

www.astesj.com 168

Linear algebra as an alternative approach to the synthesis of digital devices of automation and control
systems

Nikolay Chernov1, Nikolay Prokopenko*,2,3, Vladislav Yugai1, Nikolay Butyrlagin2

1Systems of automation control, Southern Federal University, SFedU, Taganrog, 347928, Russia

2Information systems and radioengineering, Don State Technical University, DSTU, Rostov-on-Don, 344000, Russia

3Institute for Design Problems in Microelectronics of Russian Academy of Sciences, IPPM RAS, Zelenograd, 124681, Russia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 18 January, 2018
Accepted: 18 January, 2018
Online: 30 January, 2018

 The article considers linear algebra as an alternative mathematical tool of logic synthesis
of digital structures to Boolean algebra and synthesis methods of digital electronic
component base (ECB) on its ground. The methods of solving the applied problems of logic
synthesis are shown, including the expansion of an arbitrary logic function by means of
monotonic functions. The proposed mathematical apparatus actually provides the creation
of digital structures on the principles of analog circuitry. It can find application in the
design of multivalued digital ECB, specialized system-on-chip and analog-digital sensors
with current output. The examples of synthesis of the combinational and sequential two-
valued and multivalued digital devices are given. In conclusion, the advantages of linear
algebra in comparison with Boolean algebra are formulated.

Keywords :
multivalued component base
multivalued logic
linear logic synthesis

1. Introduction

This article is a continuation of the studies presented at the
conference SIBCON-2017 [1].

Boolean algebra is known [2] as a leading mathematical tool
for logic synthesis of two-valued digital structures. Almost all
existing methods of logic synthesis are formed on its ground. The
success of Boolean algebra is caused, among other things, by the
fact that the Boolean representation of the realized logic function
turned out to be rather technological: the circuit implementation of
logic elements was relatively simple. TTL, C-MOS and ESL and
other technologies occurred to be the most preferable for this
purpose.

Despite this, the history of the development of digital
microelectronics knows the attempts to replace both the approach
to logic synthesis (the use of spectral representations [3 - 6] using
the arithmetic polynomials [7 - 9]) and technological realization
(I2L, I3L, ...).

The most significant contribution to the alternative theory of
logic synthesis has been made by the threshold interpretation of
Boolean algebra, called the threshold logic.

Threshold logic related to one of the directions of synthesis of
the digital structures [10], is constantly evolving. We know a
significant number of publications devoted to this problem [11 –
14]. For two-valued functions, the threshold synthesis problems
have already been solved beginning from the well-known papers
of М. Dertouzos [10]. One of the advanced approaches of synthesis
for the k-valued threshold functions is considered in this article
[11].

The threshold logic was initially implemented in a two-valued
version, but many publications on the multivalued threshold logic
have recently appeared [14 - 17]. Why are they dedicated to the
multivalued logic? The fact is that the multivalued logic is
currently considered as a means of improving the quality
characteristics of LSI (the ratio of “number of elements / number
of links”, “total area / real-estate” of the crystal, etc.), which
doesn’t require a drastic change in LSI technology. The authors of
this article also follow this approach.

To develop this ideology we proposed an alternative approach
to the logic synthesis of digital devices - the replacement of the
mathematical tool of Boolean algebra by another body of
mathematics - linear algebra. Such a replacement entailed
fundamental changes in various aspects of the implementation of
digital structures:

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nikolay Prokopenko, Email: prokopenko@sssu.ru

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj030121

http://www.astesj.com/
mailto:prokopenko@sssu.ru
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030121

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 169

- the potential realization of Boolean logic was replaced by the
current linear implementation;

 - the key operating mode of the elements was replaced by the
linear one;

- Boolean values of the variables took a quantitative form
instead of the qualitative (logic) one;

- the value of logic was determined not by the scheme, but by
the significance of signals;

- the output signal was presented by the difference of signals of
two circuits operating in parallel, which improves the performance
of digital structures.

Thus, the use of linear algebra as a mathematical tool of the
logic synthesis ensured the development of alternative methods for
the logic synthesis of current digital circuits and their practical
implementations.

The authors published a number of papers [18-32] devoted to
the synthesis of logic (nonthreshold) two-valued and multivalued
digital structures. This paper considers the use of linear algebra as
a mathematical tool for the logic synthesis of two-valued and
multivalued, logic and threshold digital structures.

The fuzzy concept of the “threshold synthesis” can be
interpreted in two ways:

- as a normal logic synthesis of digital structures with circuit
implementation on threshold logic elements (any logic function
can be implemented in this way);

- as a logic synthesis of threshold logic functions (an arbitrary
logic function can be implemented by a network of threshold logic
elements).

The purpose of this article is to propose logical and threshold
current hardware components for constructing digital structures
within the two specified areas. Within the framework of this goal,
the authors’ solutions for the following tasks are given below:

- since linear algebra is used as a mathematical tool for the logic
synthesis of current logic structures, the article presents the main
definitions and aspects of the practical use of linear algebra;

- as there is a close relationship between the threshold and
monotonic functions, the article gives a definition of the
monotonic function and explains the ways of representing arbitrary
functions by monotonic linear functions;

- some versions of transformation of two-valued and
multivalued monotonic functions into a threshold form in linear
algebra are analyzed;

- versions of circuit implementation of linear threshold logic
elements are considered.

2. Linear Algebra
А. Definition of linear algebra. Let Р → 〈Р; +, ∙, 0.1〉 – field,

〈А; +, ∙, θ〉 – algebra with two binary operations and one nullary
operation. The system Λ → 〈А; +, ∙, θ, Р〉 is called linear algebra,
if the following conditions are met:

– the system Λ → 〈А; +, ∙, θ, Р〉 – linear (vector) space over the
field Р;

– distributivities of operations + and ∙

∀(a, b, c ∈ A) (a + b)c = ac + bc∧c(a + b) = ca +cb;

– associativities of vector multiplication by elements of the
field Р

∀(a, b ∈ A)∧∀(k ∈ P) k(ab) = (ka)b = a(kb).

В. Extension of linear algebra.

Let А → 〈А; +, ∙, θ〉 – vector space of linear algebra Λ, Р → 〈Р;
Ω = {ωk|k∈P}, 0.1〉 – field of linear algebra Λ, which contains the
operations ωk, which in general case do not necessarily coincide
with the operations of linear space А. Then the system Λ’ → 〈{А;
+, ∙, θ}, {Р; Ω, 0, 1}〉 is called the extension of linear algebra Λ.

When interpreting this algebraic system in a certain way, we
can obtain algebras with different properties. For example,
interpreting A as a set of terms of Boolean functions f(x1,…, xn),
the operations “+” and “·” - as max(x1,…, xn), min(x1,…, xn), we
obtain algebra А →〈А; max, min, θ; P〉. Similarly, leaving the
semantics of operations in the original form (i.e., defining them as
ordinary arithmetic operations), we can consider the reduced
system as linear algebra on the set A of vectors in a linear space.
The reduced algebraic system is considered below in this form.

C. Creation of bases. To form the bases from logic variables,
it is possible to construct different constructions of linearly
independent vectors with given properties. The choice of
operations for creation of the bases is made independently on the
operations of linear space and can be determined by various
(mathematical, circuit, technological and other) requirements. In
the applied plan, this allows obtaining the ideologically unified
(based on operations of linear space) circuit solutions of functional
elements (from different implementations based on field
operations).

A basis is a system of m linearly independent vectors {F} =
{ϕ0, ϕ1,..., ϕm-1}, which enables to describe any vector a ∈ A in the
linear form

𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝜑𝜑𝑖𝑖𝑚𝑚−1
𝑖𝑖=0 , (1)

with respect to these vectors.

Each vector of the basis {F} = {ϕ0, ϕ1,..., ϕm–1} is uniquely
determined by the set of coordinates ϕi = {ϕi0 , ϕi1,..., ϕi,m–1}, with
the help of which we can make a square matrix of order m:

𝐹𝐹 = �

𝜑𝜑10 𝜑𝜑11
𝜑𝜑20 𝜑𝜑21

… 𝜑𝜑1,𝑚𝑚−1
… 𝜑𝜑2,𝑚𝑚−1… …

𝜑𝜑𝑚𝑚−1,0 𝜑𝜑𝑚𝑚−1,1

… …
 … 𝜑𝜑𝑚𝑚−1,𝑚𝑚−1

�,

corresponding to the given basis {F}.

Two bases {𝐹𝐹} = {𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑚𝑚−1} and {𝑌𝑌} =
{𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑚𝑚−1}, the matrices F and Y of which are inverse to each
other, are reciprocal (dual). Besides,

F ⋅ Y = E,

where E − diagonal matrix of order m with εij = 1, when i = j and
εij = 0, if i ≠ j, which is an orthonormal basis {E}.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 170

Since the resolution of an arbitrary vector a over the basis {F}
has the form

a = a0ϕ0 + a1 ϕ1 + ⋅⋅⋅ +am-1 ϕm-1,

then, multiplying both parts of this resolution by γi, i = [0, m−1],
we obtain:

ai = a⋅γi = a⋅(Y⋅εi) = a⋅(F-1⋅εi).

Then the procedure for representing (i.e. obtaining the values
of the expansion coefficients) of the arbitrary vector a in the given
basis {F} is reduced to performing the following operations:

− construction of the basic matrix F;

− construction of the inverse basic matrix F-1;

− multiplication of the row-vector a by the column-vector of
the matrix F-1 and computation of the expansion coefficients of the
vector a over the basis {F};

− writing of the expression for the vector a in the linear form
(1) with respect to the basis {F}.

Example 1. Get a representation of the conjunction operation
of two arguments 𝑥𝑥1&𝑥𝑥2 of the value 2 in the basis

𝐹𝐹 = �
1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
0

�, (𝐹𝐹)−1 = 1
2
�
2
0

−1
 1

−1
−1

−1
 1

0
0

−1
 1

 1
 1

 1
−1

�.

So lu t ion.

а) we represent the sequence of values of the two-valued logic
function by the row-vector

𝑥𝑥1&𝑥𝑥2 = [0, 0, 0, 1];

b) we multiply the resulting row-vector by the columns of the
inverse basic matrix (𝐹𝐹)−1 and obtain the row-vectors of the
expansion coefficients of the represented logic function with
respect to the given basis and the expression of the conjunction
operation

𝑥𝑥1&𝑥𝑥2 = [0, 0, 0, 1] ∙
1
2
�
2
0

−1
 1

−1
−1

−1
 1

0
0

−1
 1

 1
 1

 1
−1

� =

= [0, 0, 0, 1] ∙
1
2

[0, 1, 1,−1] =
𝑥𝑥1 + 𝑥𝑥2 − |𝑥𝑥1 − 𝑥𝑥2|

2
.

It is noteworthy that the last expression has been known since
1953 [3], but the author didn’t describe the method of its obtaining
(more precisely, it was described later).

The authors of this article propose three approaches to the
creation of the basis vectors of linear bases, depending on the
operations used for this purpose:

- based on Boolean operations ∨ , &, ⊕, ∼, etc .;

- based on the truncated difference operation ∸;

- based on the comparison operation ≥.

When using Boolean operations, the upper and lower “cuts”
[14, 18] of variables of different orders are used as operands for
creating basis vectors:

– variables of the first order 𝑥𝑥(𝑖𝑖) = 𝑥𝑥&𝑖𝑖, 𝑥𝑥(𝑖𝑖) = 𝑥𝑥 ∨ 𝑖𝑖;

– variables of the second order

𝑥𝑥(𝑖𝑖𝑖𝑖) = 𝑥𝑥&𝑖𝑖 − 𝑥𝑥&𝑗𝑗, 𝑥𝑥(𝑖𝑖𝑖𝑖) = 𝑥𝑥 ∨ 𝑖𝑖 − 𝑥𝑥 ∨ 𝑗𝑗

and so on.

When using the truncated difference operation

𝑥𝑥1 ∸ 𝑥𝑥2 = �𝑥𝑥1 − 𝑥𝑥2 when 𝑥𝑥1 ≥ 𝑥𝑥2;
 0 when 𝑥𝑥1 < 𝑥𝑥2,

all logical operations are replaced by some combinations of this
operation on variables involving operations of linear space. For
example, the upper and lower “cuts” of the first and second orders
are replaced by the expressions

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = 𝑥𝑥 ∸ (𝑥𝑥 ∸ 𝑖𝑖);

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 + (𝑥𝑥 ∸ 𝑖𝑖) = 𝑥𝑥 + (𝑖𝑖 ∸ 𝑥𝑥);

𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑥𝑥 ∸ 𝑗𝑗) ∸ (𝑥𝑥 ∸ 𝑖𝑖);

𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑖𝑖 − 𝑗𝑗) ∸ (𝑥𝑥 − 𝑗𝑗).

Similarly, Boolean operations on two variables are replaced by
the following expressions:

𝑥𝑥1&𝑥𝑥2 = 𝑥𝑥1
(𝑥𝑥2) = 𝑥𝑥2 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2);

𝑥𝑥1 ∨ 𝑥𝑥2 = 𝑥𝑥1(𝑥𝑥2) = 𝑥𝑥2 + (𝑥𝑥1 ∸ 𝑥𝑥2) = 𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1);

𝑥𝑥1⨁𝑥𝑥2 = 𝑥𝑥1 + 𝑥𝑥2 − 𝑘𝑘{1 ∸ [𝑘𝑘 ∸ (𝑥𝑥1 + 𝑥𝑥2)]};

𝑥𝑥1 ⊖ 𝑥𝑥2 = 𝑥𝑥1 − 𝑥𝑥2 + 𝑘𝑘{1 ∸ [1 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1)]};

and others.

When using the comparison operation, the above expressions
are reduced to the following form

𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑗𝑗);
𝑖𝑖−1

𝑖𝑖=0

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑡𝑡);
𝑖𝑖−𝑖𝑖

𝑡𝑡=𝑖𝑖

𝑥𝑥(𝑖𝑖) = 𝑥𝑥 + �(𝑗𝑗 > 𝑥𝑥)
𝑖𝑖

𝑖𝑖=0

= 𝑖𝑖 + � (𝑥𝑥 > 𝑗𝑗);
𝑘𝑘−2

𝑖𝑖=𝑖𝑖+1

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 171

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = (𝑖𝑖 − 𝑗𝑗) − ∑ (𝑥𝑥 > 𝑡𝑡)𝑖𝑖−1
𝑡𝑡=𝑖𝑖 .

It should be noted that the most interesting result of the studies
is the fact of constructing logical structures based on truncated
difference and comparison operations other than Boolean ones.
Naturally, there are certain dependencies between the truncated
difference and comparison operations, some of which are given
below:

-“truncated difference – comparison”:

𝑥𝑥 ∸ 𝑖𝑖 = � (𝑥𝑥 > 𝑗𝑗);
𝑘𝑘−1

𝑖𝑖=𝑖𝑖+1

𝑖𝑖 ∸ 𝑥𝑥 = �(𝑗𝑗 > 𝑥𝑥);
𝑖𝑖

𝑖𝑖=1

𝑗𝑗 ∸ (𝑥𝑥 ∸ 𝑖𝑖) = �[(𝑖𝑖 + 𝑝𝑝) > 𝑥𝑥];
𝑖𝑖

𝑝𝑝=1

𝑗𝑗 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = (𝑗𝑗 ∸ 𝑖𝑖) + � (𝑥𝑥 > 𝑝𝑝)
𝑖𝑖∸𝑖𝑖

𝑝𝑝=𝑖𝑖−1

;

- “comparison - truncated difference”:

𝑥𝑥 ≤ 𝑖𝑖 = 1 ∸ {1 ∸ [(𝑖𝑖 + 1) ∸ 𝑥𝑥]};

𝑥𝑥 < 𝑖𝑖 = 1 ∸ [1 ∸ (𝑖𝑖 ∸ 𝑥𝑥)];

𝑥𝑥 ≥ 𝑖𝑖 = 1 ∸ [1 ∸ (𝑥𝑥 ∸ 𝑖𝑖)];

𝑥𝑥 > 𝑖𝑖 = 1 ∸ [(𝑖𝑖 + 1) ∸ 𝑥𝑥];

𝑥𝑥1 > 𝑥𝑥2 = 1 ∸ [1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)];

𝑥𝑥1 ≥ 𝑥𝑥2 = 1 ∸ {1 ∸ [(𝑥𝑥1 ∸ 𝑥𝑥2) + 1]};

𝑥𝑥1 < 𝑥𝑥2 = 1 ∸ {1 ∸ [(𝑥𝑥2 ∸ 𝑥𝑥1) + 1]}.

3. Monotonic Logic Functions
Regarding the close connection between threshold and

monotonic functions, we present some known results obtained in
linear algebra in a simpler and more obvious way.

А. Construction of sequences of nondecreasing componentes.
Suppose we have an arbitrary vector 𝑎𝑎 = (𝑎𝑎0, 𝑎𝑎1, , … , 𝑎𝑎𝑚𝑚−1) ∈
𝑍𝑍𝑚𝑚. We renumber the components of the vector with k-ary n-bit
numbers. The vector a∈ Zm is called monotonically increasing
(decreasing), if for a bitwise comparison of k-ary number codes of
the components ai and aj we have:

∀(𝑖𝑖, 𝑗𝑗 ∈ 𝑍𝑍𝑚𝑚)𝑖𝑖 ≥ 𝑗𝑗 ⇒ 𝑎𝑎𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖 ∧ 𝑖𝑖 ≤ 𝑗𝑗 ⇒ 𝑎𝑎𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖. (2)

The bitwise comparison of k-ary number codes of the
components enables to single out the sequences of nondecreasing
(nonincreasing) components.

The necessity to create these sequences is that for the
monotonicity of the vector, condition (2) must be met in each
sequence. Hence follows the first factor of simplicity of the
analysis results in linear algebra: to verify the vector by
monotonicity it is sufficient to establish its monotonicity within
each sequence. This reduces the amount of computation and the
overall complexity of the verification process.

The sequences of nondecreasing components are constructed
as follows. The set G of components (constituents 1) of logic
functions of the chosen number of n variables is divided into n
groups 𝐺𝐺 = {𝑔𝑔0, … ,𝑔𝑔𝑛𝑛−1}. Each group 𝑔𝑔𝑖𝑖𝑡𝑡 includes the sequences
of nondecreasing components with starting numbers t, 𝑖𝑖 ≤ 𝑡𝑡 ≤
𝑛𝑛 − 1, determined by the following relation

𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1 ≤ 𝑗𝑗 ≤ 𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖 − 1,

in this case we take (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1)�
𝑖𝑖=0

= 0. The starting numbers are
component numbers that should be compared with the values of
the other elements in the sequence. Each sequence contains
components with numbers the decimal equivalents of which are
determined as 𝑡𝑡 + 𝑘𝑘𝑡𝑡, 𝑡𝑡 + 𝑘𝑘𝑡𝑡+1, … , 𝑡𝑡 + 𝑘𝑘𝑛𝑛−1. As a result, the entire
sequence generally takes on the form

𝑔𝑔𝑖𝑖𝑡𝑡 = {𝑔𝑔𝑡𝑡 ,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑡𝑡,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑡𝑡+1, … ,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑛𝑛−1}.

Thus, it is possible to construct the sequences of nondecreasing
components for the given values of k and n. The sequence graphs
of nondecreasing components for k = 2, k = 3 and n = 3 are shown
in Figure 1. The digits in the circles denote the decimal numbers
of the vector components, and the sequence itself includes a certain
vertex and the nearest right vertexes connected with it by the lines.

0 4
2
1

6
5
3 7

a

0 9
3
1

18
12
6

10
4

2

21
15
19
13
7

11
5

24

22
16
20
14
8

25

23
17 26

b
Figure 1: Sequence graphs of the nondecreasing components

for k = 2, k = 3 and n = 3.

Example 2. Construct sequences of nondecreasing components
for k = n = 3. Since n = 3, there are 3 groups of sequences with
starting numbers 0, 1 and 2 for the initial data under consideration.

For group “0”, the value of t0 varies in the range

30 − 3−1 ≤ 𝑡𝑡0 ≤ 31 − 30 − 1,

or 0 ≤ 𝑡𝑡0 ≤ 1.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 172

Therefore, this group includes two sequences with the initial
elements t00 = 0 and t01 = 1. The first sequence g00 of the group “0”
contains the elements with numbers t00, t00 + 30 , t00 + 31, t00 + 32

, i.e. 0, 1, 3, 9. The second sequence g01 of the group “0” comprises
the elements with numbers t01 , t01 + 30 , t01 + 31, t01 + 32 , i.e. the
elements with numbers 1, 2, 4, 10.

Similarly, for group 1, the value of t1 is

31 − 30 ≤ 𝑡𝑡1 ≤ 32 − 31 − 1,

or

2 ≤ 𝑡𝑡1 ≤ 5.

Consequently, this group includes sequences with the initial
elements g1t = 2... 5, and each sequence of the group comprises the
elements with numbers t1j, t1j + 31, t1j + 32.

Finally, for group 2, the value of t2 is

32 − 31 ≤ 𝑡𝑡2 ≤ 33 − 32 − 1,

or

6 ≤ 𝑡𝑡2 ≤ 17,

i.e. this group contains sequences with the initial elements g2t = 6
... 17, and each sequence includes the elements with numbers t2j,
t2j + 32. Thus, we obtain the sequence structure of nondecreasing
components in the form shown in Figure. 1b.

The monotonicity property of vectors from Zm enables to obtain
various representations of an arbitrary vector by means of
monotonic vectors. Let’s consider such representations in the
following three variants:

− the difference of two monotonic vectors that have a value
greater than the significance of the represented vector;

− the algebraic sum of monotonic vectors of the same value as
the original vector;

− the algebraic sum of monotonic vectors of the value, the
smaller value of the represented vector.

В. The problem of representing the logic function by the
difference of two monotonic vectors of greater significance is
solved by the following algorithm [18]:

Algorithm 1.

1. i=0. b0 = a0, c0 = b0 − a0;

2. 1≤ i ≤ m – 1.

 𝑏𝑏𝑖𝑖 = � 𝑏𝑏𝑖𝑖−1 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑖𝑖−1
𝑏𝑏𝑖𝑖−1 + 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖−1 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑎𝑎𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖−1

, 𝑐𝑐𝑖𝑖 = 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖;

3. i = m, the end.

Here i and i−1 are neighboring indices of the elements in the
sequence of nondecreasing components, 𝑚𝑚 = 𝑘𝑘𝑛𝑛. The validity of
the algorithm results from the following elementary arguments.

1. Let b0 = a0 , then c0 = b0 − a0 = 0.

2. Let the pair of components aδδ and aγγ satisfies the condition
of monotonicity, i.e. 𝑎𝑎𝛿𝛿 ≤ 𝑎𝑎𝛾𝛾 . In this case

𝑎𝑎𝛿𝛿 − 𝑎𝑎𝛾𝛾 ≥ 0,

and, consequently, from the identity

𝑏𝑏𝛾𝛾 = 𝑏𝑏𝛿𝛿 + 𝑎𝑎𝛾𝛾−𝑎𝑎𝛿𝛿 ,

it follows that

𝑏𝑏𝛾𝛾 ≥ 𝑏𝑏𝛿𝛿,

i.e. 𝑏𝑏𝛾𝛾 also meets the monotonicity condition.

3. If the pair of components a γ and a δ doesn’t fulfill the
condition of monotonicity, i.e. 𝑎𝑎𝛿𝛿 ≥ 𝑎𝑎𝛾𝛾γ , then, taking 𝑏𝑏𝛾𝛾 = 𝑏𝑏𝛿𝛿 we
remain the monotonicity condition for the components of the
vector b again.

Example 3. Construct a representation of the vector a = {0, 1,
1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0} as a difference of two monotonic
vectors for k = 2, n = 4, m = kn = 16.

The sequence of nondecreasing components for this case has
the following form:

Table 1

g Sequences Values of
components

0 0, 1, 2, 4, 8 0, 1, 1, 1, 1

1 1, 3, 5, 9, 1, 0, 0, 0

2 2, 6, 10 1, 0, 1

 3, 7, 11 0, 1, 1

3 4, 12 1, 1

 5, 13 0, 1

 6, 14 0, 1

 7, 15 1, 0

We construct the components of the vectors b and c:

𝑏𝑏0 = 0 𝑐𝑐0 = 0

𝑏𝑏1 = 𝑏𝑏1 + 𝑎𝑎1 − 𝑎𝑎0 = 1 𝑐𝑐1 = 0

𝑏𝑏2 = 𝑏𝑏1 + 𝑎𝑎2 − 𝑎𝑎1 = 1 𝑐𝑐2 = 0

𝑏𝑏3 = 𝑏𝑏1 = 1 𝑐𝑐3 = 1

𝑏𝑏4 = 𝑏𝑏2 + 𝑎𝑎4 − 𝑎𝑎2 = 1 𝑐𝑐4 = 0

𝑏𝑏5 = 𝑏𝑏1 = 1 𝑐𝑐5 = 0

𝑏𝑏6 = 𝑏𝑏2 = 1 𝑐𝑐6 = 1

𝑏𝑏7 = 𝑏𝑏3 + 𝑎𝑎7 − 𝑎𝑎3 = 2 𝑐𝑐7 = 1

𝑏𝑏8 = 𝑏𝑏4 + 𝑎𝑎8 − 𝑎𝑎4 = 1 𝑐𝑐8 = 0

𝑏𝑏9 = 𝑏𝑏5 + 𝑎𝑎9 − 𝑎𝑎5 = 1 𝑐𝑐9 = 1

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 173

𝑏𝑏10 = 𝑏𝑏6 + 𝑎𝑎10 − 𝑎𝑎6 = 2 𝑐𝑐10 = 1

𝑏𝑏11 = 𝑏𝑏7 + 𝑎𝑎11 − 𝑎𝑎7 = 2 𝑐𝑐11 = 1

𝑏𝑏12 = 𝑏𝑏8 + 𝑎𝑎12 − 𝑎𝑎8 = 1 𝑐𝑐12 = 0

𝑏𝑏13 = 𝑏𝑏9 + 𝑎𝑎13 − 𝑎𝑎9 = 2 𝑐𝑐13 = 1

𝑏𝑏14 = 𝑏𝑏6 + 𝑎𝑎14 − 𝑎𝑎6 = 1 𝑐𝑐14 = 1

𝑏𝑏15 = 𝑏𝑏7 = 2 𝑐𝑐15 = 2

The described algorithm demonstrates one more fact, which
confirms the simplicity of analysis in linear algebra.

As it can be seen from the example, when using the described
algorithm in the general case, the value of the original vector does
not coincide with the significance of the resolution vectors.

C. The expansion of the arbitrary logic function of n arguments
into the algebraic sum of monotonic logic functions of the same
value of the following form

𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = (−1)𝑖𝑖 ∑ 𝜑𝜑𝑖𝑖�𝑥𝑥�(𝑛𝑛)�𝑝𝑝
𝑖𝑖=0 ,

where p ≤ kn, 𝜑𝜑𝑖𝑖�𝑥𝑥�(𝑛𝑛)� − monotonic expansion functions with the
property ϕ1 ⊃ ϕ2 ⊃…, are made in accordance with the following
algorithm [18].

Algorithm 2.

1. We choose a minimal summation of the positive summands
of the arithmetic-logical representation of the logic function
𝑓𝑓�𝑥𝑥�(𝑛𝑛)� covering (in the logical sense) all other positive
summands, and combine it by the operation ∨. Thus, we form the
first expansion function 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� . To remain the equality, all
possible logical products of summands from 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� with the
signs defined as (–1)j, where 1 < j < s, s is a number of summands
in 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� , are added to 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� . Then we reduce similar
terms and represent the initial logic function 𝑓𝑓�𝑥𝑥�(𝑛𝑛)� in the
following form 𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� − 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)�, where 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)�
is a remainder of the initial function after reduction of similar
terms.

2. We repeat clause 1 for 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)�. As a result, the initial logic
function is represented in the following form

𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� − 𝜑𝜑2�𝑥𝑥�(𝑛𝑛)� + 𝑓𝑓2�𝑥𝑥�(𝑛𝑛)�.

3. We repeat clause 2 until the remainder of the initial logic
function becomes zero.

Since the number of arguments of the logic function is n, and
the violation of monotonicity is possible in each of the k values of
each argument, then, the maximum number of the expansion
functions doesn’t exceed 2n(k–1).

The process convergence follows from the fact that each
successive resolution vector eliminates some violation of
monotonicity in the original vector and doesn’t introduce new
monotonicity violations, since it is monotonic itself.

The problem of representing the arbitrary logic function by the
algebraic sum of monotonic functions of the same value can be

solved analytically. As is known [13], the minimal disjunctive
normal form (DNF) of the monotonic logic function doesn’t
contain inversions over variables. Consequently, the given logic
function must be reduced to the representation in the form of the
algebraic sum of such functions. To do this, we must perform the
following actions:

− conversion of the Boolean expression of the logic function
into the linear one using the following identities

𝑥𝑥1 ∨ 𝑥𝑥2 = 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥1𝑥𝑥2;

�̅�𝑥 = 1 − 𝑥𝑥;

– inverse transformation to the given (that doesn’t contain
inversions over variables) form.

Example 4. Obtain the two-valued logic function mapping of
three arguments

𝑓𝑓�𝑥𝑥�(3)� = (0,1,1,0,1,0,0,1),

into the algebraic sum of monotonic logic functions.

Solution. The logic function is represented by a vector of
values. Its linear representation has the following form

𝑓𝑓�𝑥𝑥�(3)� = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 − 2𝑥𝑥1𝑥𝑥2 − 2𝑥𝑥1𝑥𝑥3 − 2𝑥𝑥2𝑥𝑥3 +
4𝑥𝑥1𝑥𝑥2𝑥𝑥3.

Now we obtain the mapping of this function into the algebraic
sum of monotonic functions. The first expansion function is
formed from the first three summands, covering in aggregate all
the remaining positive terms of sum:

𝑓𝑓�𝑥𝑥�(3)� = (𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 − 𝑥𝑥1𝑥𝑥2𝑥𝑥3) −

−2𝑥𝑥1𝑥𝑥2 − 2𝑥𝑥1𝑥𝑥3 − 2𝑥𝑥2𝑥𝑥3 − 4𝑥𝑥1𝑥𝑥2𝑥𝑥3 =

= 𝜑𝜑1(𝑥𝑥�3) − 𝑥𝑥1𝑥𝑥2 − 𝑥𝑥1𝑥𝑥3 − 𝑥𝑥2𝑥𝑥3 + 3𝑥𝑥1𝑥𝑥2𝑥𝑥3.

The subsequent expansion functions are obtained in the same
way:

𝑓𝑓�𝑥𝑥�(3)� = 𝜑𝜑1�𝑥𝑥�(3)� − (𝑥𝑥1𝑥𝑥2 ∨ 𝑥𝑥1𝑥𝑥3 ∨ 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 +

+𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 − 𝑥𝑥1𝑥𝑥2𝑥𝑥3) + 3𝑥𝑥1𝑥𝑥2𝑥𝑥3 =

= 𝜑𝜑1�𝑥𝑥�(3)� − 𝜑𝜑2�𝑥𝑥�(3)� + 𝜑𝜑3�𝑥𝑥�(3)�.

To obtain the threshold representation of the initial function, it
suffices to transform the monotonic functions of the resulting
expansion into the threshold form and to perform their algebraic
addition.

Each conjunctive term of any logical expansion function is
transformed into the threshold form in accordance with the
following identical equation

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 … 𝑥𝑥𝑠𝑠 = 𝑃𝑃��𝑥𝑥𝑖𝑖+𝑥𝑥𝑖𝑖 + ⋯+𝑥𝑥𝑠𝑠� > 𝑡𝑡 − 1�,

where t - a number of arguments in the term, P - the predicate
symbol. Then all the terms are reduced to the common value of the
right-hand side with the introduction of the corresponding

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 174

coefficients for the variables, then they are added together and the
threshold value of the received sum is determined.

Let’s explain the transformation of the monotonic logic
function into the threshold form with the function from the
previous example.

With the transformation of 𝜑𝜑1�𝑥𝑥�(3)� everything is simple:

𝜑𝜑1�𝑥𝑥�(3)� = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 = 𝑃𝑃1[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 0];

The transformation of 𝜑𝜑2�𝑥𝑥�(3)� looks somewhat more
complicated:

𝜑𝜑2�𝑥𝑥�(3)� = 𝑥𝑥1𝑥𝑥2 ∨ 𝑥𝑥1𝑥𝑥3 ∨ 𝑥𝑥2𝑥𝑥3 =

= 𝑃𝑃2[(𝑥𝑥1 + 𝑥𝑥2) > 1 + (𝑥𝑥1 + 𝑥𝑥3) > 1 + (𝑥𝑥2 + 𝑥𝑥3) > 1] =

𝑃𝑃2[(2𝑥𝑥1 + 2𝑥𝑥2 + 2𝑥𝑥3) > 2] = 𝑃𝑃2[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 1];

The transformation of 𝜑𝜑3�𝑥𝑥�(3)� is produced just as easily as
𝜑𝜑1�𝑥𝑥�(3)�:

𝜑𝜑3�𝑥𝑥�(3)� = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 = 𝑃𝑃3[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 2].

Thus, to realize the considered logic function, three threshold
logic elements are required. The simplicity of the transformations
in linear algebra becomes obvious.

D. Representation of the arbitrary vector by the vectors of
lower significance. This problem has many solutions. The variant
considered below assumes the solution of this problem in two
stages:

- obtaining a representation of the arbitrary vector from Zm by
the vectors of lower significance;

- transformation of the obtained representation into the
representation by means of monotonic vectors.

Let us first consider the solution of the first stage of the
problem. The representation of the arbitrary vector by the lower-
valued vectors can be obtained by weighting (each resolution
vector is included into the final representation with some weight
coefficient) or unitary (each resolution vector is included into the
final representation with a unitary weight coefficient) coding.

1. It is known from the theory of numbers [33] that any number
a can be uniquely represented in the following form:

∑ 𝑎𝑎𝑠𝑠−𝑖𝑖𝑘𝑘𝑠𝑠−𝑖𝑖𝑠𝑠
1 , (3)

where s = [logk a] − the closest integer to logk a, as-i − the values of
the expansion coefficients of the number a in the k-valued number
system. Due to the uniqueness, this relation determines the
isomorphism between any number a and the described
representation of this number.

The quantity аs–i can be determined from the following
relation:

𝑎𝑎𝑠𝑠−𝑖𝑖 = 𝑎𝑎 �𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑠𝑠−𝑖𝑖+1�−𝑎𝑎 �𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑠𝑠−𝑖𝑖�
𝑘𝑘𝑠𝑠−𝑖𝑖

.

This operation is linear

𝑎𝑎 + 𝑏𝑏 = �𝑎𝑎𝑠𝑠−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑘𝑘𝑠𝑠−𝑖𝑖 + �𝑏𝑏𝑠𝑠−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑘𝑘𝑠𝑠−𝑖𝑖 =

= ∑ (𝑎𝑎𝑠𝑠−𝑖𝑖 + 𝑏𝑏𝑠𝑠−𝑖𝑖)𝑠𝑠
𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖;

𝜆𝜆𝑎𝑎 = ∑ 𝜆𝜆𝑎𝑎𝑠𝑠−𝑖𝑖𝑠𝑠
𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖 = 𝜆𝜆∑ 𝑎𝑎𝑠𝑠−𝑖𝑖𝑠𝑠

𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖,

thus, it is applicable to the vectors of the linear space. If now we
associate the vector a to the number a in the linear space Zm, and
the weighted sums of the vectors as−i of the spaces 𝐾𝐾1𝑚𝑚 and 𝐾𝐾2𝑚𝑚 to
the weighted sums ∑ 𝑎𝑎𝑠𝑠1−𝑖𝑖

𝑠𝑠1
𝑖𝑖=1 𝑘𝑘𝑠𝑠1−𝑖𝑖 and ∑ 𝑎𝑎𝑠𝑠2−𝑖𝑖

𝑠𝑠2
𝑖𝑖=1 𝑘𝑘𝑠𝑠2−𝑖𝑖

correspondingly, then the expression (3) is equivalent to the
representation of the vector а ∈ Zm by the weighted sum of the
vectors from 𝐾𝐾1𝑚𝑚 or 𝐾𝐾2𝑚𝑚 respectively. Since in both spaces the
vector a is uniquely represented, both representations are
isomorphic. Let’s call such a representation by coding, and the
corresponding linear operator - by the encoding operator.

Let the vector а ∈ Zm in the canonical basis be represented as

𝑎𝑎 = 𝑎𝑎1𝑒𝑒1 + 𝑎𝑎2𝑒𝑒2 + ⋯+ 𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚.

Using expression (3), we expand each coordinate of the vector
a with respect to the bases k1 and k2. As a result, we obtain its
representation in the following form

𝑎𝑎𝑖𝑖 = �𝑎𝑎𝑖𝑖,𝑠𝑠1−𝑖𝑖

𝑠𝑠1

𝑖𝑖=1

𝑘𝑘1
𝑠𝑠1−𝑖𝑖 ,

or

𝑎𝑎𝑖𝑖 = �𝑎𝑎𝑖𝑖,𝑠𝑠2−𝑖𝑖

𝑠𝑠2

𝑖𝑖=1

𝑘𝑘2
𝑠𝑠2−𝑖𝑖,

where ai,s-i − the expansion components of the number ai (i − е
vector components ai of the vector representation a).

Then the vector representation a in each of the spaces can be
described in the following form

𝑎𝑎 = �𝑎𝑎1,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎1,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + ⋯+ 𝑎𝑎1,0𝑘𝑘0� +

+�𝑎𝑎2,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎2,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + ⋯+ 𝑎𝑎2,0𝑘𝑘0� + ⋯

+ �𝑎𝑎𝑚𝑚,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎𝑚𝑚,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + +𝑎𝑎𝑚𝑚,0𝑘𝑘0�,

or

𝑎𝑎 = �𝑎𝑎1,𝑠𝑠−1 + 𝑎𝑎2,𝑠𝑠−1 + ⋯+ 𝑎𝑎𝑚𝑚,𝑠𝑠−1�𝑘𝑘𝑠𝑠−1 +

+�𝑎𝑎1,𝑠𝑠−2 + 𝑎𝑎2,𝑠𝑠−2 + ⋯+ 𝑎𝑎𝑚𝑚,𝑠𝑠−2�𝑘𝑘𝑠𝑠−2 + ⋯

+�𝑎𝑎1,0 + 𝑎𝑎2,0 + ⋯+ 𝑎𝑎𝑚𝑚,0�𝑘𝑘0.

Thus, the arbitrary vector a can be written in the following form

𝑎𝑎 = ���𝑎𝑎𝑖𝑖,𝑠𝑠−𝑖𝑖

𝑚𝑚

𝑖𝑖=1

� 𝑘𝑘𝑠𝑠−𝑖𝑖
𝑠𝑠

𝑖𝑖=1

,

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 175

i.e. а is represented by the weighted sum s of the vectors from 𝐾𝐾1𝑚𝑚
or 𝐾𝐾2𝑚𝑚

Example 5. Let k1 = 10, n = 1. The problem is to represent the
vector a = {0, 1, 3, 9, 7, 6, 9, 4, 3, 8} by its k2-weighted and k2-
unitary sums of the vectors when k2 = 3.

Solution. Since �𝑙𝑙𝑙𝑙𝑔𝑔𝑘𝑘2𝑘𝑘1� = ⌈𝑙𝑙𝑙𝑙𝑔𝑔310⌉ = 2, then the vector a
can be represented by the weighted sum of three vectors а2, а1 and
а0. The coordinates of the highest weight vector а2 are determined
as

𝑎𝑎2 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚33 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚32

32
=

=
(0139769348) − (0130760438)

9
= (0001001000).

The components of the subsequent vectors а1 and а0 are

determined similarly:

𝑎𝑎1 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚32 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚31

31
=

=
(0130760348) − (0100100102)

3
= (0010220112);

𝑎𝑎0 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚31 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚30

30
=

=
(0100100102) − (0000000000)

1
= (0100100102).

Thus,

𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖3𝑖𝑖3
0 = (0001001000)32 + (0010220112)31 +

(0100100102)30.
 2. We now represent the arbitrary number a as follows:

𝑎𝑎 = ∑ (𝑎𝑎 − ∑ 𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖=0)𝑠𝑠−1

𝑖𝑖=0 &(𝑘𝑘2 − 1), (4)

where s - the nearest larger integer

𝑠𝑠 = �𝑘𝑘1−1
𝑘𝑘2−1

�.

For the reasons stated above, this representation is also an
isomorphism.

If we associate each coordinate of the vector a with its
representation in form (4), we obtain:

𝑎𝑎 = �𝑎𝑎1&(𝑘𝑘2 − 1) + �𝑎𝑎1 − 𝑎𝑎11&(𝑘𝑘2 − 1)� +⋯+ 𝑎𝑎1 −�𝑎𝑎1𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1) +

+ �𝑎𝑎2&(𝑘𝑘2 − 1) + �𝑎𝑎2 − 𝑎𝑎21&(𝑘𝑘2 − 1)�+ ⋯+ 𝑎𝑎2 −�𝑎𝑎2𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1) + ⋯

+ �𝑎𝑎𝑚𝑚&(𝑘𝑘2 − 1) + �𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑚𝑚1&(𝑘𝑘2 − 1)�+ ⋯+ 𝑎𝑎𝑚𝑚 −�𝑎𝑎𝑚𝑚𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1).

Thus,

𝑎𝑎 = �𝑎𝑎𝑖𝑖 ,
𝑠𝑠−1

0

where 𝑎𝑎𝑖𝑖 = (𝑎𝑎 − ∑ 𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖+1)&(𝑘𝑘2 − 1), i.e. the arbitrary vector а ∈

Zm is represented by the k2-unitary sum of vectors from Zm.

Example 6. Present the original vector from the previous
example using unitary coding.

Solution. Since under the same initial conditions 𝑠𝑠 = �10−1
3−1

� =
4, the vector a can be represented by the unitary sum of five vectors
а4, а3, а2, а1 and а0, where

𝑎𝑎4 = 𝑎𝑎&(3 − 1) = (0139769438)&(3 − 1) =
(0122222222);

𝑎𝑎3 = (𝑎𝑎 − 𝑎𝑎4)&(3 − 1) = (0012222212);

𝑎𝑎2 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3)&(3 − 1) = (0002222002);

𝑎𝑎1 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3 − 𝑎𝑎2)&(3 − 1) = [0002102002];

𝑎𝑎0 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3 − 𝑎𝑎2 − 𝑎𝑎1)&(3 − 1) =

= [0001001000].

Thus,

𝑎𝑎 = �𝑎𝑎𝑖𝑖

3

0

= (0122222222) + (0012222212) +

+(0002222002) + (0002102002) +

+0001001000.

The solution of the second stage of the problem, i.e. the
transformation of the obtained representation into the
representation by means of monotonic lower-valued vectors, can
be obtained on the base of algorithm 2.

Thus, the body of the linear space theory determines easy-to-
use means of representing arbitrary vectors of any given value by
monotonic vectors of greater, similar or lesser significance, and
also converting monotonic functions to the threshold form.

4. Synthesis of Logic and Threshold Elements
In linear algebra, the logic function is represented by a

weighted algebraic sum of terms. As a whole the variables, terms
and function take values from the set of numbers 0, 1, ..., k - 1. The
algebraic sum is realized by operations of the linear space, and
individual terms - depending on the choice made - by other
operations chosen for technical, technological or operational
reasons. In this article, “Truncated Difference” and
“Comparison” are used as such operations. In the future, the
developers of linear LSIs can be motivated to choose other
operations. Thus, the process and the possibilities of logic
synthesis will be further demonstrated on the bases based on the
truncated difference and comparison operations.

To solve the problems of logic synthesis in linear algebra, first,
it is necessary to solve the problem of the formation of bases.

In Boolean algebra, 17 previously defined functionally
complete systems of logic functions of two arguments are known
[34]. Selecting any of them, you can get its linear analog and

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 176

perform a logic synthesis of the circuit that implements the given
logic function according to the established algorithm. Therefore, it
is possible to construct bases as a mapping of Boolean functionally
complete systems to a linear space. For truncated difference and
comparison operations, the bases can be formed directly.

To form the bases, we need:

- a set of operations;

- a set of generating functions.

The following operation are considered as the basic ones:

- logical operations in their traditional understanding;

- operation “truncated difference”;

- operation “comparison”.

Constants 1, logical variables 1x , 2x , …, nx and their totals
subjected to the effect of basic operations are used as generators
for the formation of bases.

The following methods of logic synthesis of digital structures
are considered:

- direct synthesis in a given basis (logic synthesis in the linear
space);

- synthesis with preliminary transformation of the value of the
given function (for example, a multivalued two-digit
implementation);

- synthesis with preliminary expansion of the given function
into the algebraic sum of monotonic functions (threshold
synthesis).

The first method is the most obvious and consists in the
representation of the realized logic function in the chosen basis.

The second method presupposes a preliminary representation
of the realized function in the form of an algebraic sum of logic
functions larger, smaller or equal to the original value. The
methods of this transformation have been described in the previous
section.

Finally, the third method consists of the preliminary
representation of the realized function by the algebraic sum of
monotonic logic functions. In this case, each monotonic function
is realized by a single threshold element.

Note that the synthesis of digital structures with increasing of
their complexity, as usual, requires the involvement of methods of
system engineering.

A. Basic operations of logic synthesis. The set of operations
most often used to represent logic functions will be considered as
basic operations of logic synthesis. In Boolean algebra, such
operations can be considered as operations of the basic functional
system AND (&), OR (˅), (̅), and also the operations “modulo 2
sum” (⊕), “logic equivalence” (~) “dual stroke” (↓), “Sheffer
stroke” (|), “prohibition with respect to х1 (х2)” (𝑥𝑥1�̅�𝑥2) ,
“implication from х1 to х2)” (𝑥𝑥1 ∨ �̅�𝑥2), majority operation 𝑥𝑥1 ⋕
𝑥𝑥2 ⋕ 𝑥𝑥3.

By basic operations of linear algebra we mean arithmetic
operations (operations of the linear space), as well as operations
used to form bases. We classify the current realizations of logical
operations: the difference module, the truncated difference, the

arithmetic sum and the difference, the multiplication by a constant
coefficient, the operations of changing the sign to them. Perhaps
there are other arithmetic operations suitable for the use in linear
logic synthesis, but they are not considered in this article.

Since our task is logic synthesis in linear algebra, we start with
the logic synthesis of basic operations of linear algebra.

Algebraic sum. The operation is realized by the assembly
connection of conductors, over which the currents flow. The
conditional graphic representation of the operation of the algebraic
sum is shown in Figure 2.

 I0

I1

I0-I1

I0 > I1

 I0

I1

I1-I0

I0 < I1

Figure 2: Conditional graphical representation of the algebraic addition of

currents.

The arithmetic sum differs from the algebraic one in that in the
latter case the signals of only one sign (i.e. only inflowing or only
flowing out) are fed to the input of the element. From the output,
the sum of the signals is removed. The positive direction of the
input currents is the current direction to the connection point Σ1,
i.e. the positive current flowing into the connection point. The
negative direction of the input currents is the direction of the
current from the connection point of the conductors Σ1, i.e.
negative - the current flowing from the connection point. For the
output (resulting) current, the positive direction is the direction
from the connection point Σ1, and the negative direction - to the
connection point Σ1,

The number of positive and negative inputs is determined by
the function being implemented. Since the logical variables take
values from the positive semi-axis of the numerical axis, when
subtracting, it is necessary to meet the condition that the total sum
of the negative summands (current quanta) doesn’t exceed the total
sum of the positive terms of the sum. Otherwise, instead of the
algebraic sum, the truncated difference operation is performed, in
which the subtraction from zero is a logical component of this
operation and which carries the meaning of the comparison
operation with zero (Figure 3)

 _.x1

-x2

-y -y
-x2

_.

Figure 3: Conditional graphic representation of the truncated difference operation.

The operation of multiplying (dividing) by a constant
coefficient consists in multiplying the input signal by several
outputs and then combining the outputs of the multiplied signal
(when multiplying) or outputting some part of the input signal
(when dividing), as shown in Figure 4.

The comparison operation is used to determine the relationship
between the compared variables. It can be performed in two forms:
in the relative form, i.e. in the form of determining the difference
in the values of the variables, or in the absolute form, i.e. in the
form of the “more-less” comparison itself. The conditional graphic

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 177

symbols of the comparison elements in these forms are shown in
Figure 5.

x

-y

y-x

а

-x y

-yx

b

Figure 4: Conditional graphic representation of the operation of
multiplication (a) and division (b).

-x1

-x2

-y
 x1

x2

y

а

-x2

y−
 x1

x2

y
-x1

b

Figure 5: Conditional graphic representation of the comparison operation:
relative (a) and absolute (b).

The operation of changing the sign of terms allows changing
the sign of the term, thereby transforming it from the summand to
the subtrahend and vice versa. It is performed by the current
inverter, the conditional graphic representation of which is shown
in Figure 6.

x -y -x y

1 1

а b

Figure 6: Conditional graphic representation of the operation of changing the sign.

The operation of changing the sign can functionally be
combined with the operations of multiplication and division by the
constant coefficient.

B. Formation of bases. The bases being formed are bases of the
linear space, and according to the form they are sets of variables
and their various combinations (terms) combined by the selected
operations. We can approach to the formation of bases from
different sides. For the two-valued synthesis, as it was shown
above, it is possible, for example, to construct bases equivalent to

17 functionally complete systems (logical-arithmetic), and then
create their analogs in linear algebra.

To form the multivalued bases, we can use the cuts of
multivalued variables (10 combinations of such cuts are proposed
in [18]), and then construct their analogs in linear algebra. Such a
solution is also applicable for the two-valued bases. The problem
of forming the bases is solved uniformly for the cuts of any type,
so we demonstrate its solution on the basis of the upper cuts of the
first level, which are analogs of the functionally complete system
AND, NOT (OR, NOT).

The bases of this type for k = 2, n = 2 and n = 3, and for k = 3,
n = 2 are given below. For each basis, the basic and inverse
matrices are presented. Two-digit operations & and ∨ and their
multivalued analogs 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1𝑥𝑥2) and 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1𝑥𝑥2) are used as
generating operations. Therefore, the bases of this type are called
logical-arithmetic.

The two-valued logical-arithmetic bases of two variables have
the form:

- conjunctive (AND, NOT)

&(В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1)𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

𝑥𝑥1&𝑥𝑥2

� = �
1
0

1 1 1
1 0 1

0
0

0 1 1
0 0 1

�;

�&(В1,В1)(2)�
−1

= �
1
0
0
0

−1
 1
 01

−1
 0
 1
 1

 1
−1
−1
 1

�;

- disjunctive (OR, NOT)

∨ (В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1) ∨ 𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �
1
0

1 1 1
1 0 1

0
0

0 1 1
1 1 1

�;

(∨ (В1,В1)2)−1 = �
1
0
0
0

 0
 0
 −1

 1

 0
−1
 0
 1

−1
 1
 1
−1

�.

The two-valued logical-arithmetic bases of three variables
have the similar form:

&(В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥1𝑥𝑥2
𝑥𝑥1𝑥𝑥3
𝑥𝑥2𝑥𝑥3
𝑥𝑥1𝑥𝑥2𝑥𝑥3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 1

0 1
0 1

0 0
0 0

1 1
0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

;

�&(В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 −1
0 1

−1 −1
 0 0

0 0
0 0 1 0

0 0

 1 1
−1 −1

 1 −1
 0 1

−1 −1
 1 0

−1 1
 0 −1

 0 0
 0 0

 0 1
 0 0

 0 0
0 0 0 0

 0 0

 0 −1
 0 1

−1 1
 0 −1

 0 0
 0 0 1 −1

 0 1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 178

∨ (В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2
𝑥𝑥1˅𝑥𝑥3
𝑥𝑥2˅𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2˅𝑥𝑥3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 1
0 1

1 1
0 1

0 0
0 1

1 1
1 1

0 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

;

�∨ (В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 0
 0 0

 0 0
 0 0

 0 0
 0 0

 0 0
 0 −1

 0 0
 0 0 0 −1

−1 1
 0 −1
 0 1

 0 1
 1 −1

 0 0
0 0

 0 0
−1 0

 0 −1
0 1

 0 0
 1 1

−1 0
 1 0

 0 1
 1 −1

 1 1
−1 −1

 0 −1
−1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .

The three-valued logical-arithmetic analogs of these
bases look like this:

- conjunctive

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥1
(2)

𝑥𝑥2
(1)

𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1),𝑥𝑥2

(1)�
𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1

(2), 2𝑥𝑥2
(1)�

𝑥𝑥2
(2)

𝑚𝑚𝑖𝑖𝑛𝑛�2𝑥𝑥1
(1),𝑥𝑥2

(2)�
𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1

(2),𝑥𝑥1
(2)� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1 0
0 0 0
0 0 0

−1 1 0
 2 −2 0
−1 1 0

 0 0 0
−1 1 0
 1 −1 0

0 2 −1
0 0 0
0 0 0

 0 −2 1
 0 2 −1
 0 0 0

0 0 0
0 −1 1
0 1 −1

0 −1 1
0 0 0
0 0 0

 0 1 −1
 0 0 1
 0 −1 0

0 0 0
0 0 −1
0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

- disjunctive

𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥2

(1)

𝑥𝑥2
(2)

𝑥𝑥1
(1)

𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2
(1),𝑥𝑥1

(1)�
𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2

(2), 2𝑥𝑥1
(1)�

𝑥𝑥1
(2)

𝑚𝑚𝑎𝑎𝑥𝑥�2𝑥𝑥2
(1),𝑥𝑥1

(2)�
𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2

(2),𝑥𝑥1
(2)� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
2 2 2

0 1 1
0 2 2
0 0 0

0 1 1
1 2 2
0 1 1

0 1 1
2 2 2
0 2 2

0 1 2
0 1 2
0 1 2

0 1 2
2 2 2
1 1 2

0 1 2
2 2 2
2 2 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

�𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0
0 0 0
0 −1 0

 0 −1 0
 0 2 0
 0 −1 0

0 0 0
0 −1 0
0 1 0

0 0 0
0 0 0
0 2 −1

 0 2 −1
 0 −2 1
 0 0 0

 0 0 0
 0 1 −1
 0 −1 1

0 0 0
0 0 0
0 −1 1

−1 −1 1
 2 0 −1
−1 1 0

 0 0 0
−1 0 1
 1 0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .

To obtain linear analogs of the above logical-arithmetic bases,
we can use the relations that establish the connection between
logical operations, on the one hand, and with the operations used
to form the bases of linear space, on the other hand. For the bases
of the considered type these relations are as follows:

- logical operations - truncated difference operation

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = 𝑥𝑥 ∸ (𝑥𝑥 ∸ 𝑖𝑖);

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑥𝑥 ∸ 𝑗𝑗) ∸ (𝑥𝑥 ∸ 𝑖𝑖);

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) = 𝑥𝑥2 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1);

𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1) = 𝑥𝑥2 + (𝑥𝑥1 ∸ 𝑥𝑥2).

- logical operations - comparison operation

𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑗𝑗);
𝑖𝑖−1

𝑖𝑖=0

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖𝑖𝑖) = ∑ 𝑃𝑃𝑡𝑡(𝑥𝑥 > 𝑡𝑡)𝑖𝑖−𝑗𝑗
𝑡𝑡=1 ;

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑃𝑃{[(𝑥𝑥1 > 0) + (𝑥𝑥2 > 0)] > 1} +

+𝑃𝑃{[(𝑥𝑥1 > 1) + (𝑥𝑥2 > 1)] > 1};

𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) = 𝑃𝑃{[(𝑥𝑥1 > 0) + (𝑥𝑥2 > 0)] > 0} +

+𝑃𝑃{[(𝑥𝑥1 > 1) + (𝑥𝑥2 > 1)] > 0}.

Using the above relations, we can easily obtain linear analogs
of the above bases:

- conjunctive k = 2, n = 2 and n = 3

&(В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1)𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

(𝑥𝑥1 + 𝑥𝑥2) ∸ 1
� = �

1
0

1 1 1
1 0 1

0
0

0 1 1
0 0 1

�;

�&(В1,В1)(2)�
−1

= �
1
0
0
0

−1
 1
 01

−1
 0
 1
 1

 1
−1
−1
 1

�;

&(В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥1𝑥𝑥2
𝑥𝑥1𝑥𝑥3
𝑥𝑥2𝑥𝑥3
𝑥𝑥1𝑥𝑥2𝑥𝑥3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

(𝑥𝑥1 + 𝑥𝑥2) ∸ 1
(𝑥𝑥1+𝑥𝑥3) ∸ 1
(𝑥𝑥2+𝑥𝑥3) ∸ 1

(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) ∸ 2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 1

0 1
0 1

0 0
0 0

1 1
0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

;

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 179

�&(В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 −1
0 1

−1 −1
 0 0

0 0
0 0 1 0

0 0

 1 1
−1 −1

 1 −1
 0 1

−1 −1
 1 0

−1 1
 0 −1

 0 0
 0 0

 0 1
 0 0

 0 0
0 0 0 0

 0 0

 0 −1
 0 1

−1 1
 0 −1

 0 0
 0 0 1 −1

 0 1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

- disjunctive k = 2, n = 2 and 3

∨ (В1,В1)2 =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1) ∨ 𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1)
� =

= �
1
0

1 1 1
1 0 1

0
0

0 1 1
1 1 1

�,

(∨ (В1,В1)2)−1 = �
1
0
0
0

 0
 0
 −1

 1

 0
−1
 0
 1

−1
 1
 1
−1

�,

∨ (В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2
𝑥𝑥1˅𝑥𝑥3
𝑥𝑥2˅𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2˅𝑥𝑥3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2)]
1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥3)]
1 ∸ [1 ∸ (𝑥𝑥2 + 𝑥𝑥3)]

1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3)]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 1
0 1

1 1
0 1

0 0
0 1

1 1
1 1

0 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,

�∨ (В1,В1,𝐵𝐵1)(2)�
−1

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 0
 0 0

 0 0
 0 0

 0 0
 0 0

 0 0
 0 −1

 0 0
 0 0 0 −1

−1 1
 0 −1
 0 1

 0 1
 1 −1

 0 0
0 0

 0 0
−1 0

 0 −1
0 1

 0 0
 1 1

−1 0
 1 0

 0 1
 1 −1

 1 1
−1 −1

 0 −1
−1 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .

Similarly, we obtain linear analogs of multivalued bases:

- conjunctive, k = 3, n = 2

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)

[1 − (1 ∸ 𝑥𝑥1)] − (1 ∸ 𝑥𝑥2)
𝑥𝑥1 ∸ 2(1 ∸ 𝑥𝑥2)

𝑥𝑥2
2[1 − (1 ∸ 𝑥𝑥1)] − (2 ∸ 𝑥𝑥2)

𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1 0
0 2 −1
0 −1 1

−1 1 0
 0 −2 1
 0 1 −1

 0 0 0
 0 0 0
 0 0 0

0 0 0
0 0 0
0 0 0

 2 −2 0
 0 2 −1
 0 0 1

−1 1 0
 0 −1 1
 0 0 −1

0 0 0
0 0 0
0 0 0

−1 1 0
 0 0 1
 0 −1 0

1 −1 0
0 1 −1
0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

- disjunctive

𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)
1 ∸ (𝑥𝑥1 + 𝑥𝑥2)

𝑥𝑥2 + {2[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ 𝑥𝑥2}
𝑥𝑥2

𝑥𝑥1 + {2[1 ∸ (1 ∸ 𝑥𝑥2)]∸ 𝑥𝑥1}
𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 1 1
0 1 2

1 1 1
1 1 1
2 2 2

1 1 1
1 1 1
2 2 2

0 0 0
0 2 2
0 1 2

1 1 1
1 2 2
1 1 2

2 2 2
2 2 2
2 2 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;

�𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0
0 0 0
0 0 0

 0 −1 0
 0 2 −1
−1 −1 1

 0 0 0
 0 0 0
 0 0 0

0 0 0
0 0 0
0 0 0

 0 2 −1
 0 −2 2
 2 0 −1

0 −1 1
0 1 −2
0 0 1

0 −1 0
0 2 −1
0 −1 1

 0 −1 1
 0 0 −1
−1 1 0

0 1 −1
0 −1 2
0 0 −1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 180

C. Logic synthesis of basic functions. The resulted conditional
graphic designations of operations of the linear space can be used
for graphic representation of basic Boolean logic operations in
linear algebra and construct functional schemes of logic elements
on their base. For this it is sufficient:

- to choose the basis from the listed above;

- to use the previously described technique of logic synthesis
in linear algebra.

We choose a conjunctive version of the chosen basis as an
object of logic synthesis in which we perform a logic synthesis of
the two-valued and three-valued functions of circular shift

(𝑥𝑥1&𝑥𝑥2)⨁1 = [1 1 1 0],

and

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = [1 1 1 1 2 2 1 2 0],

and

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = [2 2 2 2 0 0 2 0 1].

In accordance with the above, the first action is to obtain the
expansion vector of the value vector of the function in terms of the
basis. Multiplying the vectors written above by the columns of the
inverse matrix of the bases &(В1,В1)(2) and 𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) results
in the following:

𝑤𝑤[(𝑥𝑥1&𝑥𝑥2)⨁1] = [0 1 1 − 2];

𝑤𝑤[𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1] ⇒ [1 0 0 0 3 0 0 0 − 2];

𝑤𝑤[𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1] ⇒ [2 0 0 0 − 3 0 0 01].

Weighing the basis vectors with respect to the obtained
coefficients, we obtain expressions of the logic functions in the
given basis

(𝑥𝑥1&𝑥𝑥2)⨁1 = 1 − (𝑥𝑥1 + 𝑥𝑥1 − 2𝑥𝑥1&𝑥𝑥1);

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = 1 + 3𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�;

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 3𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� + 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�.

The functional schemes corresponding to these expressions are
shown in Figure 7 a, b, c.

To obtain the equivalent expressions of the functions in linear
analogs of the logical-arithmetic basis under consideration, one
can proceed in two ways:

- replace the used basis vectors with their linear analogs in the
expressions obtained;

- use the above relations between logic and linear operations
and convert the expressions written above into the linear form.

In all three cases, we obtain the following results:

(𝑥𝑥1&𝑥𝑥2) ⊕ 1 = 1 − {𝑥𝑥1 + 𝑥𝑥1 − 2[(𝑥𝑥1 + 𝑥𝑥1) ∸ 1]};

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊕ 1 = 1 + 3{[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ (1 ∸ 𝑥𝑥2)} −

−2{[(𝑥𝑥1 ∸ 1) + (𝑥𝑥2 ∸ 1)] ∸ 1};

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 3{[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ (1 ∸ 𝑥𝑥2)} +

+{[(𝑥𝑥1 ∸ 1) + (𝑥𝑥2 ∸ 1)] ∸ 1}.

 1 +
-x1

x2

& x1& x2

+x1& x2

-

+ y

Ʃ

a

1

1

& x1
(1)

x2
(1)

&

x1
(1) & x2

(1) +

+
+

x1
(1) & x2

(1)

x1
(1) & x2

(1)

&

& x1
(2) & x2

(2)

x1
(2) & x2

(2)

1

-
-

Ʃ

y

x1

x2

+

b

1

1

x1
(1)

x2
(1)

y

x1
(1) & x2

(1)

x1
(1) & x2

(1)

x1
(1) & x2

(1)

&
-
-
-
+2

&

&

&
x1

(2) & x2
(2)

+

Ʃ

x1

x2

c

Figure 7: Functional schemes of the logical-arithmetic realization of the
circular shift operation: a - two-valued, b - three-valued with a shift to the right,

c - three-valued with a shift to the left.

The functional schemes corresponding to these expressions are
shown in Figure 8, a, b, c.

The difference between the linear representations obtained
from the arithmetic-logical representation is the possibility of
physical realization. The authors of the article have obtained more
than 25 patents for the circuit implementation of two-valued and
three-valued logic circuits.

D. Expansion of the arbitrary function into the algebraic sum
of monotonic functions of the same value. To obtain the
representation of the functions under consideration by the
algebraic sum of monotonic functions, we expand them into the
algebraic sum of monotonic functions within each value. For the
two-valued function, the sequence graph of nondecreasing
components has the form shown in Figure 9.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 181

x2

x1

+

+ Ʃ

+

-

1

x1+x2

x1+x2

Ʃ

Ʃ -

+1

+

+

x1 & x2

x1 & x2

y

a

y

 x1 -

1 +

x2

1 +

-

Ʃ

Ʃ

Ʃ 1 -

x1 +

+

- Ʃ

+

-
Ʃ

1
1 +

+

+
+

Ʃ

Ʃ 1 -

x2 +

+

+
+

1 -
Ʃ

Ʃ -
-

b

 x1 - Ʃ
1 +

x2 Ʃ

1 +

-

1 -

x1 +

1 -
x2 +

Ʃ

Ʃ
+

+

-

1 +

Ʃ

Ʃ
+

-1 Ʃ
+

Ʃ

y

+

-

+2

-
-

-
Ʃ

c

Figure 8: Functional schemes of the linear realization of the circular shift operation
based on the truncated difference: a - two-valued, b - three-valued with a shift to

the right, c - three-valued with a shift to the left.

0
1
2

3
Figure 9: Sequence graph of nondecreasing components of the two-valued

functions of two variables.

The structure of the expansion function of the equivalence
�̅�𝑥1�̅�𝑥2 ∨ 𝑥𝑥1𝑥𝑥2 = (𝑥𝑥1&𝑥𝑥2) ⊕ 1 into the algebraic sum of monotonic
functions is given in Figure 10.

= ─

+

1

1
1 1

1 1

0 1
1 1

0
0
0

1
─

0
0
0
0

Figure 10: The structure of the expansion of the two-valued function �̅�𝑥1�̅�𝑥2 ∨ 𝑥𝑥1𝑥𝑥2

into the algebraic sum of monotonic functions.

Here and below, the double circle marks the terms the values
of which violate the monotonicity of the function.

It follows from the structure of the expansion that the
representation of the function under consideration by the algebraic
sum of monotonic functions has the following form

𝑓𝑓�𝑥𝑥�(2)� = (𝑥𝑥1&𝑥𝑥2) ⊕ 1 = 1 − 𝑥𝑥1 ∨ 𝑥𝑥2 + 𝑥𝑥1&𝑥𝑥2.

Carrying out the similar transformations for the three-valued
functions, the sequence graph of nondecreasing components of
which is shown in Figure 11.

0 3
1 4

6

2
7
5 8

Figure 11: Sequence graph of nondecreasing components of the three-valued

functions of two variables.

we obtain the following representations of the functions under
consideration by the algebraic sum of monotonic functions:

- for 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1.

=

1 1
1

1
2
1

2
2 2

─
0 0

0
0
0
0

0
0 2

1 1
1

1
2
1

2
2 0

Figure 12: The structure of the expansion of the three-valued function
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⨁1 into the algebraic sum of monotonic functions.

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = 1 −𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� −

−2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)� + 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)�;

− for 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1.

2
2
2

2

2

1
0 0

0

2
2
2 2

2
2 2

2
2

=

-
0

0
0 0

2
0 2

2
2
+

0
0
0 0

0
0 0

0
1

-

Figure 13: The structure of the expansion of the three-valued function
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⊖ 1 into the algebraic sum of monotonic functions.

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� +

+𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 182

To obtain the equivalent representations of the expansion
functions in linear analogs of the basis under consideration, we can
proceed in the same way as with the functions themselves.

Expansion of the arbitrary function into the algebraic sum of
smaller value.

We consider this operation with the help of the above
transformation of the three-valued function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1, by
unitary and weighted coding of the values of variables and
functions.

In these cases, the encoding of variables and functions looks
like this:

- unitary coding
x x2 x1

0 0 0

1 0 1

2 1 1

Hence, it follows that for the unitary coding

𝑥𝑥 = 𝑥𝑥1 + 𝑥𝑥2;

– weighted coding
x x2 x1

0 0 0

1 0 1

2 1 0

It follows that at the weighted coding

𝑥𝑥 = 𝑥𝑥1 + 2𝑥𝑥2.

Using the basic and its inverse matrix, we obtain the
expressions for the two-valued expansion functions from the
multivalued arguments:

- for the unitary coding

𝑓𝑓1 = 1 + 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�;

𝑓𝑓2 = 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�;

𝑓𝑓 = 𝑓𝑓1 + 𝑓𝑓2;

- for the weighted coding

𝑓𝑓1 = 1 −𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)�;

𝑓𝑓2 = 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�;

𝑓𝑓 = 𝑓𝑓1 + 2𝑓𝑓2.

The representation of the three-valued function
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 by the two-valued ones for both versions of
coding is given in Table 2.

Table 2 ─ The expansion of the three-valued function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⨁1 into the sum
of the two-valued ones

𝑥𝑥2 𝑥𝑥1 Unitary Weighted

𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1

0 0 0 1 0 1

0 1 0 1 0 1

0 2 0 1 0 1

1 0 0 1 0 1

1 1 1 1 1 0

1 2 1 1 1 0

2 0 0 1 0 1

2 1 1 1 1 0

2 2 0 0 0 0

Replacing the three-valued variables with the two-valued ones
in accordance with the rules given above, we obtain the two-valued
expansion functions in the following form:

- for the unitary coding

𝑓𝑓1 = 1 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22;

𝑓𝑓2 = 𝑥𝑥11𝑥𝑥21 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22;

- for the weighted coding

𝑓𝑓1 = 1 − 𝑥𝑥11𝑥𝑥21;

𝑓𝑓2 = 2𝑥𝑥11𝑥𝑥21 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22.

The functional schemes of the linear realization of the circular
shift operation by the expansion into the sum of the two-valued
functions are shown in Figure 14.

x12

x11

x22

x21 &

+

-

1

+

- Ʃ

f1

f2

Ʃ

&

a

x22

x12

x11

x21

Ʃ

Ʃ

+1

-

+

f2

f1

+

&

&
 -

b

Figure 14: Functional schemes of linear realization of the circular shift operation
by the expansion into the sum of the two-valued functions: a - on the basis of the

unitary coding, b - on the basis of the weighted coding.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 183

For the threshold representation and the subsequent threshold
realization, it suffices to transform the equations obtained above
into the threshold form. After completing this transformation, we
get:

- for the unitary coding

𝑓𝑓1 = 1 > [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3];

𝑓𝑓2 = [(𝑥𝑥11+𝑥𝑥21) > 1] − [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3];

- for the weighted coding

𝑓𝑓1 = 1 − [(𝑥𝑥11+𝑥𝑥21) > 1];

𝑓𝑓2 = 2[(𝑥𝑥11+𝑥𝑥21) > 1] − [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3].

The functional schemes shown in Figure 15 correspond to
these equations.

1 -
+
+

x12

x11

x22

x21 Ʃ
3 +

-

+

-

1

+

-

f2

f1

Ʃ

a

x22

x12

x11

x21

1 -

+
+

Ʃ

Ʃ

Ʃ

+

-
1

-

+

+

-
3

f1

f2

b

Figure 15: Functional schemes of linear realization of the circular shift operation
by the expansion into the sum of the threshold two-valued functions: a - on the

basis of the unitary coding, b - on the basis of the weighted coding.

The considered complex of transformations of logic functions
in linear algebra proves useful in the design of digital structures for
various applications.

5. Circuitry of the Linear Logic and Threshold Elements
A. Basic functional nodes of digital logic elements. The

implementation of the mathematically predetermined set of linear
operations over the current signals requires the corresponding set
of hardware. The circuit implementation of digital signal
transformation functions based on the mathematical tool of linear
algebra can be reduced to performing a relatively simple set of
operations over the current signals. These operations include:

- conversion of the standard logic signals into the binary
current signals matched with a reference current quantum I0;

- formation of the multivalued (non-binary) algebraic sums of
current signals;

- performing the comparing operations of the received sums
with the given levels of the reference currents.

These operations are typical for analog microcircuitry,
therefore the main nodes of various functional elements can be
constructed on the basis of the widely used analog structures. In
addition, TTL circuitry and CMOS circuitry of these operations
completely coincide.

The reference signal driver. It is designed to generate voltages
that provide operational modes of elements of digital circuits
synthesized in linear algebra. The schematic configuration of the
driver is shown in Figure 16.

Q1

Q2

Q3

Q4

R

Vcc

Voff

Eoff1

Eoff2

Voff

(+)

(─)

Figure 16: Reference signal driver.

The symmetric structure of the reference signal source is
necessary for realizing the operations of converting “inflowing”
and “flowing out” currents when creating the algebraic sums of
variables in the mathematical tool of linear algebra. The only
current-stabilizing two-terminal network, in particular case the
resistor R, determines the levels of all reference signals.)(+

offV and
)(−

offV are reference for setting the operating modes of current
mirrors, and Еoff1 and Еoff2 - for setting the offset in the comparators
of the currents. It can also be replaced by some semiconductor
structure, and then the circuit becomes completely homogeneous
and highly technological. It is also possible to make the two-
terminal network R as an external element, which will allow
changing the power consumption and the associated characteristics
of the LSI during the debugging process.

The reference current source (RCS, Figure 17). The operating
mode of the RCS is set by the reference voltages)(+

offV for the

current sources and)(−
offV for the current sinks. The problem of

constructing the RCS for digital circuits synthesized in linear
algebra is completely similar to their problems in analog circuitry.

а b

Figure 17: RCS of: a – the current current, b – the current sink.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 184

The current follower (logic interpretation - direction
converter). It is intended for the coordination of current directions
at their algebraic summation. The schematic configurations of
some versions of current followers in TTL circuitry are shown in
Figure 18.

Ix Iy

Vcc

Ix Iy

а b

Figure 18: Current direction converter of: a – the sink current, b - the source
current.

Circuitry of CMOS converters of the current direction is
similar.

Algebraic current adder. It is an wired pack of the outputs of
current mirrors with current directions determined by the
mathematical representation of the realized logic function. To
agree the operating modes of subsequent elements, it is provided
with a buffer stage. The schematic configuration of the algebraic
adder is shown in Figure 19.

Ix1

Ix2

Ix1 – Ix2

-(Ix2 – Ix1)

2
ccV

x1 y1=-(x1-x2)

y2=x2-x1
-x2

2
ccV

a b

Figure 19: Algebraic current adder:
a - TTL circuit, b - CMOS circuit.

Current comparators. They are designed to determine the
excess value of one of the input currents over the other. The
schematic configurations of current comparators are given in
Figures 20 and 21.

x1

-x2

y1=x2-x1

y2=-(x1-x2)

Vcc

2
ссV

y1=x2-x1x1

-x2 y2=-(x1-x2)

Vcc

2
ccV

a b

Figure 20: Comparator based on the truncated difference:
a - bipolar circuit, b - CMOS circuit.

In the circuit in Figure 21, the excess of one of the input
currents (Ix1) over the other (Ix2) is determined by subtracting the
second current from the first. One of the compared currents must
be a source current and the second one – a current sink. Such a
comparator is applicable for any logic value.

Vcc

Ix1

Ix2

I0

Ix2>Ix1 Ix1>Ix2

Voff
(─)

2
ccV

Vcc

I0

Ix1

Ix2

Ix1>Ix2 Ix2>Ix1

Voff
(+)

2
ccV

а b

Figure 21: Current сomparator based on the comparison: a - for current sinks,
b - for source currents.

In the circuit of Figure 21, a at Ix1 > Ix2 the left-hand transistor
of the differential stage (DS) is closed and the current of the current
mirror “leaves” through the right transistor of the DS. At Ix1 < Ix2,
the right transistor of the DS is closed and the current of the current
mirror “goes” through the left transistor. The output current of the
DS I0 is the current sink.

In the circuit in Figure 21, b everything appears in a similar
way, but with other current directions. Such a scheme is applicable
for implementation of the two-valued digital structures.

In the previous section, the difference between the two-valued
and multivalued implementations of the comparison operation is
shown. In the latter case, it is possible to determine not only the
fact, but the magnitude of the excess of one input signal over
another one. In Figure 22 there is a circuit of the three-valued
comparator performing such a modified comparison operation.

x1

-x2

I0I0 I0

Rload1 Rload2

Vcc

2
ccV 2

ccV

Figure 22: Modified multivalued comparator based on the comparison.

Such a scheme can be constructed for any value, increasing
accordingly the number of parallelly operating DSs available to
work with different values of currents.

Logic elements AND, OR, NOT. The representations of the
operations of the two-valued basic functionally complete system
in linear algebra using the truncated difference have the following
form

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 185

𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) ∸ 1;

𝑥𝑥1 ∨ 𝑥𝑥2 = 1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2)];

�̅�𝑥 = 1 − 𝑥𝑥.

The schematic configuration of these elements are shown in
Figures 23, 24 and 25, correspondingly.

Vcc

1

-x2-x1

y=-(x1+x2)-1

Voff
(+)

2
ccV

Figure 23: Schematic configuration of the element AND.

Vcc

-x1 -x2

1 1

y=-{1-[1-(x1+x2)]}..

Voff
(+)

Voff
(+)

2
ccV

2
ccV

Figure 24: Schematic configuration of the element OR.

Vcc

1

-x

y = ─ (1─ x)

Voff
(+)

2
ccV

Figure 25: Schematic configuration of the element NOT.

Comparing the schemes shown in Figures 24 and 25, it is easy
to see that removing the circuit of in Figure 25 from the scheme of
Figure 24, we obtain the OR-NOT element.

Logic element “Inhibition”. The representation of the two-
valued operation in linear algebra using the truncated difference
has the following form

𝑥𝑥1&�̅�𝑥2 = 𝑥𝑥1 ∸ 𝑥𝑥2.

For the multivalued version, the two-valued inversion
operation (in accordance with the accepted generalization
ideology) should be replaced with the direct 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊕ 1), or
inverse min 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊖ 1) cycle operation, or left unchanged;
i.e. in the following form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 1 ∸ 𝑥𝑥2). Other ideologies of
generalization are also possible.

When using the comparison operation, the above expressions
for operations of the functionally complete system take the
following form

𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 1;

𝑥𝑥1 ∨ 𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 0;

�̅�𝑥 = 1 > 𝑥𝑥.

The implementation of these functions on the basis of the
comparison operation can be performed with the help of the
universal logic element (ULE), the schematic configuration of
which is shown in Figure 26.

I1
*=I0

I1

Ix1

Out.i1

RR

R R

Ini

Q1

Q2

Q3* Q4*

Q3 Q4

Out.i2

I1=I0

Out.i2
*Out.i2

Vcc

2
ccV

2
ccV

Figure 26: Basic scheme of the universal logic element.

At the inequality I1 < Ix1, the source difference current is
generated at the node In.i of the ULE. It will “go” to the emitter of
the transistor Q1, increasing the voltage at the first input (In.1) of
the voltage comparator up to the value VOFF + Ube1, where Ube1 ≈
0.7V - voltage of the open emitter junction of the transistor Q1. In
this case, the input transistors Q3 and Q4 of the voltage comparator
(VC) switch to the inverse states - the collector current of the
transistor Q3 becomes zero, and the transistor Q4 starts to transmit
the current of the reference current source I2 = I0 to the second
current output (Out.i2) of the ULE.

Thus, depending on the difference in the numerical values of
the currents I1 and Ix1, the output currents of the ULE take one of
two values: either it is the current of the reference current source I1
= I0 or “zero” (no current). Since the current I1 (𝐼𝐼1∗) is equal to the
current quantum I0, then in one of the current outputs of the voltage
comparator a standard current signal I0 of one of the logic levels is
generated, and in its second output - an inverse logic level signal.
Depending on the numerical values of I1 (I1 = 0,5I0, I1 = I0, I1 = 1,5I0)
and the methods of forming the input current signals of the ULE
(Figure 26), various logic functions can be performed, for example

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 186

– �̅�𝑥 = 1 − 𝑥𝑥 at 𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

;

– 𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 1 when 𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 1,5𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 1,5𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

;

– 𝑥𝑥1 ∨ 𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 0 if 𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 0,5𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 0,5𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

.

In the last two expressions 𝐼𝐼𝑥𝑥 ≡ 𝑥𝑥1 + 𝑥𝑥2.

The element considered above can be used as a logic element,
or as a threshold one; i.e. the generalization of the ordinary and
threshold logics in the linear representation is very close. In the
first case, unitary variables are fed to the inputs of the element.
Besides, the number of inputs must correspond to the number of
the variables. In the second case, the weighted sum of the variables
should be fed to the “positive” input, and the constant equal to the
calculated threshold value should be fed to the “negative” input. It
is noteworthy that the described element can serve as an element
of the homogeneous matrix, which can be used for matrix synthesis
of the current digital structures. In addition, it is possible to
construct universal current logic modules on its basis.

Similarly, the Ban operation can be expressed in terms of the
truncated difference as

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 + 1 ∸ 𝑘𝑘[1 ∸ (𝑥𝑥2 ∸ 1)]});

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 − 1 + 𝑘𝑘[1 ∸ 𝑥𝑥2]}),

and through the comparison - as

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, [𝑥𝑥2 + 1 ∸ 𝑘𝑘(𝑥𝑥2 > 2)]);

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 − 1 + 𝑘𝑘[1 > 𝑥𝑥2]}),

Cut formers. In fact, the cut former is an input signal limiter at
the given level. As a former, the schemes that implement the
operations 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) (upper cuts) and 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) (lower cuts)
can be used.

Buffer output stage. The combination of the algebraic adder
and the current follower (converter) can be applied as a buffer
output stage. With the help of the latter, the given number of the
output circuits can be arranged to provide the required output
branching factor.

B. The synthesis of logical schemes. Let’s consider it through
the example of the two-valued and multivalued circular shift
elements discussed above. They can be represented as a single
operation in the form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊕ 1) or 𝑚𝑚(𝑥𝑥1, 𝑥𝑥2 ⊖ 1), or as a
compound operation, i.e. as the sequential combination of
operations working on one another 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) or 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2)
and operations ⨁1 or ⊖1, that is, in the form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊕ 1 or
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1. We confine ourselves to the synthesis of the
circuits using the operation 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2).

In accordance with [17-32], the synthesis of the functional
scheme corresponding to any logic function consists in multiplying
the row-vector of the values of the function by the inverse basic
matrix and obtaining the expansion vector of the function from the
selected basis, and then recording the representation of the function
as a weighted sum of the basis vectors. We perform the synthesis
of the selected schemes using the basis presented below.

In the two-valued case, the element AND-NOT has an
arithmetic-logical representation, described by the expression

𝑥𝑥1&𝑥𝑥2�������� = 1 − 𝑥𝑥1&𝑥𝑥2,

which can be represented by the truncated difference in the
following form

𝑥𝑥1&𝑥𝑥2�������� = 1 − [(𝑥𝑥1 + 𝑥𝑥2) ∸ 1],

 and by comparison - in the following form

𝑥𝑥1&𝑥𝑥2�������� = 1 > [(𝑥𝑥1 + 𝑥𝑥2) > 1].

The schematic configurations of the elements can be
constructed directly according to these expressions. Figure 27
shows an element scheme based on the truncated difference.

x1 x2

Vcc

Out1 Out2

Voff
(+)

Voff
(─)

2
ccV

Figure 27: Schematic configuration of the element of AND-NOT based on the

truncated difference.

We proceed similarly for the three-valued schemes in the first
case (by the single operation). Using the basis

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)

[1 − (1 ∸ 𝑥𝑥1)] − (1 ∸ 𝑥𝑥2)
𝑥𝑥1 ∸ 2(1 ∸ 𝑥𝑥2)

𝑥𝑥2
2[1 − (1 ∸ 𝑥𝑥1)] − (2 ∸ 𝑥𝑥2)

𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 187

with the inverse matrix

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1 0
0 2 −1
0 −1 1

−1 1 0
 0 −2 1
 0 1 −1

 0 0 0
 0 0 0
 0 0 0

0 0 0
0 0 0
0 0 0

 2 −2 0
 0 2 −1
 0 0 1

−1 1 0
 0 −1 1
 0 0 −1

0 0 0
0 0 0
0 0 0

−1 1 0
 0 0 1
 0 −1 0

1 −1 0
0 1 −1
0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,

we obtain the following results for the single operation:

- resolution vectors

𝑤𝑤(𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1) = [1 0 0 0 3 0 0 0 − 2];

𝑤𝑤(𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊝ 1) = [2 0 0 0 − 3 0 0 0 1];

- linear expressions of the functions

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁ 1 = 1 + 3[1 − (1 ∸ 𝑥𝑥1) − (1 ∸ 𝑥𝑥2)] −.

−2[𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)] .

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊝ 1 = 2 − 3[1 − (1 ∸ 𝑥𝑥1) − (1 ∸ 𝑥𝑥2)] +

+[𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)].

The schematic configuration of the element of the right circular
shift, synthesized directly from the above expression, is shown in
Figure 28.

+1

-х1

х2

х1

-1

-(х1-х2)

1])x,3[min(x
1)x,min(x

1)x,min(xу

21

21

21

−−
−+=

=⊕=

Vcc

Out1

2
ccV

2
ccV

2
ccV

2
ccV

Figure 28: CMOS element of the right circular shift.

The schematic configuration of the element of the left circular
shift, synthesized directly from the expression given above, is
given in Figure 29.

Similarly, for the compound operation:

- the resolution vector 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)

𝑤𝑤�𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)� = [0 0 0 0 0 0 0 0 1],

- linear expression of the function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2). (5)

-х1

х2

х1

-1 -1

Vcc

min (x1,x2) 1=

Out1

= min (x1,x2)-1+
+3[1-min (x1,x2)]

-

2
ccV

2
ccV

2
ccV

2
ccV

Figure 29: CMOS element of the left circular shift.

Similarly, for the compound operation:

- the resolution vector 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)

𝑤𝑤�𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)� = [0 0 0 0 0 0 0 0 1],

- linear expression of the function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2). (5)

- resolution vectors of the operations 𝑥𝑥⨁1 or 𝑥𝑥 ⊖ 1:

𝑤𝑤(𝑥𝑥⨁1) = [1 3 − 2];

𝑤𝑤(𝑥𝑥 ⊝ 1) = [2 − 3 1].

- linear expressions of the functions:

𝑥𝑥 ⊕ 1 = 1 + [1 ∸ (1 ∸ 𝑥𝑥)] − 2𝑥𝑥;

𝑥𝑥 ⊝ 1 = 2 − 3[1 ∸ (1 ∸ 𝑥𝑥)] + 𝑥𝑥.

The schematic configuration of the element 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ,
synthesized directly from expression (5) discussed above, is shown
in Figure 30.

-x1

-x2

Vcc

-[x1-(x1-x2)]2
ccV

2
ccV

Figure 30: Schematic configuration of the element 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2).

The schemes of the elements of the left and right cycles are
shown in Figures 31 and 32.

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 188

-(x ⃝1)

Vcc

+1+1

x
+

2
ccV

2
ccV

2
ccV

Figure 31: Element of the right cycle.

+1

Vcc

-x

-(xӨ1)

2
ccV

2
ccV

2
ccV

Figure 32: The element of the left cycle.

To obtain the final expression in the procedure for synthesizing
a particular logic element, it is sufficient to substitute 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2),
for x in the last expression, and for the circuit implementation, -
use the above implementation of the function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2), then
connect the circuit (𝑥𝑥⨁1) or (𝑥𝑥 ⊝ 1) to its output.

C. To demonstrate the possibilities of the sequential circuit
synthesis, we use the results of the logic element synthesis obtained
above.

Boolean approach to the logic synthesis of triggers consists in
supplying the memory element with a control circuit that provides
a specified law for the operation of a specific type of the trigger. In
the two-valued case, the memory element is a scheme of two
2AND-NOT elements covered by the positive feedback (Figure
33):

&

&
1x

0x
1y

0y

Figure 33: Two-valued trigger (memory element).

The linear synthesis of the two-valued triggers in linear algebra
does not differ fundamentally from Boolean synthesis [17]. The
schematic configuration of the trigger can be constructed in the
same way as it is done in Boolean logic (for example – Figure 34):

When moving to higher values while remaining the general
idea of synthesis, it is necessary to use the elements and operations
that are a generalization of the two-valued operations and logic
elements. The operations min (x1,x2) and max (x1,x2) are
generalization of the operations & and ˅ is. As for the inversion
operation, to generalize it for a multi-valued case it is convenient
to represent it in the form of �̅�𝑥 = 𝑥𝑥⨁1 = 𝑥𝑥 ⊝ 1 and generalize it

by a circular shift of Post (left or right). The general functional
configuration of the memory element based on three-valued
elements of the direct circular shift is shown in Figure 35.

Vcc

RS

Voff
(+) Voff

(+)

Voff
(─)

Voff
(─)

2
ccV

2
ccV

Figure 34: Two-valued RS-flip-flop in the studied basis based on the truncated

difference.

 x1

x2

x0

y2

y0

y1

&

&

&

○1+

○1+

○1+

Figure 35: Three-valued trigger on the elements of the direct circular shift.

The general functional configuration of the memory element
based on the three-valued elements of the inverse circular shift is
given in Figure 36.

x0

x2

x1

y2

y0

y1

&

&

&

Ө1

Ө1

Ө1

Figure 36: Three-valued trigger on the elements of the inverse circular shift.

The functional schemes of the memory elements of higher
significance look similar.

Thus, to construct any multivalued memory element, it is
necessary to synthesize the elements of direct and inverse circular
shifts. To create a trigger of the given type (D-, RS-, JK-, etc.), it
is required to equip the memory element with the corresponding
control circuit.

The control circuits of the memory elements are constructed on
the base of the verbal description of the operation of a specific type
of the trigger. The result of the analysis of this description is the
detection of logic control functions for each input of the memory
element.

For example, the RS-flip-flop operates according to the
following algorithm:

- the values of the input signals S = R = k –1 correspond to the
storage mode;

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 189

- the signal S increases the trigger state index relatively to the
current state towards the state k-1, and the signal R reduces the
state index towards the state “0”;

- the value of the state index change is equal to the value of the
input signal: the signal equal to 1 can increase (or decrease) the
current state index by 1, the signal equal to 2 - by 2, etc .; besides,
the signal S increases the trigger state index to the state k-1, and
the signal R reduces the state index to “0”; the state change on the
cycle is impossible (we leave this for the universal triggers!);

- to change the trigger state index relatively to the current state
i, the signal S can take values from 1 to k-1-i (larger values are
equivalent to the value of k-1-i). Similarly, the signal R can take
the values from 1 to i -1 (larger values are equivalent to the value
i -1);

- all combinations are inhibited combinations of values of the
input signals, except 0 – k-1, 1 – k-1, k-2 – k-1, k-1 – k-1, k-1 – 0,
k-1 – 1, …, k-1– k-2.

Now it is possible to synthesize the logic function of the control
circuit of the RS-flip-flop. Its output signal is a multi-valued signal
x that sets the next state of the memory element, and the input
signals are multivalued signals S and R, as well as the current
trigger state index.

The truth table of the control functions of the three-valued RS-
flip-flop, compiled on the basis of this description, has the
following form:

S R
1tQ + 0x 1x 2x

0 2
2Q 0 1 1

1 2
1Q 1 0 1

2 2
tQ 1 1 1

2 1
1Q 1 0 1

2 0
0Q 1 1 0

From the last table it follows that the logic functions for
controlling the state of the memory element are described as
follows:

𝑥𝑥0 = 𝑃𝑃(𝑆𝑆 > 0) = 1 ∸ (1 ∸ 𝑆𝑆);

𝑥𝑥1 = 1 > [1 > (1 > 𝑆𝑆)] > [1 > (1 > 𝑅𝑅)] =

= 1 ∸ [1 ∸ |1 ∸ 𝑆𝑆|] ∸ [1 ∸ |1 ∸ 𝑅𝑅|];

𝑥𝑥2 = 𝑃𝑃(𝑅𝑅 > 0) = 1 ∸ (1 ∸ 𝑅𝑅).

The combination of the memory element circuit and the control
circuit results in the implementation of the trigger of the given
type.

Similarly, arguing, we can obtain the logical control functions
of the three-valued D-flip-flop:

𝑥𝑥0 = (1 ∸ 𝐶𝐶)&(1 ∸ 𝐷𝐷) = 1 ∸ [(1 ∸ 𝐷𝐷) ∸ 𝐶𝐶] =

= 1 ∸ [(1 ∸ 𝐶𝐶) ∸ 𝐷𝐷];

𝑥𝑥1 = (1 ∸ 𝐶𝐶)&[𝐷𝐷 ∸ 2(𝐷𝐷 ∸ 1)] = 1 ∸ {𝐷𝐷 ∸ [2(𝐷𝐷 ∸ 1) ∸ 𝐶𝐶]} =

1 ∸ [1 ∸ (|𝐷𝐷 ∸ 1| + 𝐶𝐶)];

𝑥𝑥2 = (1 ∸ 𝐶𝐶)&(𝐷𝐷 ∸ 1) = 1 ∸ [(𝐷𝐷 ∸ 1) ∸ 𝐶𝐶] =

= 𝐷𝐷 ∸ [(1 ∸ 𝐶𝐶) ∸ 1].

In the same way, we can obtain the description of the control
system of any other multivalued trigger, the number of types of
which is certainly greater than the two-valued one.

Combining the control circuit and the memory element in
series, it is possible to obtain the schematic configuration of the
trigger of any type and any value.

6. Conclusion
1. The mathematical tool of linear algebra can be newly applied

in problems of logic synthesis and circuit implementation of the
current digital structures.

2. Linear algebra:

- enables to create not only a two-valued, but also a really
properly functioning multivalued element base for digital signal
processing devices;

- conduces the design of the digital element base with the
improved technological, technical and operational characteristics
(in comparison with the potential logic based on Boolean algebra);

- can serve as a basis for creating LSI on the basis of matrix
fields of homogeneous elements (as in modern Altera design
systems, etc.);

- improves the reliability of current digital LSIs synthesized on
its basis, under extreme operating conditions (temperature,
radiation, in-phase interferences, etc.).

3. Two-valued and three-valued triggers based on cyclic shift
elements are considered. It is shown that in the transition to greater
significance, while preserving the general idea of synthesis, it is
necessary to use operations that are generalizations of two-valued
operations and the corresponding logical elements.

4. The presents a basic set of current logic elements for the
devices of automation, which allows solving the problems of
transformation of the current signals in a different and more
efficient way.

5. In the schemes of the developed class is provided a
differential representation of the output signal that minimizes the
effect of temperature and radiation on their basic parameters.

Conflict of Interest

The authors declare that there is no conflict of interests
regarding of publication of this paper.

Acknowledgment

The research is carried out at the expense of the Grant of the
Russian Science Foundation (project № 16-19-00122).

http://www.astesj.com/

N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018)

www.astesj.com 190

References

[1] N. N. Prokopenko, N. I. Chernov, V. Ya. Yugai, N. V. Butyrlagin, “The
Element Base of the Multivalued Threshold Logic for the Automation and
Control Digital Devices,” on International Siberian Conference on Control
and Communications, SIBCON-2017, Astana, Kazakhstan, 29-30 June,
2017.

[2] A. S. Karpenko, “Multi-valued logics (monograph),” in series “Logics and
computer”, Moscow, issue 4, 1997, 223 p. (in Russian).

[3] L. A. Zalmanson, “Fourier transform, Walsh, Haar and their application in
management, communications and other fields,” Moscow, Nauka, Fizmatlit
publ., 1989, 496 p. (in Russian).

[4] V. S. Vykhovanets, V. D. Malugin, “Spectral methods in logical
management,” Proceedings of the 2nd international scientific-technical
conference "Modern methods of digital processing of signals in spelthorne,
monitoring, diagnosis and control (OS 1998)", Minsk, 1998, pp. 56-59. (in
Russian).

[5] M. Thornton, “Mixed representation of the multi-Boolean function spectra
and critical charts,” Automatics and telemechanics, 2004, vol.6, pp. 188-200.
(in Russian).

[6] G. I. Ivchenko, V. A. Mironov, “Some questions of spectral analysis of
random Boolean functions with constraints,” Discrete mathematics, 2013,
vol. 1, pp. 90-110. (in Russian).

[7] V.N. Kondratyev, A.A. Shalyto, “Implementation of systems of Boolean
functions using arithmetical polynomials,” Automatics and telemechanics,
1993, vol. 2, pp. 114-122. (in Russian).

[8] V. D. Malyugin, “The parallel logic computation by the arithmetic of
polynomials,” Moscow, Nauka, Fizmatlit publ., 1997, 192 p. (in Russian).

[9] A. V. Sokolov, O. N. Zhdanov, A. A. Ayvazyan, “Methods for the synthesis
of the algebraic normal forms of functions of multivalued logic,” System
analysis and applied Informatics, No. 1, 2016, p. 69-76. (in Russian).

[10] M. Dertouzos, “Threshold logic,” Moscow: Mir publ., 1967. (in Russian).
[11] V. G. Nikonov, “Threshold representations of Boolean functions,” Review

in applied and industrial mathematics, Series discrete mathematics, 1994,
vol. 1, No. 3, pp. 402-457. (in Russian).

[12] E. A. Butakov, “Methods of synthesis of relay devices,” Moscow: Energy
publ., 1970, 328 p. (in Russian).

[13] E. N. Vavilov, etc. The Synthesis of threshold circuits for the elements –
Moscow: Soviet Radio publ., 1970, 368 p. (in Russian).

[14] S. Muroga, “Threshold logic and its applications,” New York: Wiley, 1971.
[15] W. H. Piers, “Failure Tolerant computer dezign,” New York and London:

Academic Press, 1965.
[16] V. G. Nikonov, N. Nikonov, “Features of threshold concepts k-valued

functions,” Tr. on discr. mod., 2008, volume 11, issue 1, pp. 60-85. (in
Russian).

[17] J. Hastad, “On the size of weights for threshold gates.” SIAM J. Discr. Math.
1994.

[18] N. I. Chernov, “Foundations of Logic Synthesis of Real Numbers Field
Digital Structures”, Taganrog: TRTU, 2000, p.146 (in Russian).

[19] N. I. Chernov, “Boolean Linear Space as an Algebraic Structure for Logic
Synthesis of Digital Units,” The News of TRTU, 2003, No.1, pp. 215-220.
(in Russian).

[20] N. I. Chernov, “Structural Synthesis of Digital Units within Boolean Linear
Spaces,” The News of TRTU, 2003, No.2, pp. 73-76. (in Russian).

[21] N. I. Chernov, “Efficiency of Application of the Body of Linear Spaces
within Logic Synthesis,” Conferences on Artificial Intelligence Systems
(IEEE AIS’ 05)’ and Intelligent CAD (CAD-2005, vol.1, pp. 420–424. (in
Russian).

[22] N. I. Chernov, “Logic Design of Digital Structures on Controlled Current
Generator,” The News of TREU, 2005, No.11, pp. 77- 83. (in Russian).

[23] N. I. Chernov, “The effectiveness of the apparatus of linear spaces in the
logic synthesis of digital structures,” Proceedings of the international
scientific and technical conferences “Intelligent systems (IEEE AIS’05)”
and “Intelligent CAD (CAD-2005”,vol.1, pp. 420 –424. (in Russian).

[24] N. I. Chernov and V. Ya. Yugai, “Nonclassical Synthesis of Digital
Structures by Tools of Analogous Circuits Engineering,” Problems of
Today’s Analogous Circuits Engineering: The Collected Articles of IX
International Scientific-Practical Seminar edited by N.N. Prokopenko,
Shakhty, Rostov-on-Don Region: FSBEU HPE “SRSUES” Publishers,
2012, pp. 138 – 143. (in Russian).

[25] N. N. Prokopenko, N. I. Chernov, V. Ya. Yugai, “Base Concept of Linear
Synthesis multi-Valued Digital Structures within Linear Spaces,”
Proceedings of The IS&IT13 Congress, The Scientific Edition in four
volumes, Мoscow: PhisMathLit publ., 2013, v. 1, pp. 284−289. (in Russian).

[26] N. N. Prokopenko, N. V. Butyrlagin, N. I. Chernov, V. Ya. Yugay,
“Synthesis of binary triggers in the apparatus of linear algebra,” Izvestiya
SFedU. Technical Sciences. No. 2. 2015, pp. 115-125. (in Russian).

[27] N. N. Prokopenko, N. I. Chernov, V. Ya. Yugai, N. V. Butyrlagin, “Linear
synthesis of k-valued digital components of the base current logical signals:
the principle of generalization”, Problems of development of perspective
micro and nanoelectronic systems - 2016. Proceedings / under the General
editorship of academician RAS А.L. Stempkovskogo. Мoscow: IPPM RАS,
2016. (in Russian).

[28] N. I. Chernov, V. Y. Yugai, N. N. Prokopenko, N. V. Butyrlagin, “Basic
concept of linear synthesis of multivalued digital structures in linear spaces,”
Proceedings of IEEE East-West Design and Test Symposium, EWDTS
2014, art. no. 7027045. DOI: 10.1109/EWDTS.2014.7027045

[29] N. N. Prokopenko, N. V. Butyrlagin, N. I. Chernov, V. Ya. Yugai, “The
linear concept of logic synthesis of digital IP-modules of control and
communication systems,” 2015 International Siberian Conference on
Control and Communications, SIBCON 2015 - Proceedings, art. no.
7147182. DOI: 10.1109/SIBCON.2015.7147182.

[30] N. N. Prokopenko, N. V. Butyrlagin, N. I. Chernov, V. Ya. Yugai, “Basic
linear elements of k-Valued digital structures,” 2016 International
Conference on Signals and Electronic Systems, ICSES 2016 - Proceedings,
pp. 7-12. DOI: 10.1109/ICSES.2016.7847763.

[31] N. N. Prokopenko, N. I. Chernov, V. Yugai, N. V. Butyrlagin, “The element
base of the multivalued threshold logic for the automation and control digital
devices,” Proceedings of 2017 IEEE International Siberian Conference on
Control and Communications, SIBCON 2017, art. no. 7998508. DOI:
10.1109/SIBCON.2017.7998508.

[32] N. N. Prokopenko, N. I. Chernov, V. Yugai, N. V. Butyrlagin, “The
multifunctional current logic element for digital computing devices,
operating on the principles of linear (not boolean) algebra,” Proceedings of
2016 IEEE East-West Design and Test Symposium, EWDTS 2016, art. no.
7807723. DOI: 10.1109/EWDTS.2016.7807723.

[33] V. I. Nechaev, “Numeric system,” Moscow: Education publ.,1975, 199 p.
(in Russian).

[34] V. A. Gorbatov, “Foundations of discrete mathematics,” Moscow: Higher
school publ., 1986, 311 p. (in Russian).

http://www.astesj.com/
https://doi.org/10.1109/ICSES.2016.7847763

	2. Linear Algebra
	3. Monotonic Logic Functions
	4. Synthesis of Logic and Threshold Elements
	5. Circuitry of the Linear Logic and Threshold Elements
	6. Conclusion
	Conflict of Interest
	Acknowledgment

	References

