||u_{n,\theta}||_{\infty}}\right)_n$ and $\left(\frac{|\nabla(u_{n,\theta}(\sigma_x(.)))|}{||u_{n,\theta}||_{\infty}}\right)_n$ are bounded in $L^{\infty}([0,1])$.

By using the Lebesgue dominated convergence theorem, we conclude this proof.

Lemma 4 1) If G satisfy $-c < \limsup_{s \to +\infty} \frac{2G(s)}{s^2} \le 0$. then for all $r \in]0, 1[$, there exists $\rho_r > -c(1-r^2)$ and a sequence of positive real numbers (S_n) such that

$$\lim_{n \to +\infty} S_n = +\infty \text{ and } \lim_{n \to +\infty} \frac{2G(S_n) - 2G(rS_n)}{S_n^2} = \rho_r$$
2) If G satisfy $-c < \limsup_{s \to +\infty} \frac{2G(s)}{s^2} \le 0$ and

 $-c < \liminf_{s \to +\infty} \frac{2G(s)}{s^2} < 0$, then for all $r \in]0,1[$, there exists $\rho_r > -c(1-r^2)$ and a sequence of positive real numbers (S_n') such that

$$\lim_{n \to +\infty} S'_n = +\infty, \quad \lim_{n \to +\infty} \frac{2G(S'_n)}{S'^2_n} = \rho$$

and
$$\lim_{n \to +\infty} \frac{2G(S'_n) - 2G(rS'_n)}{S'^2_n} = \rho_r.$$

The same conclusion is obtained when we replace $+\infty$ par $-\infty$, in this case we should note ρ' and ρ_r in place of ρ and ρ_r respectively.

Proof: We pose
$$L_1 = \liminf_{s \to +\infty} \frac{2G(s)}{s^2}$$
 and $L_2 = \limsup_{s \to +\infty} \frac{2G(s)}{s^2}$.

We distinguish the following two cases:

Case1: If $L_1 = L_2$, it is enough to take $\rho = L_2$ and $\rho_r = (1 - r^2)L_2$.

Case2: If $L_1 < L_2$, then we choose $\rho \in]L_1, L_2[$ neighbor of L_2 in such a way that:

$$p - r^2 L_2 > -c(1 - r^2).$$

According to the definition of L_1 and L_2 , we conclude that, there existence a sequence (S_n) such that $\lim_{n\to+\infty} S_n = +\infty$ and $\frac{2G(S_n)-2G(rS_n)}{S_n^2} = \rho$. We put

$$\liminf_{n \to +\infty} \frac{2G(S_n) - 2G(rS_n)}{S_n^2} = \rho - r^2 \limsup_{n \to +\infty} \frac{2G(rS_n)}{rS_n^2}.$$

Since $\limsup_{n \to +\infty} \frac{2G(rS_n)}{(rS_n)^2} \le L_2$, then we have:

$$\rho_r \ge \rho - r^2 L_2 > -c(1 - r^2).$$

5 **Proof of Theorem 2**

Our purpose now, consists in building in $C(\overline{\Omega})$ an open bounded set \mathcal{O} such that, there exist $\theta \in]\lambda_1, \lambda_2[$ such that, no solution of (14) with $\mu \in [0, 1]$ occurs on the boundary $\partial \mathcal{O}$. Homotopy invariance of the degree then yields the conclusion. The set \mathcal{O} will have the following form

$$\mathcal{O} = \mathcal{O}_{S,T} = \{ u \in \mathcal{C}(\Omega); \quad T < u < S \},\$$

where, *S* and *T* satisfy T < 0 < S.

Firstly, according to, (13) we will assume the following hypothesis holds

$$-c < \limsup_{|s| \to \infty} \frac{2G(s)}{s^2} \text{ and } \liminf_{s \to +\infty} \frac{2G(s)}{s^2} < 0 \quad (13_+).$$

An analogous proof will be adapted to the hypothesis (13_) where (13) represents (13_+) or (13_-). Assume by contradiction, that for all $\theta \in]\lambda_1, \lambda_2[$ and for all S, T (T < 0 < S), there exists $\mu = \mu_{\theta,S,T} \in [0,1[$ and $u = u_{\theta,S,T} \in \partial \mathcal{O}$ such that u is a solution of (14) which gives

$$\max(u) = S \text{ or } \min(u) = T.$$
(29)

According to (13_+) , then owing to lemma 4, there exists two sequence (T_n) and (S_n) such that

$$\lim_{n \to +\infty} T_n = -\infty, \lim_{n \to +\infty} \frac{2G(T_n) - 2G(rT_n)}{T_n^2} = \rho'_r \quad (30)$$

$$\lim_{n \to +\infty} S_n = +\infty, \lim_{n \to +\infty} \frac{2G(S_n)}{S_n^2}, \lim_{n \to +\infty} \frac{2G(S_n) - 2G(rS_n)}{S_n^2} = \rho_r$$
(31)

where $r = \frac{\min \varphi}{\max \varphi}$ and ρ , ρ_r and ρ'_r provides from lemma 4.

So, we remark that, without loss of generality we can assume that

$$\frac{S_n}{-T_n} \le \eta_1. \tag{32}$$

We use the following notations:

$$T = T_n$$
, $S = S_n$, $\mu_{n,\theta} = \mu_{\theta,T,S}$ and $u_{n,\theta} = u_{\theta,T,S}$.

According to (29) and (31), we obtain

 $||u_{n,\theta}||_{\infty} \to +\infty$ when $n \to +\infty$.

We will distinguish two cases.

First case: We assume that the hypothesis **(H)** is satisfied (c.f. lemma 2).

According to lemma 2 we get

$$v_{n,\theta} = \frac{u_{n,\theta}}{\|u_{n,\theta}\|_{\infty}} \to v_{\theta}$$
 where $v_{\theta} = \psi$ or $v_{\theta} = \pm \varphi$.

i) If $v_{\theta} = \psi$, we assert that for every n large enough we have

$$\max(u_{n,\theta}) = S_n.$$

Indeed, if not we have

$$\max(u_{n,\theta}) < S_n$$
 and $\min(u_{n,\theta}) = T_n$

thus,

$$\frac{\max(u_{n,\theta})}{-\min(u_{n,\theta})} < \frac{S_n}{-S_n} \le \eta_1$$

which gives a contradiction from the definition of η_1 given in lemma 2. On the other hand, we have $u_{n,\theta}$ changes sign on Ω , so there exists $x_n \in \overline{\Omega}$, $y_n \in \Omega$ such that

$$u_{n,\theta}(x_n) = S_n$$
 and $u_{n,\theta}(y_n) = 0$,

we write

$$\frac{2G(S_n)}{S_n^2} = \frac{2G(u_{n,\theta}(x_n)) - 2G(u_{n,\theta}(x_n))}{\|u_{n,\theta}\|_{\infty}^2 \max(v_{n,\theta})^2} = \frac{2}{\max(v_{n,\theta})^2} \int_{\mathcal{C}_n} \frac{d(G \circ u_{n,\theta})}{\|u_{n,\theta}\|_{\infty}^2}$$

where

$$d(G \circ u_{n,\theta})(\mathcal{C}_n) = g(u_{n,\theta}(\mathcal{C}_n)) \nabla u_{n,\theta}(\mathcal{C}_n).\mathcal{C}'_n, \text{ a.e.}$$

and C_n is a C^1 with morsels line which connects extremity x_n and y_n .

According to lemma 3, we have

$$\lim_{n \to +\infty} \int_{\mathcal{C}_n} \frac{d(G \circ u_{n,\theta})}{\|u_{n,\theta}\|_{\infty}^2}$$

Since $\max(v_{n,\theta}) \to \max(\psi)$ when $n \to +\infty$, we deduce that

$$\rho = \lim_{n \to +\infty} \frac{2G(S_n)}{S_n^2} = 0,$$

which is a contradiction since $\rho \in]-c, 0[$.

ii) If $v_{\theta} = \pm \varphi$: then, for *n* large enough $u_{n,\theta}$ not changes sign on Ω .

so,

$$\max(u_{n,\theta}) = S_n \text{ or } \min(u_{n,\theta}) = T_n.$$

Assume that $\max(u_{n,\theta}) = S_n$ (the same gait will be used for the case $\min(u_{n,\theta}) = T_n$), so it is clear to see that $v_{n,\theta} = +\varphi$ and $\min(u_{n,\theta}) > 0$ for *n* large enough. We put

$$\overline{g}(s) = g(s) + cs, \ \overline{G}(s) = \int_0^s \overline{g}(s) ds.$$

Let x_n , $y_n \in \overline{\Omega}$ such that $u_{n,\theta}(x_n) = S_n$ and $u_{n,\theta}(y_n) = \min(u_{n,\theta})$. We write

$$\frac{\overline{G}(S_n) - \overline{G}(r_n S_n)}{S_n^2} = \frac{2\overline{G}(u_{n,\theta}(x_n)) - 2\overline{G}(u_{n,\theta}(x_n))}{\|u_{n,\theta}\|_{\infty}^2}$$
$$= \int_{\mathcal{C}_n} \frac{d(\overline{G} \circ u_{n,\theta})}{\|u_{n,\theta}\|_{\infty}^2}$$

where $r_n = \frac{\min(u_{n,\theta})}{\max(u_{n,\theta})} \rightarrow r = \frac{\min(\varphi)}{\max(\varphi)}$. Using the Lemma 3, we deduce that

$$\lim_{n \to +\infty} \int_{\mathcal{C}_n} \frac{d(\overline{G} \circ u_{n,\theta})}{\|u_{n,\theta}\|_{\infty}^2} = 0.$$
(33)

On the other hand, it is easy to verify that

$$0 = \lim_{n \to +\infty} \frac{\overline{G}(S_n) - \overline{G}(r_n S_n)}{S_n^2} = \frac{\rho_r + c(1 - r^2)}{2} > 0$$

which gives a contradiction.

Second case: Assume that the hypothesis (**H**) is not verified, so for all $\theta \in]\lambda_1, \lambda_2[$ such that $\limsup \mu_{n,\theta} < 1$.

 $n \rightarrow +\infty$

We take a sequence (θ_k) such that

$$\lim_{k\to+\infty}\theta_k=\lambda_2,$$

and we consider the subsequences

$$(T_{n_k})_k$$
, $(S_{n_k})_k$ and $w_k = u_{n_k, \theta_k}$

Similarly, as in the second point of the previous case we obtain a contradiction. This completes the proof of theorem 2.

6 Nonresonance between the first two Eigencurves

In this section we will prove an existence result for problem (\mathcal{P}). We need more restrictive hypotheses on the nonlinearities *g* and *G*.

$$\begin{aligned} & (\mathbf{A}_g) \qquad \beta_1 \leq \liminf_{s \to \pm \infty} \frac{g(s)}{s} \leq \limsup_{s \to \pm \infty} \frac{g(s)}{s} \leq \beta_2 \\ & (\mathbf{A}_G^{\pm}) \quad \beta_1 < \limsup_{|s| \to \infty} \frac{2G(s)}{s^2}; \liminf_{s \to +\infty \text{ or } -\infty} \frac{2G(s)}{s^2} < \beta_2 \end{aligned}$$

where $(\beta_1, \beta_2) \in \mathbb{R}^2$ with $\beta_2 - \beta_1 = c$ and *c* is given in (10).

Theorem 3 Let $m_1, m_2 \in M^+(\Omega)$. Assume that $(A), (A_g)$ and (A_G^{\pm}) holds. Moreover, if $(\alpha, \beta_1) \in C_1$ and $(\alpha, \beta_2) \in C_2$, where $\alpha \ge \lambda_2(m_1)$ or $\alpha \le \lambda_2(m_1)$. Then the problem (\mathcal{P}) has at least one nontrivial weak solution $u \in H^1(\Omega)$ for any given $h \in L^{\infty}(\Omega)$.

Proof: The problem (\mathcal{P}) can be written in the following equivalent form

$$(\mathcal{P}_e) \begin{cases} -\Delta u = \widetilde{m}|u|^{p-2}u + m_2\widetilde{g}(u) + h & \text{in } \Omega\\\\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial\Omega, \end{cases}$$

where

and

$$\widetilde{m} = \alpha \, m_1 + \beta_2 \, m_2.$$

 $\widetilde{g}(s) = g(s) - \beta_2 s,$

Since $(\alpha, \beta_2) \in C_2$, then 1 is the second eigenvalue of laplacian operator with weight \widetilde{m} relating to Neumann boundary conditions. In view of theorem 2, there exists at least one weak solution $u \in H^1(\Omega)$ of

www.astesj.com

the problem (\mathcal{P}_e) for all $h \in L^{\infty}(\Omega)$ if the function \tilde{g} and his potential \tilde{G} satisfy the two conditions (12) and (13). Indeed, in view of (\mathbf{A}_g)

$$\beta_1 - \beta_2 \le \lim \inf_{|s| \to \infty} \left(\frac{g(s)}{s} - \beta_2 \right) \le 0$$

thus

$$-c \leq \lim \inf_{|s| \to \infty} \left(\frac{\widetilde{g}(s)}{s} \right) \leq 0.$$

Consequently, \tilde{g} satisfy (12). On the other hand, using (\mathbf{A}_{G}^{\pm}), we have

$$\beta_1 - \beta_2 < \limsup_{|s| \to \infty} \left(\frac{2G(s)}{s^2} - \beta_2 \right); \liminf_{s \to +\infty \text{ or } -\infty} \left(\frac{2G(s)}{s^2} - \beta_2 \right) < 0$$

hence

$$-c < \limsup_{|s| \to \infty} \left(\frac{2\widetilde{G}(s)}{s^2} \right); \liminf_{s \to +\infty \text{ or } -\infty} \left(\frac{2\widetilde{G}(s)}{s^2} \right) < 0$$

which means that \widetilde{G} satisfy (13).

Finally, since the problem (\mathcal{P}_e) is a equivalent to the problem (\mathcal{P}) . Then the problem (\mathcal{P}) has at least one nontrivial weak solution $u \in H^1(\Omega)$ for any given $h \in L^{\infty}(\Omega)$.

References

1. D. Del Santo et P. Omari, Nonresonance conditions on the potential for a semilinear elliptic problem. J. Diff. Equ. pp.

120-138, (1994).

- J.-P. Gossez and P. Omari, A necessary and sufficient condition of nonresonance for a semilinear Neumann problem, Proc. Amer. Math. Soc. Vol. 114, No. 2 (Feb., 1992), pp. 433-442.
- A. Dakkak, A. Anane, Nonresonance Conditions on the Potential for a Neumann Problem, proceedings of the international conference held in Fez, partial differential equations pp. 85-102.
- 4. A. Dakkak, Etude sur le spectre et la résonance pour des problèmes elliptiques de Neumann, Thèse de 3eme cycle, Faculté des sciences, Oujda, Maroc, (1995).
- 5. A. Dakkak , M. Hadda, Eigencurves of the p-Laplacian with weights and their asymptotic behavior EJDE, Vol 2007(2007), No. 35, pp. 1–7.
- A. Dakkak and M. Moussaoui On the second eigencurve for the p-laplacian operator with weight, Bol. Soc. Paran. Mat., (3s.) v. 35 1 (2017): 281289.
- J.-P. Gossez and P. Omari, On a semilinear elliptic Neumann problem with asymmetric nonlinearities. Transactions of Amer. Math. Soc. Volume 347, Number 7, pp. 2553-2562, July 1995.
- 8. A. Anane, Etude des valeurs propres et de la résonance pour l'operateur p-Laplacien , these de Doctorat, Universite Libre de Bruxelles, (1988).
- 9. P.Tolksdorf, Regularity for more general class of quasilinear elliptic equation J.Diff. Eq. 8, (1983), pp. 773–817.