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 Feature extraction is taking a very vital and essential part of bio-signal processing. We 
need to choose one of two paths to identify and select features in any system. The most 
popular track is engineering handcrafted, which mainly depends on the user experience 
and the field of application. While the other path is feature learning, which depends on 
training the system on recognising and picking the best features that match the application. 
The main concept of feature learning is to create a model that is expected to be able to learn 
the best features without any human intervention instead of recourse the traditional 
methods for feature extraction or reduction and avoid dealing with feature extraction that 
depends on researcher experience. In this paper, Auto-Encoder will be utilised as a feature 
learning algorithm to practice the recommended model to excerpt the useful features from 
the surface electromyography signal. Deep learning method will be suggested by using 
Auto-Encoder to learn features. Wavelet Packet, Spectrogram, and Wavelet will be 
employed to represent the surface electromyography signal in our recommended model. 
Then, the newly represented bio-signal will be fed to stacked autoencoder (2 stages) to 
learn features and finally, the behaviour of the proposed algorithm will be estimated by 
hiring different classifiers such as Extreme Learning Machine, Support Vector Machine, 
and SoftMax Layer. The Rectified Linear Unit (ReLU) will be created as an activation 
function for extreme learning machine classifier besides existing functions such as sigmoid 
and radial basis function. ReLU will show a better classification ability than sigmoid and 
Radial basis function (RBF) for wavelet, Wavelet scale 5 and wavelet packet signal 
representations implemented techniques. ReLU will illustrate better classification ability, 
as an activation function, than sigmoid and poorer than RBF for spectrogram signal 
representation. Both confidence interval and Analysis of Variance will be estimated for 
different classifiers. Classifier fusion layer will be implemented to glean the classifier which 
will progress the best accuracies’ values for both testing and training to develop the results. 
Classifier fusion layer brought an encouraging value for both accuracies either training or 
testing ones. 
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1. Introduction  

Supervised learning is widely utilised in various applications. 
However, it is still quite limited method. The majority of 
applications need handcrafted engineering extraction of features 
by implementing different techniques. This means that the 
principal purpose is to represent the bio-signal by applying proper 
feature representation methods. Whenever significant features 

represent bio-signal, classification error should be anticipated to be 
lower than extracting features, which are not genuinely 
representing data. However, the general engineering handcrafted 
representation is still effortful and consumes a long time. 
Moreover, the standard feature extraction algorithm relies on 
researcher's experience. Many proposed feature learning methods 
may be implemented to improve feature representation 
automatically and save both effort and time. The primary 
evaluation of the behaviour of implemented feature learning 
method is the classification error. Deep learning is considered the 
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most common technique to implement feature learning. Rina 
Detcher was the first to introduce the fundamentals for both first 
and second order deep learning [1]. Deep learning is an essential 
division of machine learning that consists of a multilayer. The 
output of each layer is considered as features that will be 
introduced to the following cascaded layer [2]. Artificial neural 
networks use a hidden layer to implement each layer of multilayers 
that construct deep learning [3]. Fig.1 shows a simple architecture 
of deep learning steps. The learning technique is done in a 
hierarchal method starting from the lower layers to the upper ones 
[4]. Deep learning can be used for both supervised and 
unsupervised learning where it learns features from data and 
eliminates any redundancy that might be existing in the 
representation. Unsupervised learning recruitment brings more 
defy than supervised one. Unsupervised learning for deep learning 
was implemented by Neural history compressors [5]and deep 
belief networks[6]. 

 

 

 
 
 
 

Fig.1. Traditional Deep Learning Steps 

This paper is organised by presenting a brief study on previous 
work that has been done on classification finger movement and 
deep learning in different fields, then a review study on 
autoencoder including the main equation for Auto-Encoder will be 
introduced. The surface electromyography will be assimilated by 
Wavelet Packet, Spectrogram and Wavelet. We will compare our 
results by implementing three different classifiers, which will be 
Support vector machine, Extreme learning machine with three 
activation functions and Softmax layer. 

The Analysis of Variance (ANOVA) will be calculated for 
different classifiers in Auto-Encoder deep learning method. Also, 
the confidence interval for Auto-Encoder will be implemented as 
well. At last, each of training and testing accuracy will be 
promoted by concatenating classifier fusion layer.  

2. Previous Work 

In this research, we will suggest a deep learning system that 
will be capable of providing essential features from the input signal 
without recourse to traditional feature extraction and reduction 
algorithms. The suggested system will be talented in assert the ten 
hand finger motions.  The classification of different Finger 
motions was discussed earlier in many published scientific types 
of research. The early pattern recognition for finger movements 
was proposed in [7] where the researchers suggested using neural 
networks in analysing and classifying the introduced EMG pattern. 
They classified both finger movement and joint angle associated 
with moving finger. Later, in [8] the authors investigated and 
optimised configuration between electrode size and its 
arrangement to achieve high classification accuracy. Then, in [9] 
the researchers gave more attention to selecting the extremely 
discriminative features by employing Fuzzy Neighbourhood 
Preserving Analysis (FNPA) where the main purpose of this 
technique is to reduce the distance between the samples that 
belong to the same class and maximise it between samples of 

different classes. In the same year, other researchers explored the 
traditional machine learning well-known algorithm. Where, they 
used time domain features and implemented support vector 
machine, linear discriminate analysis and k-nearest neighbours as 
different classifiers then, they took advantage of   Genetic 
Algorithm to search for redundancy in the used dataset and 
selected features as well [10]. In the same context, authors 
proposed an accurate finger movement classification system by 
extracting time domain-auto regression features, reducing features 
by using orthogonal fuzzy neighbourhood discriminant analysis 
technique and implementing linear discriminant analysis as 
classifier [11]. After that, other researchers suggested an accurate 
pattern recognition system for finger movement by extracting 16-
time domain features to process the Electromyography signal and 
implementing two layers feed forward neural networks as 
classifiers [12]. In contrast, effort and time that are being wasted, 
as mentioned before, in feature extraction and reduction were the 
motivation behind introducing the concept of deep learning. 
Therefore, many researchers published valuable achievements in 
deep learning for the biomedical signal. An extensive review study 
was presented on different types of research that recalled deep 
learning in health field [13]. The common factor in each study was 
the recruitment of neural network to learn features from input bio-
signal. In the same context, researchers proposed a model by using 
convolutional neural networks to convert the information which 
was given by wearable sensor into highly related discriminative 
features [14]. Another research presented a deep learning record 
system that predicted the future medical risk automatically after 
extracting essential features by implementing convolutional neural 
networks [15]. Also, researchers implemented a system that used 
to extract shallow features from wearable sensor devices then the 
features were introduced to convolutional neural networks and 
finally to the classifier layer [16]. Based on the above, we can 
conclude that deep learning is an initial step towards implementing 
self-learning system by using neural networks. In our proposed 
system, we will implement neural networks in the form of two 
stages autoencoder, which read represented bio-signal by either 
spectrogram, wavelet or wavelet packet. We will use different 
classifiers to evaluate our system behaviour. Finally, we will add 
classifier fusion layer, which will follow best local classifier 
methodology. Adding classifier fusion was a promising 
contribution to the accuracies. Moreover, both confidence interval 
and Analysis of Variance will be estimated for different classifiers. 

3. Sparse Auto-Encoder 

An Autoencoder is an extensively used technique to reduce 
dimensions [17]. Sparse autoencoder idea first started in [18]. 
Where it started to reduce the redundancy that may result from 
complex statistical dependencies. Building a neural network and 
train it by using sparse method penalty as mentioned in [19] and 
taking into account the number of hidden nodes in the developed 
neural network, is considered a straightforward factor but as 
crucial as choosing the learning algorithm [20].  

Auto-Encoder is a feed-forward neural network that is used in 
unsupervised learning [21]. The implemented neural network is 
being trained to learn features and produce it as its output rather 
than generating classes in case of recalling the classification ability 
of the hired neural network [22]. The encoder input is the 
represented data while its output is the features learnt by 
autoencoder. The learnt features learnt from the autoencoder will 
be introduced to classifier to be used in the assort of the data into 

*  

Input 
data 

Dividing 
training 

and 
testing 

set  

Learning 
Features 

multilayers 
on training 

set  

Trying 
Testing set  

On trained 
Network 

 

Classifier 

http://www.astesj.com/


M.F.I. Ibrahim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 94-102 (2018) 

www.astesj.com     96 

predefined classes[23]. Lately, autoencoder is commonly 
employed to extract highly expressing features from data. 

Unlabelled data can be used to train an autoencoder where 
training is mainly interested in optimising the cost function. The 
cost function is mainly responsible for estimating the 
miscalculation that may occur in calculating the reconstructed 
copy of input at the output and the input data. 

Assume that we have an input vector 𝑥𝑥 ∈  𝑅𝑅𝐷𝐷𝑥𝑥 . The 
autoencoder maps this input to a new vector 𝑧𝑧 ∈  𝑅𝑅𝐷𝐷(1). 

𝑧𝑧(1) = ℎ(1)(𝑊𝑊(1)𝑥𝑥 + 𝑏𝑏(1))                                            (1) 

Where the superscript (1) represents the first layer of the 
autoencoder. ℎ(1): 𝑅𝑅𝐷𝐷(1) →  𝑅𝑅𝐷𝐷(1) represents the transfer function, 
𝑊𝑊(1) ∈  𝑅𝑅𝐷𝐷(1)  represents the weight matrix, and  𝑏𝑏(1) ∈  𝑅𝑅𝐷𝐷(1) 
represents the bias vector. Then the decoder transfers the encoded 
representation 𝑧𝑧 as a reconstruction of the input 𝑥𝑥 following the 
next equation 

𝑥𝑥� = ℎ(2)(𝑊𝑊(2)𝑥𝑥 + 𝑏𝑏(2))                                               (2) 

Where the upper character (2) signifies the second layer of the 
autoencoder. ℎ(2): 𝑅𝑅𝐷𝐷(2) →  𝑅𝑅𝐷𝐷(2)  accounts for the transfer 
function, 𝑊𝑊(2) ∈  𝑅𝑅𝐷𝐷(2) represents the weight matrix, and  𝑏𝑏(2) ∈
 𝑅𝑅𝐷𝐷(2) represents the bias vector. 

The sparsity term can be introduced to autoencoder by adding 
an adapted cost function in the form of regularisation term. The 
regularisation function is estimated for each neuron 𝑖𝑖 by averaging 
its activation function, which can be expressed as follows  

𝜌𝜌�𝑖𝑖 =  1
𝑛𝑛

 ∑ 𝑧𝑧𝑖𝑖
(1)�𝑥𝑥𝑗𝑗� =  1

𝑛𝑛
𝑛𝑛
𝑗𝑗=1  ∑ ℎ(𝑊𝑊𝑖𝑖

(1)𝑇𝑇𝑥𝑥𝑗𝑗 +𝑛𝑛
𝑗𝑗=1  𝑏𝑏𝑖𝑖

(1))  (3)  

Where 𝑛𝑛  is the number of training samples, 𝑥𝑥𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ 
training sample of input, 𝑊𝑊𝑖𝑖

(1)𝑇𝑇 is the 𝑖𝑖𝑡𝑡ℎ  row of the weight matrix 
transpose of the first layer, and 𝑏𝑏𝑖𝑖

(1)  is the 𝑖𝑖𝑡𝑡ℎ  term of the bias 
vector for the neural network.  The neurone is considered to be 
firing if its output activation function is high and in the case of 
having a low activation value, this means that the neurone is only 
responding to a small number of input samples, which in turn 
encourages the autoencoder to learn. Accordingly, adding a 
limitation term to activation function output 𝜌𝜌�𝑖𝑖  limits every 
neurone to learn from limited features. This motivates the other 
neurones to respond to only another small number of features, 
which initiates every neurone to be responsible for responding to 
individual features for each input.    

Introducing a sparsity regularise value is considered as a 
measure of how far or close is the targeted activation value 𝜌𝜌 from 
the actual activation output function 𝜌𝜌� . Kullback-Leibler 
divergence is a very well know the equation that describes the 
difference between two different distributions. This equation is 
shown as follows: 

Ω𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �𝐾𝐾𝐾𝐾(𝜌𝜌||
𝐷𝐷(1)

𝑖𝑖=1

𝜌𝜌�𝑖𝑖)

=  �𝜌𝜌 log
𝜌𝜌
𝜌𝜌�𝑖𝑖

𝐷𝐷(1)

𝑖𝑖=1

+ (1 − 𝜌𝜌) log(
1 − 𝜌𝜌
1 − 𝜌𝜌�𝑖𝑖

) 

(4) 

The cost function is decreased to initiate the two distributions 
𝜌𝜌�𝑖𝑖  and 𝜌𝜌  to be as close as possible. The cost function can be 
represented by a mean square error equation as follows: 

𝐸𝐸 =
1
𝑁𝑁
��(𝑋𝑋𝑘𝑘𝑘𝑘 + 𝑋𝑋�𝑘𝑘𝑘𝑘)2

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

+ 𝜆𝜆 ∗ Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 +  𝛽𝛽 ∗ Ω𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  

 

 

(5) 

Where L2 regularisation is a term to be added to the cost 
function to regulate and prevent the value of Sparsity 
Regularisation value of being small during the training due to the 
increase that may happen to the values of weights and decrease to 
the value of the mapped vector 𝑧𝑧 

Ω𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 = 1
2

 ∑ ∑ ∑ (𝑤𝑤𝑗𝑗𝑗𝑗
(1))2𝐾𝐾

𝑖𝑖
𝑛𝑛
𝑗𝑗

𝐿𝐿
𝑙𝑙                         (6) 

𝐿𝐿 is the number of hidden layers, 𝑁𝑁 is the number of input data 
samples, and 𝐾𝐾 is the number of classes. 

Autoencoder was hired in many research areas as a feature 
learning layer. Where its primary task, was to learn features from 
input data. A robust study was published to compare between 
many applications for autoencoder in deep learning field [24]. 
Autoencoder was implemented in [25] to learn incremental feature 
learning by introducing an extensive data set to denoising 
autoencoder. Denoising autoencoder provides an extremely robust 
performance against noisy data with a high classification accuracy 
[26, 27]. Another suggested autoencoder was a marginalised 
stacked one which showed a better performance, with high 
dimensional data, than the traditionally stacked autoencoder 
regarding accuracy and simulation time [28]. Denoising stacked 
autoencoder was hired to learn features from unlabeled data in a 
hierarchical behaviour [29] and was applied to filter spam by 
following greedy layer-wise to the implemented denoising stacked 
autoencoder [30]. 

In our proposed model, Auto-Encoder is a feed-forward neural 
network that is used in feature learning. The implemented neural 
network is being trained to learn features and produce it as its 
output rather than generating classes in case of recalling the 
classification ability of the hired neural network. Where, we 
implemented a stack autoencoder, which consists of two 
successive encoder stages. The input to the encoder is the data 
while the output is the features or representations. The classifier 
uses features produced from encoder as an input while; its output 
is the classes equivalent to input data [23]. Fig.2 demonstrates the 
steps that the surface electromyography signal moves through by 
using a sparse autoencoder. 

 

 
Fig.2. Procedures of Sparse Auto-Encoder signal representation 
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In the same context of feature learning, autoencoder will 
generate useful features at the output, rather than producing classes, 
by decreasing the dimension of the input data into a lower 
dimension. However, the new lower dimension data will be dealt 
with our features that contain essential and discriminative 
information on the data, which will help in better classification 
results. Sparse autoencoder enhances us to leverage the availability 
of data. 

4. Bio Signal Representation 

We suggested three signal representations be applied on raw 
biological data to ensure fidelity and precision of our bio signal. 
Moreover, introducing raw data directly to first auto-encoder 
stage resulted in accuracy less than 50%. The first data 
representation was the spectrogram for bio raw signal. The 
spectrogram is interpreted to be the illustration of the spectrum of 
frequencies of our surface electromyography signal in a visible 
method. Numerically, Spectrogram can be estimated by 
calculating the square of the magnitude of Short-Time Fourier 
Transform (STFT). It can be called short-term Fourier transforms 
rather than spectrogram. In short time Fourier transforms, the 
long-time signal is divided into equal length segments and shorter 
in time.  Short time Fourier transforms is relevant to Fourier 
transform. Then, the frequency and phase for each segment to be 
estimated separately. Based on the above, we can deduce that 
spectrogram can be treated as  Fourier transform but for shorter 
segments rather than estimating it from the full long signal at 
once[31]. 

Assume that we have a discrete time signal 𝑥𝑥  with a finite 
duration (limited signal) and a number of samples 𝑁𝑁. The Discrete 
Fourier Transform (DFT) can be expressed as follows: 

𝑥𝑥�(𝑘𝑘) = ∑ 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑖𝑖
2𝜋𝜋𝜋𝜋
𝑁𝑁 𝑛𝑛𝑁𝑁−1

𝑛𝑛=0    , 𝑘𝑘 = 0, … … ,𝑁𝑁 − 1             (7) 

Knowing that the Fourier transform is estimated at frequency 
𝑓𝑓 = 𝑘𝑘

𝑁𝑁
 

The original signal 𝑥𝑥 can be restored back from 𝑥𝑥� by applying 
the inverse Discrete Fourier Transform as follows: 

𝑥𝑥(𝑛𝑛) = 1
𝑁𝑁
∑ 𝑥𝑥�(𝑘𝑘)𝑒𝑒−𝑖𝑖

2𝜋𝜋𝜋𝜋
𝑁𝑁 𝑛𝑛𝑁𝑁−1

𝑘𝑘=0 ,       𝑛𝑛 = 0, … … ,𝑁𝑁 − 1     (8) 

The above-mentioned two equations can be rephrased as 
follows: 

𝑥𝑥 = 1
𝑁𝑁
𝐹𝐹𝑥𝑥�                     (9) 

𝑥𝑥� = 𝐹𝐹�𝑥𝑥                       (10) 

Where 𝐹𝐹 is Fourier matrix of  𝑛𝑛 ∗  𝑛𝑛 dimensions and 𝐹𝐹� is its 
complex conjugate  

𝐹𝐹 =  

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 ⋯ 1

1 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝑁𝑁 𝑒𝑒𝑖𝑖

4𝜋𝜋
𝑁𝑁 ⋯ 𝑒𝑒𝑖𝑖

2𝜋𝜋(𝑁𝑁−1)
𝑁𝑁

1 𝑒𝑒𝑖𝑖
4𝜋𝜋
𝑁𝑁 𝑒𝑒𝑖𝑖

8𝜋𝜋
𝑁𝑁 ⋯ 𝑒𝑒𝑖𝑖

2𝜋𝜋2(𝑁𝑁−1)
𝑁𝑁

⋮ ⋮ ⋮ ⋱ ⋮

1 𝑒𝑒𝑖𝑖
2𝜋𝜋(𝑁𝑁−1)

𝑁𝑁 𝑒𝑒𝑖𝑖
2𝜋𝜋2(𝑁𝑁−1)

𝑁𝑁 ⋯ 𝑒𝑒𝑖𝑖
2𝜋𝜋(𝑁𝑁−1)2

𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

 

(11) 

Where the entries of 𝑥𝑥�  is expressed in terms frequencies 
coefficients  

𝑓𝑓 = 0, 1
𝑁𝑁� , 2

𝑁𝑁� , … … (𝑁𝑁 − 1)
𝑁𝑁   �                   (12) 

 

We need to calculate the spectrogram of the signal. Assume 
that we have a signal 𝑥𝑥  of length𝑁𝑁 , which is divided into 
successive equal segments𝑚𝑚 . Where  𝑚𝑚 < 𝑁𝑁 . The matrix of 
successive equal segments can be expressed as 𝑋𝑋  where 𝑋𝑋 ∈
 𝑅𝑅𝑚𝑚𝑚𝑚(𝑁𝑁−𝑚𝑚+1) . The first column of  𝑋𝑋  matrix equals 
[𝑥𝑥[0], 𝑥𝑥[1], … … . 𝑥𝑥[𝑚𝑚 − 1]]𝑇𝑇  and its second column 
equals[𝑥𝑥[1], 𝑥𝑥[2], … … . 𝑥𝑥[𝑚𝑚]]𝑇𝑇 . The spectrogram for a signal 𝑥𝑥 
with window size 𝑚𝑚 can be annotated 𝑋𝑋� . The columns which are 
composing matrix 𝑋𝑋� is the discrete Fourier transform  

𝑋𝑋� = 𝐹𝐹�𝑋𝑋                    (13) 

𝑋𝑋 = 1
𝑚𝑚
𝐹𝐹𝑋𝑋�                 (14) 

The rows of the matrix 𝑋𝑋� are representing the signal 𝑥𝑥 in the 
time domain while its columns are representing the signal 𝑥𝑥 in the 
frequency domain. So simply spectrogram is a time-frequency 
representation of the signal 𝑥𝑥. 

The spectrogram was used in many applications especially for 
speech signal analysis wherein [32] the authors represented the 
speech signal by different representations like Fourier and 
spectrogram to conclude that the resolution is mainly dependent 
on used representations. In [33] the researchers estimated the time 
corrected version of rapid frequency spectrogram of the speech 
signal which showed a better ability to follow the alterations in 
the bio-signal than other published techniques.  

 The second signal representation used was wavelet of the 
signal. Wavelet is estimated by shifting and scaling small 
segmentations of the bio-signal. Fourier transform is an 
illustration of the signal in a sinusoidal wave by using various 
frequencies while wavelet is the illustration of the abrupt changes 
that happen to the signal. Fourier transform is considered a good 
representation of the signal in case of having a smooth signal. 
While wavelet is believed to be a better representation, than 
Fourier, for the sudden changing signal. Wavelet gives the 
opportunity to represent rapid variations of the signal and help the 
system extract more discriminative features.  We implemented 
Haar wavelet for our proposed model.   

So in brief, a wavelet is an analysis for time series signal that 
has non-stationary power at many frequencies [34]. Assume that 
we have a time series signal 𝑥𝑥𝑛𝑛 with equal time spacing 𝛿𝛿𝛿𝛿 and 
𝑛𝑛 = 0, … …𝑁𝑁 − 1  where the wavelet function is Ψ𝑜𝑜(𝜂𝜂)  that 
depends on time 𝜂𝜂 . The wavelet signal has zero mean and is 
represented in both time and frequency domain [35]. Morlet 
wavelet can be estimated by modulating our time domain signal 
by Gaussian as follows: 

Ψ𝑜𝑜(𝜂𝜂) = 𝜋𝜋
−1
4 𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔𝑜𝑜𝑒𝑒

−𝜂𝜂2
2                          (15) 

Where 𝜔𝜔𝑜𝑜  is the frequency of the unmodulated signal. The 
continuous wavelet of a discrete signal 𝑥𝑥𝑛𝑛 is the convolutional of 
𝑥𝑥𝑛𝑛 with scaled and shifted version of Ψ𝑜𝑜(𝜂𝜂) 

𝑊𝑊𝑛𝑛(𝑠𝑠) = ∑ 𝑥𝑥𝑛𝑛′
𝑁𝑁−1
𝑛𝑛′=0  𝛹𝛹∗ [(𝑛𝑛′−𝑛𝑛)𝛿𝛿𝛿𝛿

𝑠𝑠
]                              (16) 

Where * is the complex conjugate and 𝑠𝑠 is the scale. 
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The wavelet transform was applied in several studies and 
different fields as in [36] where wavelet implemented in 
Geophysics field, in [37, 38] for climate, in [39] for weather, in 
[40]  and many other applications. The above equation can be 
simplified by reducing the number of 𝑁𝑁 . The convolutional 
theorem permits to estimate 𝑁𝑁 convolutional in Fourier domain 
by implementing Discrete Fourier Transform (DFT). The Discrete 
Fourier Transform for 𝑥𝑥𝑛𝑛.  

𝑥𝑥�𝑘𝑘 =  1
𝑁𝑁

 ∑ 𝑥𝑥𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑁𝑁�𝑁𝑁−1
𝑛𝑛=0                                   (17) 

Where 𝑘𝑘 = 0, … . ,𝑁𝑁 − 1  which is representing the 
frequencies. For a continuous signal Ψ(𝑡𝑡 𝑠𝑠� ) is defined as 𝜓𝜓�(𝑠𝑠(𝜔𝜔). 
Based on the convolutional theorem, the inverse Fourier 
transform is equal to wavelet transform as follows: 

𝜓𝜓𝑛𝑛(𝑠𝑠) = ∑ 𝑥𝑥�𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 𝜓𝜓� ∗ (𝑠𝑠𝜔𝜔𝑘𝑘)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛                   (18) 

Where the angular frequency 𝜔𝜔𝑘𝑘 can be expressed as follows: 

 

𝜔𝜔𝑘𝑘 =  �2𝜋𝜋𝜋𝜋
𝑁𝑁𝑁𝑁𝑁𝑁

    ∶ 𝑘𝑘 ≤ 𝑁𝑁
2
  or 

𝜔𝜔𝑘𝑘 =  �
−2𝜋𝜋𝜋𝜋
𝑁𝑁𝑁𝑁𝑁𝑁

    ∶ 𝑘𝑘 >
𝑁𝑁
2

 

(19) 

An improved copy of wavelet algorithm was recalled in [41] 
where the authors presented two techniques. The first one used 
expansion factors for filtering while the other one is factoring 
wavelet transform. The researchers in [42] introduced the Morlet 
wavelet to vibration signal of a machine. The vibration signal of 
the low signal to noise ratio was represented by wavelet to grant 
fidelity to the signal and allow extraction better powerful features.  
This model was implemented in [43] where researchers used 
wavelet transform to predict early malfunction symptoms that 
may happen in the gearbox.   

As a refinement act, we scaled the wavelet signal by five in 
wavelet, which in turn promoted the results as shown in Table I. 
As a comparative study, we utilised wavelet packet for the signal 
representation. The signal can be represented in both time and 
frequency domain simultaneously. This representation gains a 
fidelity to the signal due to its robust representation. Wavelet 
packet is one of the very widely used signal representation that 
produces the signal in both time and frequency domain [44]. The 
wavelet packet shows a very well acted for both nonstationary and 
transient signals [45-47]. Wavelet packet is estimated by a linear 
combination of wavelets. The coefficients of linear combination 
are calculated by recursive algorithm [48]. The wavelet packet 
estimation can be done as follows: 

Assume that we have two wavelets type signal ℎ(𝑛𝑛), 𝑔𝑔(𝑛𝑛) 
and two filters of length 2𝑁𝑁. Let us assume that the following 
sequence of functions is representing wavelet functions. 

 

(𝑊𝑊𝑛𝑛(𝑥𝑥),𝑛𝑛 = 0,1,2, … . . ) 

 

𝑊𝑊2𝑛𝑛(𝑥𝑥) = √2  � ℎ(𝑘𝑘)𝑊𝑊𝑛𝑛

2𝑁𝑁−1

𝑘𝑘=0

(2𝑥𝑥 − 𝑘𝑘) 

 

𝑊𝑊2𝑛𝑛+1(𝑥𝑥) = √2  � 𝑔𝑔(𝑘𝑘)𝑊𝑊𝑛𝑛

2𝑁𝑁−1

𝑘𝑘=0

(2𝑥𝑥 − 𝑘𝑘) 

(20) 

Where 𝑊𝑊0(𝑥𝑥) =  𝜑𝜑(𝑥𝑥)  is the scaling function, 𝑊𝑊1(𝑥𝑥) =
 𝜔𝜔(𝑥𝑥) is the wavelet function. 

𝑁𝑁 = 1, ℎ(0) = ℎ(1) = 1
√2

    and   𝑔𝑔(0) = −𝑔𝑔(1) = 1
√2

 

The above equations became      

𝑊𝑊2𝑛𝑛(𝑥𝑥) =  𝑊𝑊𝑛𝑛(2𝑥𝑥) +  𝑊𝑊𝑛𝑛(2𝑥𝑥 − 1) 

And  

𝑊𝑊2𝑛𝑛+1(𝑥𝑥) =  𝑊𝑊𝑛𝑛(2𝑥𝑥) +  𝑊𝑊𝑛𝑛(2𝑥𝑥 − 1)                (21) 

Where 𝑊𝑊0(𝑥𝑥) =  𝜑𝜑 (𝑥𝑥)  is the scaling function, 𝑊𝑊1(𝑥𝑥) =
 𝜔𝜔(𝑥𝑥) is the Haar wavelet function. 

Many researchers implemented wavelet packet as in [49]. The 
authors used wavelet packet to create an index called rate index to 
detect the damage that may happen to the structure of any beam. 
In the same context authors of [50] employed wavelet packet and 
neural networks to detect a fault in a combustion engine. The 
implemented wavelet packet was six levels for sym10 at sampling 
frequency 2 kHz.  

5. Classifiers 

In the implementation of Auto-Encoder as feature learning 
algorithm, we applied three different classifiers, where the first 
was Softmax layer, the second was Extreme learning machine, 
and the third was Support Vector Machine (SVM). We measured 
the accuracy of Linear support vector machine, Quad support 
vector machine, Cubic support vector machine, Fine Gauss 
support vector machine, Medium Gauss support vector machine 
and Coarse Gauss support vector machine and elected the support 
vector machine classifier that resulted in the highest accurate 
result. Furthermore, the appending of classifier fusion layer to 
nominate best local classifier which in return endorsed the 
accuracy values. Fig.3 shows the block diagram for our 
implemented autoencoder feature learning proposed model 
 

 
 

Fig.3. Scheme of proposed Model 
 

Moreover, ANOVA for autoencoder different classifiers was 
implemented. Where, we assembled average testing accuracies 
for four signal representation techniques (Wavelet, Wavelet 
Scale5, Wavelet Packet and Spectrogram) that resulted in P value 
0.7487. So as wavelet results should not be counted, due to its low 
accuracy values, so, we suggested a second trial which was to 
group average testing accuracies for three signal representing 
techniques (Wavelet Scale5, Wavelet Packet and Spectrogram) 
that resulted in P value 0.3405. Both P values showed that there 
was no sensible variation between any of the implemented three 
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classifiers as P value was higher than 0.05 in both cases. Fig.7 
shows different P values for different classifiers. 

In addition to the above, we estimated the confidence interval 
for each classifier. Our confidence interval was designed for 
confidence score 60%. Our assessed interval was bounded by 
higher and lower limit. In other words, we were confident or 
assured of any new accuracy by percentage 60% as long as it is 
located in the previously estimated interval. 

6. Implementation 

In this part, the data acquisition methods we followed will be 
expressed more extensively, and simulation outcomes will be 
exhibited and discussed. 

6.1. Data Acquisition 

The surface Electromyography signal was read by using 
FlexComp Infiniti™ device. Two sensors were placed on the 
forearm of the participant of type T9503M. The placement of two 
electrodes on participant's forearm is as shown in fig.4 

 
Fig.4. Placement of the electrodes 

The Electromyography signal was collected from nine 
participants. Each participant performed one finger movement for 
five seconds then had a rest for another five seconds. Every finger 
motion was reiterated six times. The same sequence was repeated 
for the second finger activity. Amplification of the signal by 1000 
was applied and a sampling rate of 2000 samples for each second 
was implemented. 

The collected Electromyography signal was used to categorise 
between predefined ten finger motions, as shown in Fig.5 via 
using our suggested model. Three folded cross validation was 
applied on our collected Electromyography signal. Accordingly, 
2/3 of the collected data was assigned to training set while 
remaining 1/3 to be used by testing set.  

 
Our surface electromyography signal was filtered to ensure 

fidelity and removal of any noise that may be inserted into the 
collected bio-signal. The average training or testing accuracy was 
estimated by simulating our proposed model for every subject 
apart then summed the accuracies for all subjects and divided the 
result by the total number of subjects. 

 

 
Fig.5. Targeted Ten different finger motions 

6.2. Results 

We implemented 400 nodes for the first layer of autoencoder 
and 300 nodes for the second one. As for the transfer function of 
the encoder, it was the pure linear type. 

Table I shows autoencoder feature learning testing and 
training accuracy where the bio-signal was presented by 
spectrogram, wavelet, Wavelet scale 5 and wavelet packet. Three 
different classifiers were executed. The first was a SoftMax layer. 
While the second classifier was an extreme learning machine, we 
examined the performance of various activation functions for 
extreme learning machine classifier like sigmoid, the rectified 
linear unit and radial basis function. As that, the third classifier 
was support vector machine. We examined the performance of 
linear support vector machine, quadratic support vector machine, 
cubic support vector machine, fine gauss support vector machine, 
medium gauss support vector machine and coarse gauss support 
vector machine. Then, we selected the highest support vector 
machine that showed better classification ability to be our 
implemented support vector machine.  

Table I. Auto Encoder Testing and Training Accuracy  
Signal 
Representing 

Average 
Training 
Accuracy 

Average 
Testing 
Accuracy 

Classification 
Algorithm  

Simulation 
Time 

Spectrogram 95% 73% SoftMax 
Layer 

830.93 
Seconds 

Spectrogram 95.5% 79.14% ELM 
(Sigmoid) 

379.10 
Seconds 

Spectrogram 95.5% 82.78% ELM 
(ReLU) 

379.54 
Seconds 

Spectrogram 97.237% 83.56% ELM (RBF) 
 

353.756 
Seconds 

Spectrogram 89.48% 77.27% Cubic SVM 1000.409 
Seconds 

Wavelet 91.42% 45.71% SoftMax 
Layer 

210.04 
Seconds 

Wavelet 79.95% 59.88% ELM 
(Sigmoid) 

265.23 
Seconds 

Wavelet 83.62% 64.73% ELM 
(ReLU) 

276.149 
Seconds 

Wavelet 81.98% 62.70% ELM (RBF) 
 

257.83 
Seconds 

Wavelet 70.29% 52.29% Linear SVM 341.57 
Seconds 

Wavelet 
(Scale 5) 98.85% 82.13% SoftMax 

Layer 
668.355 
Seconds 

Wavelet 
(Scale 5) 95.65% 85.416% ELM 

(Sigmoid) 
402.647 
Seconds 

Wavelet 
(Scale 5) 96.98% 86.827% ELM 

(ReLU) 
276.697 
Seconds 

Wavelet 
(Scale 5) 95.59% 85.58% ELM (RBF)  444.067 

Seconds 
Wavelet 
(Scale 5) 96.55% 83.85% Cubic SVM 495.124 

Seconds 
Wavelet 
Packet  98.69% 84.176% SoftMax 

Layer 
429.52 
Seconds 

Wavelet 
Packet 93.3% 86.79% ELM 

(Sigmoid) 
419.27 
Seconds 

Wavelet 
Packet 96.42% 89.41% ELM 

(ReLU) 
419.27 
Seconds 

Wavelet 
Packet 95.59% 87.78% ELM (RBF) 

 
540.22 
Seconds 

Wavelet 
Packet 98.16% 89.707% Quad SVM 579.713 

Seconds  
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outstanding in our application for all signal representation except 
for wavelet packet. Both quadratic support vector machine and 
extreme learning machine, with the rectified linear unit as an 
activation function, showed a very close performance for wavelet 
packet signal representation. Extreme learning machine was 
improved when we replaced sigmoid activation function by 
Radial basis function and the rectified linear unit. The rectified 
linear unit activation function for extreme learning machine 
presented a superior behaviour than radial basis function and 
sigmoid activation functions for wavelet, Wavelet scale 5 and 
wavelet packet. However, the rectified linear unit offered better 
performance than sigmoid and lower accuracy than radial basis 
function for spectrogram. 

Cubic and Quad support vector machine started to result in a 
good testing accuracy for Wavelet scale 5 and wavelet packet 
only. Simulation time for support vector machine is relatively 
longer than other compared classification algorithms. SoftMax 
layer resulted in a very poor classification for wavelet signal 
representation, as the testing accuracy was less than 50%. 
Softmax started to prove its classification ability for Wavelet scale 
5 and wavelet packet. Fig.6 shows different P values for different 
classifiers and Fig.7 shows confidence intervals for each classifier 
where it was calculated twice. The grey bars were calculated for 
different classifiers with three signal representation methods 
(Wavelet Scale5, Wavelet Packet and Spectrogram). While, 
yellow bars calculated for different classifiers with four signal 
representation methods (Wavelet, Wavelet Scale5, Wavelet 
Packet and Spectrogram). The narrowest interval was 2.53% for 
the extreme learning machine. While the widest one was 6.10% 
for support vector machine and softmax layer interval reached 
5.77%. 

 
Fig.6. ANOVA values for different Classifiers 

 

 
Fig.7. Confidence Intervals for used classifiers 

 
We concatenated a layer of classifier fusion after classification 

layer. The function of this added layer is to nominate the best-
implemented classifier based on the outcomes of accuracies 
values. This added classifier fusion layer in return enriched our 
accuracies as displayed in Table II. On the other side, adding 
classifier fusion layer relatively increased the simulation time 
than without fusion layer.  

Table II: Auto Encoder Classifier Fusion Testing and Training Accuracy 
Signal 
Representing 

Average 
Training 
Accuracy 

Average 
Testing 
Accuracy 

Classification 
Algorithm  

Simulation 
Time 

Spectrogram 99.53% 91.05% Classifier 
Fusion 

2118.846 
Seconds 

Wavelet 96.99% 86.80%   Classifier 
Fusion 

745.67 
Seconds 

Wavelet 
(Scale 5) 99.24% 89.02% Classifier 

Fusion 
1378.41 
Seconds 

Wavelet 
Packet  98.70% 92.25% Classifier 

Fusion 
1656.724 
Seconds 

 

7. Conclusion 

Sparse autoencoder is just one hidden layer algorithm. 
Therefore, to establish the concept of deep learning, and take 
advantage of stacking more than a layer, as the testing set 
accuracy was less than 50% for one stage only of the autoencoder, 
we implemented stacked autoencoder that led to verifying deep 
learning concept and enriching the results accuracy. In addition, 
applying some signal representation like calculating spectrogram, 
wavelet and wavelet packet, instead of using raw signal, and 
introducing the output of these signal representation to the first 
stage of autoencoder enhanced the performance of the system. 
Extreme learning machine showed a satisfactory performance on 
the level of testing accuracy and simulation time. Softmax layer 
classification resulted in the most mediocre testing accuracy 
although it consumed longer simulation time than extreme 
learning machine. Support vector machine produced an excellent 
testing accuracy but consumed long simulation time. Applying 
signal representation like Spectrogram, wavelet or wavelet packet 
improved both training and testing accuracy a lot as both 
accuracies were much less than 50% when we fed first stage 
autoencoder by raw data. Multiplying wavelet scale by 5 
enhanced the results a lot. As a conclusion, applying any signal 
representation either in the time domain, frequency domain, or 
both had a good impact on our training and testing accuracies. We 
introduced the rectified linear unit as an activation function for 
extreme learning machine besides already existing functions such 
as radial basis function and sigmoid. The rectified linear unit was 
superior in its testing accuracy than both radial basis function and 
sigmoid one for wavelet, Wavelet scale 5 and wavelet packet 
signal representation. Moreover, it resulted in a lower testing 
accuracy than radial basis function but better than sigmoid for 
spectrogram signal representation.  
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learnt, by itself, the best features suitable for the application under 
examination. In addition, since feature extraction and reduction 
methods varied according to the application so, feature extraction 
and reduction algorithms were not fixed and needed more 
experience. In other words, deep learning system should be 
adaptable to any set of data if the data was accurate and well 
represented. This brought a new challenge on the scene in 
regarding representing the data. The data should be represented in 
a high precision way to expect a good result from implementing 
deep learning technique. 

References 

[1] R. Dechter, "Learning While Searching in Constraint-Satisfaction-
Problems," presented at the Proceedings of the 5th National Conference on 
Artificial Intelligence, Philadelphia, 1986.  

[2] L. Y. Deng, D, "Deep Learning: Methods and Applications," Foundations 
and Trends in Signal Processing, vol. 7, pp. 3-4, 2014. 

[3] Y. Bengio, "Learning Deep Architectures for AI," Foundations and Trends 
in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009. 

[4] Y. C. Bengio, A.; Vincent, P., "Representation Learning: A Review and 
New Perspectives," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. 

[5] J. Schmidhuber., "Learning complex, extended sequences using the 
principle of history compression," Neural Computation, vol. 4, pp. 234–
242, 1992. 

[6] G. E. Hinton, "Deep belief networks," Scholarpedia, vol. 4, no. 5, p. 5947, 
2009. 

[7] A. H. Noriyoshi Uchida, Noboru Sonehara, and Katsunori Shimohara, 
"EMG pattern recognition by neural networks for multi fingers control," 
presented at the Engineering in Medicine and Biology Society, 1992 14th 
Annual International Conference of the IEEE, 1992.  

[8] E. M. a. L. M. Alex Andrews, "Optimal Electrode Configurations for 
Finger Movement Classification using EMG," presented at the 31st Annual 
International Conference of the IEEE EMBS, 2009.  

[9] S. K. Rami N. Khushaba, Dikai Liu, Gamini Dissanayake, 
"Electromyogram (EMG) Based Fingers Movement Recognition Using 
Neighborhood Preserving Analysis with QR-Decomposition," presented at 
the 2011 Seventh International Conference on Intelligent Sensors, Sensor 
Networks and Information Processing (ISSNIP), 2011.  

[10] C. A. a. C. C. Gunter R. Kanitz, "Decoding of Individuated Finger 
Movements Using Surface EMG and Input Optimization Applying a 
Genetic Algorithm," presented at the 33rd Annual International Conference 
of the IEEE EMBS, Boston, Massachusetts USA, 2011.  

[11] G. B. Ali H. Al-Timemy, Javier Escudero and Nicholas Outram, 
"Classification of Finger Movements for the Dexterous Hand Prosthesis 
Control With Surface Electromyography," IEEE JOURNAL OF 
BIOMEDICAL AND HEALTH INFORMATICS, vol. 17, no. 03, pp. 608-
618, 2013. 

[12] W. C. Mochammad Ariyanto, Khusnul A. Mustaqim, Mohamad Irfan, 
Jonny A. Pakpahan, Joga D. Setiawan and Andri R. Winoto, "Finger 
Movement Pattern Recognition Method Using Artificial Neural Network 
Based on Electromyography (EMG) Sensor," presented at the 2015 
International Conference on Automation, Cognitive Science, Optics, Micro 
Electro-Mechanical System, and Information Technology (ICACOMIT), 
Bandung, Indonesia, 2015.  

[13] C. W. Daniele Rav`ı, Fani Deligianni, Melissa Berthelot, Javier Andreu-
Perez, Benny Lo and Guang-Zhong Yang, "Deep Learning for Health 
Informatics," IEEE JOURNAL OF BIOMEDICAL AND HEALTH 
INFORMATICS, vol. 21, no. 1, pp. 4-21, 2016. 

[14] T. K. Julius Hannink, Cristian F. Pasluosta, Karl-G ¨unter Gaßmann, 
Jochen Klucken, and Bjoern M. Eskofier, "Sensor-Based Gait Parameter 
Extraction With Deep Convolutional Neural Networks," IEEE JOURNAL 
OF BIOMEDICAL AND HEALTH INFORMATICS, vol. 21, no. 1, pp. 85-
93, 2016. 

[15] T. T. Phuoc Nguyen, Nilmini Wickramasinghe, and Svetha Venkatesh, 
"Deepr: A Convolutional Net for Medical Records," IEEE JOURNAL OF 
BIOMEDICAL AND HEALTH INFORMATICS, vol. 21, no. 1, pp. 22-30, 
2016. 

[16] C. W. Daniele Rav`ı, Benny Lo, and Guang-Zhong Yang, "A Deep 
Learning Approach to on-Node Sensor Data Analytics for Mobile or 
Wearable Devices," IEEE JOURNAL OF BIOMEDICAL AND HEALTH 
INFORMATICS, vol. 21, no. 1, pp. 56-64, 2016. 

[17] Y. Bengio, "Learning Deep Architectures for AI," in "Foundations and 
Trends in Machine Learning," Universit´e de Montr´eal, Canada2009. 

[18] D. J. F. BRUNO A OLSHAUSEN, "Sparse Coding with an Overcomplete 
Basis Set: Strategy Employed by V1?," Pergamon, vol. 37, no. 23, pp. 
3311-3325, 1997. 

[19] V. a. H. Nair, Geoffrey E, "In Advances in Neural Information Processing 
Systems," presented at the Advances in Neural Information Processing 
Systems, 2009.  

[20] A. a. N. Coates, Andrew, "The importance of encoding versus training with 
sparse coding and vector quantization.," in Proceedings of the 28th 
International Conference on Machine Learning (ICML-11), 2011, pp. 921–
928. 

[21] Cheng-Yuan Liou, Jau-Chi Huang, Wen-Chie Yang, "Modeling word 
perception using the Elman network," Neurocomputing, vol. 71, no. 16-18, 
pp. 3150-3157, 2008. 

[22] C.-Y. Liou, Cheng, C.-W., Liou, J.-W., and Liou, D.-R., "Autoencoder for 
Words," Neurocomputing, vol. 139, pp. 84–96, 2014. 

[23] G. E. H. a. R. R. Salakhutdinov. (2006) Reducing the Dimensionality of 
Data with Neural Networks. SCIENCE.  

[24] F. V. Maryam M Najafabadi, Taghi M Khoshgoftaar, Naeem Seliya, 
Randall WaldEmail author and Edin Muharemagic, "Deep learning 
applications and challenges in big data analytics," Journal of Big Data, vol. 
2, no. 1, pp. 1-21, 2015. 

[25] S. K. a. L. H. Zhou G, "Online incremental feature learning with denoising 
autoencoders," in International Conference on Artificial Intelligence and 
Statistics, 2012, pp. 1453–1461. 

[26] L. H. Vincent P, Bengio Y, and Manzagol Pierre Antoine, "Extracting and 
composing robust features with denoising autoencoders," in 25th 
international conference on Machine learning, Helsinki, Finland, 2008. 

[27] H. L. Pascal Vincent, Isabelle Lajoie, Yoshua Bengio and Pierre-Antoine 
Manzagol "Stacked Denoising Autoencoders: Learning Useful 
Representations in a Deep Network with a Local Denoising Criterion," The 
Journal of Machine Learning Research, vol. 11, no. 3, pp. 3371-3408 2010. 

[28] X. Z. Chen M, Weinberger KQ and Sha F, "Marginalized denoising 
autoencoders for domain adaptation," in 29th International Conference in 
Machine Learning, Edingburgh, Scotland, 2012. 

[29] B. A. a. B. Y. Glorot X, "Domain adaptation for large-scale sentiment 
classification: A deep learning approach," in 28th International Conference 
on Machine Learning 2011, pp. 513–520. 

[30] L. Y. a. F. Weisen, "Application of stacked denoising autoencoder in 
spamming filtering," Journal of Computer Applications, vol. 35, no. 11, pp. 
3256-3260, 2015. 

[31] I. D. Ervin Sejdic, Jin Jiang "Time-frequency feature representation using 
energy concentration: An overview of recent advances," Digital Signal 
Processing, vol. 19, no. 1, pp. 153-183, 2009. 

[32] R. R. Mergu and S. K. Dixit, "Multi-resolution speech spectrogram," 
International Journal of Computer Applications, vol. 15, no. 4, pp. 28-32, 
2011. 

[33] S. A. Fulop and K. Fitz, "Algorithms for computing the time-corrected 
instantaneous frequency (reassigned) spectrogram, with applications," The 
Journal of the Acoustical Society of America, vol. 119, no. 1, pp. 360-371, 
2006. 

[34] I. Daubechies, "The wavelet transform, time-frequency localization and 
signal analysis," Information Theory, vol. 36, no. 5, pp. 961 - 1005, 1990. 

[35] M. Farye, "WAVELET TRANSFORMS AND THEIR APPLICATIONS 
TO TURBULENCE," Fluid Mechanics, vol. 24, pp. 395–457, 1992. 

[36] H. W. a. K.-M. Lau, "Wavelets, Period Doubling, and Time–Frequency 
Localization with Application to Organization of Convection over the 
Tropical Western Pacific," Journal of the Atmospheric Sciences, vol. 51, 
no. 17, pp. 2523–2541., 1994. 

[37] D. G. a. S. G. H. Philander, "Secular Changes of Annual and Interannual 
Variability in the Tropics during the Past Century," Journal of Climate, vol. 
8, pp. 864-876, 1995. 

[38] B. W. a. Y. Wang, "Temporal Structure of the Southern Oscillation as 
Revealed by Waveform and Wavelet Analysis," Journal of Climate, vol. 9, 
pp. 1586-1598, 1996. 

[39] N. Gamage, and W. Blumen, "Comparative analysis of lowlevel cold fronts: 
Wavelet, Fourier, and empirical orthogonal function decompositions," 
Monthly Weather Review, vol. 121, pp. 2867–2878, 1993. 

[40] P. F. Sallie Baliunas, Dmitry Sokoloff and  Willie Soon, "Time scales and 
trends in the central England temperature data (1659–1990)," BrAVELET 
ANALYSIS OF CENTRAL ENGLAND TEMPERATURE vol. 24, pp. 1351-
1354, 1997. 

http://www.astesj.com/


M.F.I. Ibrahim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 94-102 (2018) 

www.astesj.com     102 

[41] A. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, "Wavelet 
transforms that map integers to integers," Applied and computational 
harmonic analysis, vol. 5, no. 3, pp. 332-369, 1998. 

[42] J. Lin and L. Qu, "Feature extraction based on Morlet wavelet and its 
application for mechanical fault diagnosis," Journal of sound and vibration, 
vol. 234, no. 1, pp. 135-148, 2000. 

[43] J. Lin and M. Zuo, "Gearbox fault diagnosis using adaptive wavelet filter," 
Mechanical systems and signal processing, vol. 17, no. 6, pp. 1259-1269, 
2003. 

[44] M. V. Wickerhauser, "INRIA lectures on wavelet packet algorithms," 1991. 
[45] R. P. a. G. Wilson, "Application of 'matched' wavelets to identification of 

metallic transients," in Proceedings of the IEEE-SP International 
Symposium Time-Frequency and Time-Scale Analysis, Victoria, BC, 
Canada, Canada, 1992: IEEE. 

[46] E. S. a. M. Fabio, "The use of the discrete wavelet transform for acoustic 
emission signal processing," in Proceedings of the IEEE–SP International 
Symposium, Victoria, British Columbia, Canada, 1992: IEEE. 

[47] T. P. T. Brotherton, R. Barton, A. Krieger, and L. Marple, "Applications of 
time frequency and time scale analysis to underwater acoustic transients," 
in Proceedings of the IEEE–SP International Symposium, Victoria, British 
Columbia, Canada, 1992: IEEE. 

[48] M. Y. G. a. D. K. Khanduj, "Time Domain Signal Analysis Using Wavelet 
Packet    Decomposition Approach " Int. J. Communications, Network and 
System Sciences, vol. 3, pp. 321-329, 2010. 

[49] J.-G. Han, W.-X. Ren, and Z.-S. Sun, "Wavelet packet based damage 
identification of beam structures," International Journal of Solids and 
Structures, vol. 42, no. 26, pp. 6610-6627, 2005. 

[50] J.-D. Wu and C.-H. Liu, "An expert system for fault diagnosis in internal 
combustion engines using wavelet packet transform and neural network," 
Expert systems with applications, vol. 36, no. 3, pp. 4278-4286, 2009. 

 

http://www.astesj.com/

	2. Previous Work
	3. Sparse Auto-Encoder
	4. Bio Signal Representation
	5. Classifiers
	6. Implementation
	6.1. Data Acquisition
	6.2. Results

	7. Conclusion
	References


