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In this work, we will prove the existence of bounded solutions for the
nonlinear elliptic equations

− div(a(x,u,∇u)) = g(x,u,∇u)− divf ,

in the setting of the weighted Sobolev space W 1,p(Ω,w) where a, g are
Carathéodory functions which satisfy some conditions and f satisfies
suitable summability assumption.

1 Introduction

Let Ω be a regular bounded domain of RN , N > 1 and
let us consider the problem: − div

(
a(x,u,∇u)

)
= g(x,u,∇u)− div f in D′(Ω),

u ∈W 1,p
0 (Ω,w)∩L∞(Ω),

(1)

where −div(a(x,u,∇u)) is a Leray-Lions operator act-
ing fromW

1,p
0 (Ω,w) into its dualW −1,p′ (Ω,w1−p′ ) with

p > 1 and 1
p + 1

p′ = 1, g is a nonlinearity which satis-
fies the growth condition, but it does not satisfy any
sign condition. And f satisfies suitable summability
assumption.

In [1], the authors proved the existence results in
the setting of weighted Sobolev spaces for quasilin-
ear degenerated elliptic problems associated with the
following equation − div

(
a(x,u,∇u)

)
+ g(x,u,∇u) = f ,

where g satisfies the sign condition.
In [2], Benkirane and Bennouna studied L∞ esti-

mates of the solutions in W
1,p
0 (Ω,w) of the problem

− div a(x,u,∇u) − div φ(u) + g(x,u) = f with a non-
uniform elliptic condition, and g satisfies the sign
condition.

In [3], the authors proved the existence of bounded
solutions of the problem − div a(x,u,∇u) = g − div f ,

whose principal part has a degenerate coercivity, in
the setting of weighted Sobolev spaces W 1,p

0 (Ω,w).
The equations like (1) have been studied by many

authors in the non-degenerate case (i.e. with w(x) ≡ 1)
(see, e.g., [4] and the references therein).

The aim of this article is to establish a bounded
solution for the problem (1) based on rearrangement
properties. The results of this work can be considered
as an extension of the results in [4] to the weighted
case.

In order to perform L∞-Estimates, the paper is or-
ganized in the following way. In section 1, we pre-
sented the introduction of the current work. In Sec-
tion 2 we will state some basic knowledge of Sobolev
spaces with weight and properties of the relative re-
arrangement. Finally in Section 3, we will introduce
the essential assumptions, and we will prove our main
result.

2 Preliminary results

2.1 Sobolev spaces with weight

In order to discuss the problem (1), we need some
theories on W 1,p(Ω,w) which is called Sobolev spaces
with weight.
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Firstly we state some basic properties of spaces
W 1,p(Ω,w) which will be used later (for details, see
[5]). Let Ω be an open subset of RN with N ≥ 2, and
1 ≤ p <∞ a real number.

Let w = w(x) be a weighted function which is
measurable and positive function a.e. in Ω. Define

Lp(Ω,w) = {u measurable : uw
1
p ∈ Lp(Ω)}. We shall de-

note by W 1,p(Ω,w) the function space which consists
of all real functions u ∈ Lp(Ω) such that their weak
derivatives ∂u

∂xi
, for all i = 1, . . . ,N (in the sense of dis-

tributions) satisfy ∂u
∂xi
∈ Lp(Ω,w), for all i = 1, . . . ,N .

Endowed with the norm

|||u|||p,w =
(∫

Ω

|u|pdx+
∫
Ω

|∇u|pw(x)dx
) 1
p

, (2)

W 1,p(Ω,w) is a Banach space. Further more, we sup-
pose that

w ∈ L1
loc(Ω), (3)

w−
1
p−1 ∈ L1(Ω), (4)

Due to condition (3), C∞0 (Ω) is a subset of W 1,p(Ω,w).
Since we are dealing with compactness methods to

get solutions of nonlinear elliptic equations, a com-
pact imbedding is necessary. This leads us to suppose
that the weight function w also satisfies

w−q ∈ L1(Ω), where 1 +
1
q
< p and q >

N
p
. (5)

Condition (5) ensures that the imbedding

W
1,p
0 (Ω,w) ↪→ Lp(Ω) (6)

is compact.
Therefore, we denote by W 1,p

0 (Ω,w) the closure of
C∞0 (Ω) with respect to the norm

||u||p,w =
(∫

Ω

|∇u|pw(x)dx
) 1
p

.

We remark that condition (4) implies that W 1,p(Ω,w)
as well as W 1,p

0 (Ω,w) are reflexive Banach spaces if
1 < p <∞.

Let us give the following lemmas which will be
needed later.

Lemma 2.1 (See [1]) Assume that (6) holds. Let F : R→
R be a uniformly Lipschitz function such that F(0) = 0.
Then, F maps W 1,p

0 (Ω,w) into itself. Moreover, if the set
D of discontinuity points of F′ is finite, then

∂(Fou)
∂xi

=
{
F′(u) ∂u∂xi a.e. in {x ∈Ω : u(x) <D},
0 a.e. in {x ∈Ω : u(x) ∈D}.

Lemma 2.2 (See [1]) Let u ∈ Lr (Ω,w) and let un ∈
Lr (Ω,w), with ||un||Lr (Ω,w) ≤ c, 1 < r < ∞. If un → u
a.e. in Ω, then un ⇀ u in Lr (Ω,w), where ⇀ denotes
weak convergence.

2.2 Properties of the relative rearrange-
ment

In this paragraph, we recall some standard nota-
tions and properties about decreasing rearrangements
which will be used throughout this paper.

Let Ω ⊂R
N be a bounded domain, and let v : Ω→

R be a measurable function. If one denotes by |E| the
Lebesgue measure of a set E, one can define the distri-
bution function µv(t) of v as:

µv(t) = |{x ∈Ω : |v(x)| > t}|, t ≥ 0.

The decreasing rearrangement v∗ of v is defined as the
generalized inverse function of µv :

v∗(s) = inf {t ≥ 0 : µv(t) ≤ s}, s ∈ [0, |Ω|].

We recall that v and v∗ are equimeasurable, i.e.,

µv(t) = µv∗(t), t ∈R+.

This implies that for any Borel function ψ, it holds
that ∫

Ω

ψ(v(x))dx =
∫ |Ω|

0
ψ(v∗(s))ds.

In particular,

||v∗||Lp(0,|Ω|) = ||v||Lp(Ω), 1 ≤ p <∞. (7)

and, if v ∈ L∞(Ω),

v∗(0) = ess sup
Ω

|v|.

The theory of rearrangements is well known, and
its exhaustive treatments can be found for example in
[6, 7,8]. Now we recall two notions which allow us to
define a ”generalized” concept of rearrangement of a
function f with respect to a given function v.

Definition 2.1 (See [9]). Let f ∈ L1(Ω) and v ∈ L1(Ω).
We will say that a function f v ∈ L1(0, |Ω|) is a pseudo-
rearrangement of f with respect to v if there exists a fam-
ily {D(s)}s∈(0,|Ω|) of subsets of Ω satisfying the properties:

(i) |D(s)| = s,

(ii) s1 < s2⇒D(s1) ⊂D(s2),

(iii) D(s) = {x ∈Ω : v(x) > t} if s = µv(t),

such that

f v(s) =
d
ds

∫
D(s)

f (x), in D
′
(Ω).

Definition 2.2 (See [10]). Let f ∈ L1(Ω) and v ∈ L1(Ω).
The following limit exists:

lim
λ↘0

(v +λf )∗ − v∗

λ
= f ∗v ,

where the convergence is in Lp(Ω)-weak, if f ∈ Lp(Ω),1 ≤
p <∞, and in L∞(Ω)−weak∗, if f ∈ L∞(Ω). The function
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f ∗v is called the relative rearrangement of f with respect
to v. Moreover, one has

f ∗v (s) =
dG
ds
, in D

′
(Ω),

where

G(s) =
∫
{v>v∗(s)}

f (x)dx+
∫ s−|{v>v∗(s)}|

0
(f |{v=v∗(s)})(σ )dσ.

The two notions are equivalent in some precise
sense (see [6]). For this reason we will denote both f v
and f ∗v by Fv . We only recall a few results which hold
for both the pseudo- and the relative rearrangements.

If f and v are non-negative and v ∈ W 1,1
0 (Ω), it is

possible to prove the following properties:

− d
dt

∫
{v>t}

f (x)dx = Fv(µv(t))(−µ
′
v(t)), for a.e. t > 0; (8)

||Fv ||Lp(0,|Ω|) ≤ ||f ||Lp(Ω), 1 ≤ p <∞. (9)

The proofs of (8) and (9) can be found in [9] (for
pseudo-rearrangements) and in [11, 12] (for relative
rearrangements). We finally recall the following chain
of inequalities which holds for any non-negative v ∈
W

1,p
0 (Ω):

NC1/N
N µv(t)1−1/N ≤ − d

dt

∫
{v>t}
|∇v|dx

≤ (−µ
′
v(t))1/p′

(
− d
dt

∫
{v>t}
|∇v|pdx

)1/p

,

(10)

where CN denotes the measure of the unit ball in
R
N . It is a consequence of the Fleming-Rishel for-

mula [13], the isoperimetric inequality [14] and the
Hölder’s inequality.

3 Assumptions and main results

Let us now give the precise hypotheses on the prob-
lem (1), we assume that the following assumptions: Ω
is a bounded open set of R

N (N > 1 ), 1 < p < +∞,
Let w be a non-negative real valued measurable func-
tion defined on Ω which satisfies (3), (4) and (5). Let
a : Ω×R×RN →R

N be a Carathéodory function, such
that

a(x,s,ξ)ξ ≥ αw(x)|ξ |p, (11)

[a(x,s,ξ)− a(x,s,η)](ξ − η) > 0, (12)

where α is a strictly positive constant and for all
(ξ,η) ∈RN ×RN , with ξ , η.

|a(x,s,ξ)| ≤ βw(x)
1
p (d(x) + |s|p−1 +w(x)

1
p′ |ξ |p−1), (13)

for a.e. x ∈ Ω, all (s,ξ) ∈ R ×RN , some positive func-
tion d(x) ∈ Lp′ (Ω), 1 < p ≤N , and β > 0.

Furthermore, let g(x,s,ξ) : Ω × R × RN → R is a
Carathéodory function which satisfies, for almost ev-
ery x ∈ Ω and for all s ∈ R, ξ ∈ R

N , the following
condition

|g(x,s,ξ)| ≤ b1(x) + b2(x)w(x)|ξ |p, (14)

where b1(x) ∈ Lm(Ω), 1
m < p

N −
1
q , m > 1 and b1(x) ≥ 0

a.e. |b2(x)| ≤ λ a.e. in Ω where λ is a strictly positive
constant.

Finally, the right hand side we assume that

f w−
1
p ∈ (Lmp

′
(Ω))N . (15)

Now, we give the definition of weak solutions of
problem (1).

Definition 3.1 We say that a function u ∈W 1,p
0 (Ω,w)∩

L∞(Ω) is a weak solution of problem (1) if∫
Ω

a(x,u,∇u) ·∇v dx =
∫
Ω

g(x,u,∇u)v dx+
∫
Ω

f ·∇v dx,

(16)
for all v ∈W 1,p

0 (Ω,w)∩L∞(Ω).

Our main results are collected in the following ex-
istence result:

Theorem 3.1 Suppose that the assumptions (3)–(5) and
(11)–(15) hold true. Then there exists at least one weak
solution u ∈W 1,p

0 (Ω,w)∩L∞(Ω) of problem (1).

And in the following theorem

Theorem 3.2 Let u be a solution of (1) and let us assume
that (3)–(5) and (11)–(15) hold true. If b1 and f satisfy
the inequality

(
NC1/N

N

)−p′ (p′
α
||b1||Lm(Ω) +

λp′

αp′+1 ||f ||
p
p−1

(Lmp′ (Ω,w
−1
p ))N

) p′
p

×

× ||w−q ||
1

q(p−1)

L1(Ω)

(
Nγ

q
×
q(p − 1)− 1
pγ −N

)1− 1
q(p−1)

|Ω|
pγ−N
Nγ(p−1)

+
p′

αp′ /pNC1/N
N

||w−q ||
1
qp

L1(Ω)||f ||
1
p−1

(Lmp′ (Ω,w
−1
p ))N
×

×
(
N (pγ − 1)
pγ −N

)1− 1
pγ

|Ω|
pγ−N
Npγ

≤
α(p − 1)
λp′

,

(17)
where 1/γ = 1/m+ 1/q.
Then there exists a constant M > 0, which depends only
on N, p, p′ , q, |Ω|, ||f ||

(Lmp′ (Ω,w
−1
p ))N

, ||w−q ||L1(Ω) and

||b1||Lm(Ω), such that

||u||L∞(Ω) ≤M. (18)

Lemma 3.1 Let u be a solution of (1) and let us assume
that (3)–(5) and (11)–(15) hold true. Define

ϕ =
ek|u| − 1
k

, k =
λp′

α(p − 1)
. (19)
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Then the decreasing rearrangement of ϕ satisfies the fol-
lowing differential inequality:

(−ϕ∗(s))′

≤

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)[(−ϕ∗(s))′]1/p

NC1/N
N s1−1/N

×

×
(∫ s

0
ψ∗(τ)(kϕ∗(τ) + 1)p−1dτ

)1/p

+
kϕ∗(s) + 1

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

)1/p

(20)

Proof. Let us define two real functions φ1(z), φ2(z),
z ∈R, as follows: φ1(z) = ek(p−1)|z| sign(z),

φ2(z) = (ekz−1)
k ,

(21)

where k = λp′

α(p−1) , we observe that φ2(0) = 0 and for
z , 0, φ′1(z) > 0, φ′2(z) > 0,

φ1(z)φ′2(|z|) sign(z) = |φ′2(|z|)|p, (22)

φ′1(z)−
λp′

α
|φ1(z)| = 0. (23)

Furthermore, for t > 0, h > 0, let us put

St,h(z) =


sign(z) if |z| > t + h,

((|z| − t)/h) sign(z) if t < |z| ≤ t + h,
0 if |z| ≤ t.

(24)

We use in (1) the test function v ∈W 1,p
0 (Ω,w)∩L∞(Ω)

defined by

v = φ1(u)St,h(ϕ) = φ1(u)St,h(φ2(|u|)), (25)

where ϕ = ek|u|−1
k . Using (24) we have

1
h

∫
{t<ϕ≤t+h}

a(x,u,∇u)∇uφ1(u)φ′2(|u|)sign (u)dx

−
∫
{ϕ>t}

g(x,u,∇u)φ1(u)St,h(ϕ)dx

+
∫
{ϕ>t}

a(x,u,∇u)∇uφ′1(u)St,h(ϕ)dx

=
∫
{ϕ>t}

N∑
i=1

fi
∂u
∂xi

φ′1(u)St,h(ϕ)dx

+
1
h

∫
{t<ϕ≤t+h}

N∑
i=1

fi
∂u
∂xi

φ1(u)φ′2(|u|)sign (u)dx.

(26)
Taking into account (22) and Young’s inequality, it fol-

lows that

1
h

∫
{t<ϕ≤t+h}

a(x,u,∇u)∇uφ1(u)φ′2(|u|)sign(u)dx

−
∫
{ϕ>t}

g(x,u,∇u)φ1(u)St,h(ϕ)dx

+
∫
{ϕ>t}

a(x,u,∇u)∇uφ′1(u)St,h(ϕ)dx

≤ α
−p′ /p

p′

∫
{ϕ>t}
|f |p

′
w
−p′
p φ′1(u)St,h(ϕ)dx

+
α
p

∫
{ϕ>t}

w(x)|∇u|pφ′1(u)St,h(ϕ)dx

+
α−p

′ /p

p′h

∫
{t<ϕ≤t+h}

|f |p
′
w
−p′
p |φ′2(|u|)|p dx

+
α
ph

∫
{t<ϕ≤t+h}

w(x)|∇u|p |φ′2(|u|)|p dx,

using (14), and the ellipticity condition (11), we ob-
tain

α
h

∫
{t<ϕ≤t+h}

w(x)|∇u|p |φ′2(|u|)|p dx

≤
∫
{ϕ>t}

((
b1(x) + b2(x)w(x)|∇u|p

)
φ1(u)

−αw(x)|∇u|pφ′1(u)
)
St,h(ϕ)dx

+
α−p

′ /p

p′

∫
{ϕ>t}
|f |p

′
w
−p′
p φ′1(u)St,h(ϕ)dx

+
α
p

∫
{ϕ>t}

w(x)|∇u|pφ′1(u)St,h(ϕ)dx

+
α−p

′ /p

p′h

∫
{t<ϕ≤t+h}

|f |p
′
w
−p′
p |φ′2(|u|)|p dx

+
α
ph

∫
{t<ϕ≤t+h}

w(x)|∇u|p |φ′2(|u|)|p dx,

By(23), it follows that

1
h

∫
{t<ϕ≤t+h}

w(x)|∇u|p |φ′2(|u|)|p dx

≤
∫
{ϕ>t}

(
λp′

α
|φ1(u)| −φ′1(u)

)
w(x)|∇u|pSt,h(ϕ)dx

+
∫
{ϕ>t}

(
p′

α
b1(x) +

λp′

αp′+1 |f |
p′w

−p′
p

)
|φ1(u)|St,h(ϕ)dx

+
1

αp′h

∫
{t<ϕ≤t+h}

|f |p
′
w
−p′
p |φ′2(|u|)|p dx.

Using (23) and the definition of φ1, φ2 in (21), the
above inequality gives:

1
h

∫
{t<ϕ≤t+h}

w(x)|∇ϕ|pdx

≤
∫
{ϕ>t}

ψ(kϕ + 1)p−1St,h(ϕ)dx

+
1

αp′h

∫
{t<ϕ≤t+h}

|f |p
′
w
−p′
p (kϕ + 1)pdx

(27)

where ψ = p′

α b1(x) + λp′

αp
′+1 |f |p

′
w
−p′
p .
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Letting h go to 0 in a standard way we get:

− d
dt

∫
{ϕ>t}

w(x)|∇ϕ|p dx ≤
∫
{ϕ>t}

ψ(kϕ + 1)p−1 dx

+
(kt + 1)p

αp′

(
− d
dt

∫
{ϕ>t}

F(x)dx
)
,

with F(x) = |f (x)|p′w
−p′
p (x).

Using Hardy-Littlewood’s inequality and the inequal-
ity (8). It follows that

− d
dt

∫
{ϕ>t}

w(x)|∇ϕ|p dx

≤
∫ µϕ(t)

0
ψ∗(s)(kϕ∗(s) + 1)p−1 ds

+
(kt + 1)p

αp′
(−µ′ϕ(t))Fϕ(µϕ(t)),

(28)

where Fϕ is a pseudo-rearrangement (or the relative
rearrangement) of |f |p′ with respect to ϕ.

On the other hand, thanks to Hölder’s inequality,
we can easily check that

− d
dt

∫
{ϕ>t}
|∇u|dx ≤

(
− d
dt

∫
{ϕ>t}

w(x)|∇u|p dx
) 1
p

×

×
(
− d
dt

∫
{ϕ>t}

w(x)−
1
p−1 dx

)1− 1
p

.

(29)

Since w(x)−
1
p−1 ∈ L1(Ω), we write

− d
dt

∫
{ϕ>t}

w(x)−
1
p−1 dx =

(
w(x)−

1
p−1

)∗
ϕ

(µϕ(t))× (−µ′ϕ(t)),

(30)

for almost every t > 0, where
(
w(x)−

1
p−1

)∗
ϕ

is the rela-

tive rearrangement of w(x)−
1
p−1 with respect to ϕ.

Using the Fleming–Rishel formula (see [8]), we can
write

− d
dt

∫
{ϕ>t}
|∇u|dx ≥NC

1
N
N (µϕ(t))1− 1

N (31)

for almost every t > 0.
Combining (28), (29), (30) and (31), we obtain

NC1/N
N µϕ(t)1−1/N

≤
[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(µϕ(t))(−µ′ϕ(t))1/p′×

×
(∫ µϕ(t)

0
ψ∗(s)(kϕ∗(s) + 1)p−1ds

)1/p

+
kt + 1
αp′ /p

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(µϕ(t))(−µ′ϕ(t))
(
Fϕ(µϕ(t))

)1/p

and then, using the definition of ϕ∗(s), we have:

(−ϕ∗(s))′

≤

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)[(−ϕ∗(s))′]1/p

NC1/N
N s1−1/N

×

×
(∫ s

0
ψ∗(τ)(kϕ∗(τ) + 1)p−1dτ

)1/p

+
kϕ∗(s) + 1

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

)1/p

that is (20).
Proof of Theorem 3.2. By using Young’s inequality

and (20) of Lemma 3.1 implies:

(−ϕ∗(s))′ ≤ 1
p

(−ϕ∗(s))′ +

[(
w(x)−

1
p−1

)∗
ϕ

]
(s)

p′(NC1/N
N s1−1/N )p′

×

×
(∫ s

0
ψ∗(τ)(kϕ∗(τ) + 1)p−1dτ

)p′ /p
+

kϕ∗(s) + 1

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

) 1
p .

We deduce that

(−ϕ∗(s))′ ≤

[(
w(x)−

1
p−1

)∗
ϕ

]
(s)

(NC1/N
N s1−1/N )p′

×

×
(∫ s

0
ψ∗(τ)(kϕ∗(τ) + 1)p−1dτ

)p′ /p
+

p′(kϕ∗(s) + 1)

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

) 1
p .

Integrating between 0 and |Ω|, since ϕ(|Ω|) = 0, we
have

ϕ∗(0) =
∫ |Ω|

0
(−ϕ∗(s))′ds

≤
∫ |Ω|

0

1

(NC1/N
N s1−1/N )p′

[(
w(x)−

1
p−1

)∗
ϕ

]
(s)

(∫ s

0
ψ∗(τ)dτ

)p′ /p
ds×

× (kϕ∗(0) + 1)(p−1)p′ /p

+
∫ |Ω|

0

p′

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

) 1
p ds×

× (kϕ∗(0) + 1).

Since ϕ∗ attains its maximum at 0, we can write

||ϕ||L∞(Ω) ≤ kA||ϕ||L∞(Ω) +A, (32)

where k = λp′

α(p−1) and

A =
∫ |Ω|

0

1

(NC1/N
N s1−1/N )p′

[(
w(x)−

1
p−1

)∗
ϕ

]
(s)

(∫ s

0
ψ∗(τ)dτ

)p′ /p
ds

+
∫ |Ω|

0

p′

αp′ /pNC1/N
N s1−1/N

[(
w(x)−

1
p−1

)∗
ϕ

]1/p′

(s)
(
Fϕ(s)

) 1
p ds

= I + J.
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In order to estimate I , we use the Hölder’s inequality
and (7), obtaining∫ s

0
ψ∗(τ)dτ ≤ ||ψ||Lm(Ω)s

1−1/m

≤ (p
′

α ||b1||Lm(Ω) + λp′

αp
′+1 |||f w

−1
p |p′ ||Lm(Ω))s1−1/m

≤ (p
′

α ||b1||Lm(Ω) + λp′

αp
′+1 ||f ||

p
p−1

(Lmp′ (Ω,w
−1
p ))N

)s1−1/m,

(33)

which we use to get

I ≤
(
NC1/N

N

)−p′ (p′
α
||b1||Lm(Ω) +

λp′

αp′+1 ||f ||
p
p−1

(Lmp′ (Ω,w
−1
p ))N

) p′
p

×
∫ |Ω|

0

(
w(x)−

1
p−1

)∗
ϕ

(s)s
p′
p (1− 1

m )−p′(1− 1
N ) ds.

By (5) one has q(p − 1) > 1, we use again Hölder’s in-
equality to obtain

I ≤
(
NC1/N

N

)−p′ (p′
α
||b1||Lm(Ω) +

λp′

αp′+1 ||f ||
p
p−1

(Lmp′ (Ω,w
−1
p ))N

) p′
p

× ||w−q ||
1

q(p−1)

L1(Ω)

∫ |Ω|
0

t
( p
′
p (1− 1

m )−p′(1− 1
N )) q(p−1)

q(p−1)−1 dt

1− 1
q(p−1)

.

The assumptions on exponents (5) and (14) allow us
to get

I ≤
(
NC1/N

N

)−p′ (p′
α
||b1||Lm(Ω) +

λp′

αp′+1 ||f ||
p
p−1

(Lmp′ (Ω,w
−1
p ))N

) p′
p

× ||w−q ||
1

q(p−1)

L1(Ω)

(
Nγ

q
×
q(p − 1)− 1
pγ −N

)1− 1
q(p−1)

|Ω|
pγ−N
Nγ(p−1) .

(34)
We now turn to estimate J . Since pγ > N > 1, we can
consider the Hölder conjugate exponent η = pγ

pγ−1 . The
conjugate exponent η satisfies the identity

1
qp

+
1
mp

+
1
η

= 1,

so that by Hölder’s inequality we obtain

J ≤
p′

αp′ /pNC1/N
N

||w−q ||
1
qp

L1(Ω)

(∫
Ω

|f |mp
′
w
−m
p−1 dx

) 1
mp

×

×
∫ |Ω|

0
sη( 1

N −1)ds


1
η

.

Then we have

J ≤
p′

αp′ /pNC1/N
N

||w−q ||
1
qp

L1(Ω)||f ||
1
p−1

(Lmp′ (Ω,w
−1
p ))N
×

×
(
N (pγ − 1)
pγ −N

)1− 1
pγ

|Ω|
pγ−N
Npγ .

(35)

Using (34) and (35) we can estimate the quantity A
in (32), Obtaining that under assumption (17) the fol-
lowing inequality holds:

λp′

α(p − 1)
A < 1.

Then (32) implies (18).
Proof of Theorem 3.1.

Let us define for ε > 0 the approximation

gε(x,s,ξ) =
g(x,s,ξ)

1 + ε|g(x,s,ξ)|
.

On note that |gε(x,s,ξ)| ≤ |g(x,s,ξ)|, and |gε(x,s,ξ)| < 1
ε .

we consider the approximate problem − div
(
a(x,uε,∇uε)

)
= gε(x,uε,∇uε)− div f in D′(Ω),

uε ∈W
1,p
0 (Ω,w)∩L∞(Ω).

(36)

Since the operator A − gε : W
1,p
0 (Ω,w) →

W −1,p′ (Ω,w1−p′ ) is bounded, coercive, and pseudo-
monotone operator, where A(u) = − div

(
a(x,u,∇u)

)
,

there exists at least one solution uε ∈ W
1,p
0 (Ω,w) of

the problems (36)(see [15], [16] and in the weighted
case [1]).
Using Stampacchia’s method [17], one can prove that
any solution uε of (36) belongs to L∞(Ω) for fixed ε.
Finally using the L∞ estimate obtained in Theorem
3.2 and working as in [15] and [1], but with obvious
modifications, we obtain Theorem 3.1.

4 References
1. Y. Akdim, E. Azroul, and A. Benkirane, ”Existence results for

quasilinear degenerated equations via strong convergence of
truncations”, - Rev. Mat. Complut. 17:2, 2004, 359–379.

2. A. Benkirane, J. Bennouna, ”Existence of solutions
for nonlinear elliptic degenerate equations”, Nonlinear
Anal.,(2003), 54, 9–37.

3. J. Bennouna, M. Hammoumi and A. Youssfi, ”on
L∞−regularity result for some degenerate nonlinear ellip-
tic equations”, Annales Academiae Scientiarum Fennicae.
Mathematica.,(2014) 39, 873–886.

4. V. Ferone, M. R. Posteraro and J. M. Rakotoson,
”L∞−Estimates for nonlniear elliptic problems with p-
growth in the gradient”,J. of lnequal. and Appl., (1999),
3, 109–125.

5. P. Drabek, A. Kufner, and F. Nicolosi, ”Non linear ellip-
tic equations, singular and degenerate cases”, University of
West Bohemia, Pilsen, 1996.

6. V. Ferone, ”Riordinamenti e applicazioni”, Tesi di Dottorato,
Universit di Napoli, (1990).

7. B. Kawohl, ”Rearrangements and Convexity of Level Sets in
P.D.E.”, Lecture Notes in Math., No. 1150, Springer, Berlin,
New York, (1985).
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