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 The article considers linear algebra as an alternative mathematical tool of logic synthesis 
of digital structures to Boolean algebra and synthesis methods of digital electronic 
component base (ECB) on its ground. The methods of solving the applied problems of logic 
synthesis are shown, including the expansion of an arbitrary logic function by means of 
monotonic functions. The proposed mathematical apparatus actually provides the creation 
of digital structures on the principles of analog circuitry. It can find application in the 
design of multivalued digital ECB, specialized system-on-chip and analog-digital sensors 
with current output. The examples of synthesis of the combinational and sequential two-
valued and multivalued digital devices are given. In conclusion, the advantages of linear 
algebra in comparison with Boolean algebra are formulated. 
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1. Introduction  

This article is a continuation of the studies presented at the 
conference SIBCON-2017 [1]. 

Boolean algebra is known [2] as a leading mathematical tool 
for logic synthesis of two-valued digital structures. Almost all 
existing methods of logic synthesis are formed on its ground. The 
success of Boolean algebra is caused, among other things, by the 
fact that the Boolean representation of the realized logic function 
turned out to be rather technological: the circuit implementation of 
logic elements was relatively simple. TTL, C-MOS and ESL and 
other technologies occurred to be the most preferable for this 
purpose. 

Despite this, the history of the development of digital 
microelectronics knows the attempts to replace both the approach 
to logic synthesis (the use of spectral representations [3 - 6] using 
the arithmetic polynomials [7 - 9]) and technological realization 
(I2L, I3L, ...). 

The most significant contribution to the alternative theory of 
logic synthesis has been made by the threshold interpretation of 
Boolean algebra, called the threshold logic. 

Threshold logic related to one of the directions of synthesis of 
the digital structures [10], is constantly evolving. We know a 
significant number of publications devoted to this problem [11 – 
14]. For two-valued functions, the threshold synthesis problems 
have already been solved beginning from the well-known papers 
of М. Dertouzos [10]. One of the advanced approaches of synthesis 
for the k-valued threshold functions is considered in this article 
[11].  

The threshold logic was initially implemented in a two-valued 
version, but many publications on the multivalued threshold logic 
have recently appeared [14 - 17]. Why are they dedicated to the 
multivalued logic? The fact is that the multivalued logic is 
currently considered as a means of improving the quality 
characteristics of LSI (the ratio of “number of elements / number 
of links”, “total area / real-estate” of the crystal, etc.), which 
doesn’t require a drastic change in LSI technology. The authors of 
this article also follow this approach. 

To develop this ideology we proposed an alternative approach 
to the logic synthesis of digital devices - the replacement of the 
mathematical tool of Boolean algebra by another body of 
mathematics - linear algebra. Such a replacement entailed 
fundamental changes in various aspects of the implementation of 
digital structures: 
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- the potential realization of Boolean logic was replaced by the 
current linear implementation; 

 - the key operating mode of the elements was replaced by the 
linear one; 

- Boolean values of the variables took a quantitative form 
instead of the qualitative (logic) one; 

- the value of logic was determined not by the scheme, but by 
the significance of signals; 

- the output signal was presented by the difference of signals of 
two circuits operating in parallel, which improves the performance 
of digital structures. 

Thus, the use of linear algebra as a mathematical tool of the 
logic synthesis ensured the development of alternative methods for 
the logic synthesis of current digital circuits and their practical 
implementations. 

The authors published a number of papers [18-32] devoted to 
the synthesis of logic (nonthreshold) two-valued and multivalued 
digital structures. This paper considers the use of linear algebra as 
a mathematical tool for the logic synthesis of two-valued and 
multivalued, logic and threshold digital structures. 

The fuzzy concept of the “threshold synthesis” can be 
interpreted in two ways: 

- as a normal logic synthesis of digital structures with circuit 
implementation on threshold logic elements (any logic function 
can be implemented in this way); 

- as a logic synthesis of threshold logic functions (an arbitrary 
logic function can be implemented by a network of threshold logic 
elements). 

The purpose of this article is to propose logical and threshold 
current hardware components for constructing digital structures 
within the two specified areas. Within the framework of this goal, 
the authors’ solutions for the following tasks are given below: 

- since linear algebra is used as a mathematical tool for the logic 
synthesis of current logic structures, the article presents the main 
definitions and aspects of the practical use of linear algebra; 

- as there is a close relationship between the threshold and 
monotonic functions, the article gives a definition of the 
monotonic function and explains the ways of representing arbitrary 
functions by monotonic linear functions; 

- some versions of transformation of two-valued and 
multivalued monotonic functions into a threshold form in linear 
algebra are analyzed; 

- versions of circuit implementation of linear threshold logic 
elements are considered. 

2. Linear Algebra 
А. Definition of linear algebra. Let Р → 〈Р; +, ∙, 0.1〉 – field, 

〈А; +, ∙, θ〉 – algebra with two binary operations and one nullary 
operation. The system Λ → 〈А; +, ∙, θ, Р〉 is called linear algebra, 
if the following conditions are met: 

– the system Λ → 〈А; +, ∙, θ, Р〉 – linear (vector) space over the 
field Р; 

– distributivities of operations + and ∙ 

∀(a, b, c ∈ A) (a + b)c = ac + bc∧c(a + b) = ca +cb; 

– associativities of vector multiplication by elements of the 
field Р 

∀(a, b ∈ A)∧∀(k ∈ P) k(ab) = (ka)b = a(kb). 

В. Extension of linear algebra. 

Let А → 〈А; +, ∙, θ〉 – vector space of linear algebra Λ, Р → 〈Р; 
Ω = {ωk|k∈P}, 0.1〉 – field of linear algebra Λ, which contains the 
operations ωk, which in general case do not necessarily coincide 
with the operations of linear space А. Then the system Λ’ → 〈{А; 
+, ∙, θ}, {Р; Ω, 0, 1}〉 is called the extension of linear algebra Λ. 

When interpreting this algebraic system in a certain way, we 
can obtain algebras with different properties. For example, 
interpreting A as a set of terms of Boolean functions f(x1,…, xn), 
the operations “+” and “·” - as max(x1,…, xn), min(x1,…, xn), we 
obtain algebra А →〈А; max, min, θ; P〉. Similarly, leaving the 
semantics of operations in the original form (i.e., defining them as 
ordinary arithmetic operations), we can consider the reduced 
system as linear algebra on the set A of vectors in a linear space. 
The reduced algebraic system is considered below in this form. 

C. Creation of bases. To form the bases from logic variables, 
it is possible to construct different constructions of linearly 
independent vectors with given properties. The choice of 
operations for creation of the bases is made independently on the 
operations of linear space and can be determined by various 
(mathematical, circuit, technological and other) requirements. In 
the applied plan, this allows obtaining the ideologically unified 
(based on operations of linear space) circuit solutions of functional 
elements (from different implementations based on field 
operations). 

A basis is a system of m linearly independent vectors {F} = 
{ϕ0, ϕ1,..., ϕm-1}, which enables to describe any vector a ∈ A in the 
linear form 

𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝜑𝜑𝑖𝑖𝑚𝑚−1
𝑖𝑖=0  ,   (1)  

with respect to these vectors. 

Each vector of the basis {F} = {ϕ0, ϕ1,..., ϕm–1} is uniquely 
determined by the set of coordinates ϕi = {ϕi0 , ϕi1,..., ϕi,m–1}, with 
the help of which we can make a square matrix of order m: 

𝐹𝐹 = �

𝜑𝜑10         𝜑𝜑11
𝜑𝜑20        𝜑𝜑21

…        𝜑𝜑1,𝑚𝑚−1
…        𝜑𝜑2,𝑚𝑚−1…          …

𝜑𝜑𝑚𝑚−1,0 𝜑𝜑𝑚𝑚−1,1

…                …
    …      𝜑𝜑𝑚𝑚−1,𝑚𝑚−1

�, 

 

corresponding to the given basis {F}. 

Two bases {𝐹𝐹} = {𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑚𝑚−1}  and {𝑌𝑌} =
{𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑚𝑚−1}, the matrices F and Y of which are inverse to each 
other, are reciprocal (dual). Besides, 

F ⋅ Y = E, 

where E − diagonal matrix of order m with εij = 1, when i = j and 
εij = 0, if i ≠ j, which is an orthonormal basis {E}.  
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Since the resolution of an arbitrary vector a over the basis  {F} 
has the form 

a = a0ϕ0 + a1 ϕ1 + ⋅⋅⋅ +am-1 ϕm-1, 

then, multiplying both parts of this resolution by γi, i = [0, m−1], 
we obtain: 

ai = a⋅γi = a⋅(Y⋅εi) = a⋅(F-1⋅εi). 

Then the procedure for representing (i.e. obtaining the values 
of the expansion coefficients) of the arbitrary vector a in the given 
basis {F} is reduced to performing the following operations: 

− construction of the basic matrix F; 

− construction of the inverse basic matrix F-1; 

− multiplication of the row-vector a by the column-vector of 
the matrix F-1 and computation of the expansion coefficients of the 
vector a over the basis {F}; 

− writing of the expression for the vector a in the linear form 
(1) with respect to the basis {F}. 

Example 1. Get a representation of the conjunction operation 
of two arguments 𝑥𝑥1&𝑥𝑥2 of the value 2 in the basis 

𝐹𝐹 = �
1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
0

�,   (𝐹𝐹)−1 = 1
2
�
2
0

−1
   1

−1
−1

−1
   1

0
0

−1
   1

   1
   1

   1
−1

�.

  

So lu t ion.  

а) we represent the sequence of values of the two-valued logic 
function by the row-vector 

𝑥𝑥1&𝑥𝑥2 = [0, 0, 0, 1]; 

b) we multiply the resulting row-vector by the columns of the 
inverse basic matrix (𝐹𝐹)−1  and obtain the row-vectors of the 
expansion coefficients of the represented logic function with 
respect to the given basis and the expression of the conjunction 
operation   

𝑥𝑥1&𝑥𝑥2 = [0, 0, 0, 1] ∙
1
2
�
2
0

−1
   1

−1
−1

−1
   1

0
0

−1
   1

   1
   1

   1
−1

� = 

= [0, 0, 0, 1] ∙
1
2

[0, 1, 1,−1] =
𝑥𝑥1 + 𝑥𝑥2 − |𝑥𝑥1 − 𝑥𝑥2|

2
. 

It is noteworthy that the last expression has been known since 
1953 [3], but the author didn’t describe the method of its obtaining 
(more precisely, it was described later). 

The authors of this article propose three approaches to the 
creation of the basis vectors of linear bases, depending on the 
operations used for this purpose: 

- based on Boolean operations ∨ , &, ⊕, ∼, etc .; 

- based on the truncated difference operation ∸; 

- based on the comparison operation ≥. 

When using Boolean operations, the upper and lower “cuts” 
[14, 18] of variables of different orders are used as operands for 
creating basis vectors: 

– variables of the first order 𝑥𝑥(𝑖𝑖) = 𝑥𝑥&𝑖𝑖,  𝑥𝑥(𝑖𝑖) = 𝑥𝑥 ∨ 𝑖𝑖; 

– variables of the second order 

𝑥𝑥(𝑖𝑖𝑖𝑖) = 𝑥𝑥&𝑖𝑖 − 𝑥𝑥&𝑗𝑗, 𝑥𝑥(𝑖𝑖𝑖𝑖) = 𝑥𝑥 ∨ 𝑖𝑖 − 𝑥𝑥 ∨ 𝑗𝑗 

and so on. 

When using the truncated difference operation 

𝑥𝑥1 ∸ 𝑥𝑥2 = �𝑥𝑥1 − 𝑥𝑥2 when 𝑥𝑥1 ≥ 𝑥𝑥2;
     0        when 𝑥𝑥1 < 𝑥𝑥2, 

all logical operations are replaced by some combinations of this 
operation on variables involving operations of linear space. For 
example, the upper and lower “cuts” of the first and second orders 
are replaced by the expressions 

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = 𝑥𝑥 ∸ (𝑥𝑥 ∸ 𝑖𝑖); 

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 + (𝑥𝑥 ∸ 𝑖𝑖) = 𝑥𝑥 + (𝑖𝑖 ∸ 𝑥𝑥); 

𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑥𝑥 ∸ 𝑗𝑗) ∸ (𝑥𝑥 ∸ 𝑖𝑖); 

𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑖𝑖 − 𝑗𝑗) ∸ (𝑥𝑥 − 𝑗𝑗). 

Similarly, Boolean operations on two variables are replaced by 
the following expressions: 

𝑥𝑥1&𝑥𝑥2 = 𝑥𝑥1
(𝑥𝑥2) = 𝑥𝑥2 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2); 

𝑥𝑥1 ∨ 𝑥𝑥2 = 𝑥𝑥1(𝑥𝑥2) = 𝑥𝑥2 + (𝑥𝑥1 ∸ 𝑥𝑥2) = 𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1); 

𝑥𝑥1⨁𝑥𝑥2 = 𝑥𝑥1 + 𝑥𝑥2 − 𝑘𝑘{1 ∸ [𝑘𝑘 ∸ (𝑥𝑥1 + 𝑥𝑥2)]}; 

𝑥𝑥1 ⊖ 𝑥𝑥2 = 𝑥𝑥1 − 𝑥𝑥2 + 𝑘𝑘{1 ∸ [1 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1)]}; 

and others. 

When using the comparison operation, the above expressions 
are reduced to the following form 

𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑗𝑗);
𝑖𝑖−1

𝑖𝑖=0

 

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑡𝑡);
𝑖𝑖−𝑖𝑖

𝑡𝑡=𝑖𝑖

 

𝑥𝑥(𝑖𝑖) = 𝑥𝑥 + �(𝑗𝑗 > 𝑥𝑥)
𝑖𝑖

𝑖𝑖=0

= 𝑖𝑖 + � (𝑥𝑥 > 𝑗𝑗);
𝑘𝑘−2

𝑖𝑖=𝑖𝑖+1
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𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = (𝑖𝑖 − 𝑗𝑗) − ∑ (𝑥𝑥 > 𝑡𝑡)𝑖𝑖−1
𝑡𝑡=𝑖𝑖 . 

 

It should be noted that the most interesting result of the studies 
is the fact of constructing logical structures based on truncated 
difference and comparison operations other than Boolean ones. 
Naturally, there are certain dependencies between the truncated 
difference and comparison operations, some of which are given 
below: 

-“truncated difference – comparison”: 

𝑥𝑥 ∸ 𝑖𝑖 = � (𝑥𝑥 > 𝑗𝑗);
𝑘𝑘−1

𝑖𝑖=𝑖𝑖+1

 

𝑖𝑖 ∸ 𝑥𝑥 = �(𝑗𝑗 > 𝑥𝑥);
𝑖𝑖

𝑖𝑖=1

 

𝑗𝑗 ∸ (𝑥𝑥 ∸ 𝑖𝑖) = �[(𝑖𝑖 + 𝑝𝑝) > 𝑥𝑥];
𝑖𝑖

𝑝𝑝=1

 

𝑗𝑗 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = (𝑗𝑗 ∸ 𝑖𝑖) + � (𝑥𝑥 > 𝑝𝑝)
𝑖𝑖∸𝑖𝑖

𝑝𝑝=𝑖𝑖−1

; 

- “comparison - truncated difference”: 

𝑥𝑥 ≤ 𝑖𝑖 = 1 ∸ {1 ∸ [(𝑖𝑖 + 1) ∸ 𝑥𝑥]}; 

𝑥𝑥 < 𝑖𝑖 = 1 ∸ [1 ∸ (𝑖𝑖 ∸ 𝑥𝑥)]; 

𝑥𝑥 ≥ 𝑖𝑖 = 1 ∸ [1 ∸ (𝑥𝑥 ∸ 𝑖𝑖)]; 

𝑥𝑥 > 𝑖𝑖 = 1 ∸ [(𝑖𝑖 + 1) ∸ 𝑥𝑥]; 

𝑥𝑥1 > 𝑥𝑥2 = 1 ∸ [1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)]; 

𝑥𝑥1 ≥ 𝑥𝑥2 = 1 ∸ {1 ∸ [(𝑥𝑥1 ∸ 𝑥𝑥2) + 1]}; 

𝑥𝑥1 < 𝑥𝑥2 = 1 ∸ {1 ∸ [(𝑥𝑥2 ∸ 𝑥𝑥1) + 1]}. 

3. Monotonic Logic Functions 
Regarding the close connection between threshold and 

monotonic functions, we present some known results obtained in 
linear algebra in a simpler and more obvious way. 

А. Construction of sequences of nondecreasing componentes. 
Suppose we have an arbitrary vector 𝑎𝑎 = (𝑎𝑎0, 𝑎𝑎1, , … , 𝑎𝑎𝑚𝑚−1) ∈
𝑍𝑍𝑚𝑚. We renumber the components of the vector with k-ary n-bit 
numbers. The vector a∈ Zm is called monotonically increasing 
(decreasing), if for a bitwise comparison of k-ary number codes of 
the components ai and aj we have:  

∀(𝑖𝑖, 𝑗𝑗 ∈ 𝑍𝑍𝑚𝑚)𝑖𝑖 ≥ 𝑗𝑗 ⇒ 𝑎𝑎𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖 ∧ 𝑖𝑖 ≤ 𝑗𝑗 ⇒ 𝑎𝑎𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖.      (2) 

The bitwise comparison of k-ary number codes of the 
components enables to single out the sequences of nondecreasing 
(nonincreasing) components. 

The necessity to create these sequences is that for the 
monotonicity of the vector, condition (2) must be met in each 
sequence. Hence follows the first factor of simplicity of the 
analysis results in linear algebra: to verify the vector by 
monotonicity it is sufficient to establish its monotonicity within 
each sequence. This reduces the amount of computation and the 
overall complexity of the verification process. 

The sequences of nondecreasing components are constructed 
as follows. The set G of components (constituents 1) of logic 
functions of the chosen number of n variables is divided into n 
groups 𝐺𝐺 = {𝑔𝑔0, … ,𝑔𝑔𝑛𝑛−1}. Each group 𝑔𝑔𝑖𝑖𝑡𝑡 includes the sequences 
of nondecreasing components with starting numbers t, 𝑖𝑖 ≤ 𝑡𝑡 ≤
𝑛𝑛 − 1, determined by the following  relation  

𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1 ≤ 𝑗𝑗 ≤ 𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖 − 1, 

in this case we take (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1)�
𝑖𝑖=0

= 0. The starting numbers are 
component numbers that should be compared with the values of 
the other elements in the sequence. Each sequence contains 
components with numbers the decimal equivalents of which are 
determined as 𝑡𝑡 + 𝑘𝑘𝑡𝑡, 𝑡𝑡 + 𝑘𝑘𝑡𝑡+1, … , 𝑡𝑡 + 𝑘𝑘𝑛𝑛−1. As a result, the entire 
sequence generally takes on the form 

𝑔𝑔𝑖𝑖𝑡𝑡 = {𝑔𝑔𝑡𝑡 ,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑡𝑡,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑡𝑡+1, … ,𝑔𝑔𝑡𝑡 + 𝑘𝑘𝑛𝑛−1}. 

Thus, it is possible to construct the sequences of nondecreasing 
components for the given values of k and n. The sequence graphs 
of nondecreasing components for k = 2, k = 3 and n = 3 are shown 
in Figure 1. The digits in the circles denote the decimal numbers 
of the vector components, and the sequence itself includes a certain 
vertex and the nearest right vertexes connected with it by the lines. 

0 4
2
1

6
5
3 7

 
a 

0 9
3
1

18
12
6

10
4

2

21
15
19
13
7

11
5

24

22
16
20
14
8

25

23
17 26  

b 
Figure 1:  Sequence graphs of the nondecreasing components 

for k = 2, k = 3 and n = 3. 

Example 2. Construct sequences of nondecreasing components 
for k = n = 3. Since n = 3, there are 3 groups of sequences with 
starting numbers 0, 1 and 2 for the initial data under consideration. 

For group “0”, the value of t0 varies in the range 

30 − 3−1 ≤ 𝑡𝑡0 ≤ 31 − 30 − 1, 

or        0 ≤ 𝑡𝑡0 ≤ 1. 
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Therefore, this group includes two sequences with the initial 
elements t00 = 0 and t01 = 1. The first sequence g00 of the group “0” 
contains the elements with numbers t00,  t00 + 30 ,  t00 + 31,  t00 + 32 

, i.e. 0, 1, 3, 9. The second sequence g01 of the group “0” comprises 
the elements with numbers t01 , t01 + 30 ,  t01 + 31,  t01 + 32 ,  i.e. the 
elements with numbers 1, 2, 4, 10. 

Similarly, for group 1, the value of t1 is 

31 − 30 ≤ 𝑡𝑡1 ≤ 32 − 31 − 1, 

or  

2 ≤ 𝑡𝑡1 ≤ 5. 

Consequently, this group includes sequences with the initial 
elements g1t = 2... 5, and each sequence of the group comprises the 
elements with numbers t1j, t1j + 31, t1j + 32.  

Finally, for group 2, the value of t2 is 

32 − 31 ≤ 𝑡𝑡2 ≤ 33 − 32 − 1, 

or  

6 ≤ 𝑡𝑡2 ≤ 17, 

i.e. this group contains sequences with the initial elements g2t = 6 
... 17,  and each sequence includes the elements with numbers t2j, 
t2j + 32. Thus, we obtain the sequence structure of nondecreasing 
components in the form shown in Figure. 1b. 

The monotonicity property of vectors from Zm enables to obtain 
various representations of an arbitrary vector by means of 
monotonic vectors. Let’s consider such representations in the 
following three variants: 

− the difference of two monotonic vectors that have a value 
greater than the significance of the represented vector; 

− the algebraic sum of monotonic vectors of the same value as 
the original vector; 

− the algebraic sum of monotonic vectors of the value, the 
smaller value of the represented vector.  

В. The problem of representing the logic function by the 
difference of two monotonic vectors of greater significance is 
solved by the following algorithm [18]: 

Algorithm 1. 

1. i=0.         b0 = a0,                c0 = b0 − a0; 

2.      1≤ i ≤ m – 1. 

   𝑏𝑏𝑖𝑖 = � 𝑏𝑏𝑖𝑖−1 𝑤𝑤ℎ𝑒𝑒𝑛𝑛  𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑖𝑖−1
𝑏𝑏𝑖𝑖−1 + 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖−1 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑎𝑎𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖−1

,  𝑐𝑐𝑖𝑖 = 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖; 

3.       i = m,  the end. 

Here i and i−1 are neighboring indices of the elements in the 
sequence of nondecreasing components, 𝑚𝑚 = 𝑘𝑘𝑛𝑛. The validity of 
the algorithm results from the following elementary arguments. 

1. Let b0 = a0 , then c0 = b0 − a0 = 0.  

2. Let the pair of components aδδ and aγγ satisfies the condition 
of monotonicity, i.e. 𝑎𝑎𝛿𝛿 ≤ 𝑎𝑎𝛾𝛾 . In this case 

𝑎𝑎𝛿𝛿 − 𝑎𝑎𝛾𝛾 ≥ 0, 

and, consequently, from the identity 

𝑏𝑏𝛾𝛾 = 𝑏𝑏𝛿𝛿 + 𝑎𝑎𝛾𝛾−𝑎𝑎𝛿𝛿 , 

it follows that 

𝑏𝑏𝛾𝛾 ≥ 𝑏𝑏𝛿𝛿, 

i.e. 𝑏𝑏𝛾𝛾 also meets the monotonicity condition. 

3. If the pair of components a γ  and a δ  doesn’t fulfill the 
condition of monotonicity, i.e. 𝑎𝑎𝛿𝛿 ≥ 𝑎𝑎𝛾𝛾γ , then, taking 𝑏𝑏𝛾𝛾 = 𝑏𝑏𝛿𝛿  we 
remain the monotonicity condition for the components of the 
vector b again. 

Example 3. Construct a representation of the vector a = {0, 1, 
1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0} as a difference of two monotonic 
vectors for k = 2, n = 4, m = kn = 16. 

The sequence of nondecreasing components for this case has 
the following form: 

Table 1 

g Sequences Values of 
components 

0 0, 1, 2, 4, 8 0, 1, 1, 1, 1 

1 1, 3, 5, 9, 1, 0, 0, 0 

2 2, 6, 10 1, 0, 1 

 3, 7, 11 0, 1, 1 

3 4, 12 1, 1 

 5, 13 0, 1 

 6, 14 0, 1 

 7, 15 1, 0 

 

We construct the components of the vectors b and c: 

𝑏𝑏0 = 0 𝑐𝑐0 = 0 

𝑏𝑏1 = 𝑏𝑏1 + 𝑎𝑎1 − 𝑎𝑎0 = 1 𝑐𝑐1 = 0 

𝑏𝑏2 = 𝑏𝑏1 + 𝑎𝑎2 − 𝑎𝑎1 = 1 𝑐𝑐2 = 0 

𝑏𝑏3 = 𝑏𝑏1 = 1 𝑐𝑐3 = 1 

𝑏𝑏4 = 𝑏𝑏2 + 𝑎𝑎4 − 𝑎𝑎2 = 1 𝑐𝑐4 = 0 

𝑏𝑏5 = 𝑏𝑏1 = 1 𝑐𝑐5 = 0 

𝑏𝑏6 = 𝑏𝑏2 = 1 𝑐𝑐6 = 1 

𝑏𝑏7 = 𝑏𝑏3 + 𝑎𝑎7 − 𝑎𝑎3 = 2 𝑐𝑐7 = 1 

𝑏𝑏8 = 𝑏𝑏4 + 𝑎𝑎8 − 𝑎𝑎4 = 1 𝑐𝑐8 = 0 

𝑏𝑏9 = 𝑏𝑏5 + 𝑎𝑎9 − 𝑎𝑎5 = 1 𝑐𝑐9 = 1 
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𝑏𝑏10 = 𝑏𝑏6 + 𝑎𝑎10 − 𝑎𝑎6 = 2 𝑐𝑐10 = 1 

𝑏𝑏11 = 𝑏𝑏7 + 𝑎𝑎11 − 𝑎𝑎7 = 2 𝑐𝑐11 = 1 

𝑏𝑏12 = 𝑏𝑏8 + 𝑎𝑎12 − 𝑎𝑎8 = 1 𝑐𝑐12 = 0 

𝑏𝑏13 = 𝑏𝑏9 + 𝑎𝑎13 − 𝑎𝑎9 = 2 𝑐𝑐13 = 1 

𝑏𝑏14 = 𝑏𝑏6 + 𝑎𝑎14 − 𝑎𝑎6 = 1 𝑐𝑐14 = 1 

𝑏𝑏15 = 𝑏𝑏7 = 2 𝑐𝑐15 = 2 

The described algorithm demonstrates one more fact, which 
confirms the simplicity of analysis in linear algebra. 

As it can be seen from the example, when using the described 
algorithm in the general case, the value of the original vector does 
not coincide with the significance of the resolution vectors. 

C. The expansion of the arbitrary logic function of n arguments 
into the algebraic sum of monotonic logic functions of the same 
value of the following form 

𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = (−1)𝑖𝑖 ∑ 𝜑𝜑𝑖𝑖�𝑥𝑥�(𝑛𝑛)�𝑝𝑝
𝑖𝑖=0 , 

where p ≤ kn, 𝜑𝜑𝑖𝑖�𝑥𝑥�(𝑛𝑛)� − monotonic expansion functions with the 
property ϕ1 ⊃ ϕ2  ⊃…, are made in accordance with the following 
algorithm [18]. 

Algorithm 2. 

1. We choose a minimal summation of the positive summands 
of the arithmetic-logical representation of the logic function 
𝑓𝑓�𝑥𝑥�(𝑛𝑛)�  covering (in the logical sense) all other positive 
summands, and combine it by the operation ∨. Thus, we form the 
first expansion function 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� . To remain the equality, all 
possible logical products of summands from 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)�  with the 
signs defined as (–1)j, where  1 < j < s, s is a number of summands 
in 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� , are added to 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� .  Then we reduce similar 
terms and represent the initial logic function 𝑓𝑓�𝑥𝑥�(𝑛𝑛)�  in the 
following form 𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� − 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)�, where 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)� 
is a remainder of the initial function after reduction of similar 
terms. 

2. We repeat clause 1 for 𝑓𝑓1�𝑥𝑥�(𝑛𝑛)�. As a result, the initial logic 
function is represented in the following form 

𝑓𝑓�𝑥𝑥�(𝑛𝑛)� = 𝜑𝜑1�𝑥𝑥�(𝑛𝑛)� − 𝜑𝜑2�𝑥𝑥�(𝑛𝑛)� + 𝑓𝑓2�𝑥𝑥�(𝑛𝑛)�. 

3. We repeat clause 2 until the remainder of the initial logic 
function becomes zero. 

Since the number of arguments of the logic function is n, and 
the violation of monotonicity is possible in each of the k values of 
each argument, then, the maximum number of the expansion 
functions doesn’t exceed 2n(k–1). 

The process convergence follows from the fact that each 
successive resolution vector eliminates some violation of 
monotonicity in the original vector and doesn’t introduce new 
monotonicity violations, since it is monotonic itself.  

The problem of representing the arbitrary logic function by the 
algebraic sum of monotonic functions of the same value can be 

solved analytically. As is known [13], the minimal disjunctive 
normal form (DNF) of the monotonic logic function doesn’t 
contain inversions over variables. Consequently, the given logic 
function must be reduced to the representation in the form of the 
algebraic sum of such functions. To do this, we must perform the 
following actions: 

− conversion of the Boolean expression of the logic function 
into the linear one using the following identities 

𝑥𝑥1 ∨ 𝑥𝑥2 = 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥1𝑥𝑥2; 

�̅�𝑥 = 1 − 𝑥𝑥; 

– inverse transformation to the given (that doesn’t contain 
inversions over variables) form. 

Example 4. Obtain the two-valued logic function mapping of 
three arguments 

𝑓𝑓�𝑥𝑥�(3)� = (0,1,1,0,1,0,0,1), 

into the algebraic sum of monotonic logic functions. 

Solution. The logic function is represented by a vector of 
values. Its linear representation has the following form 

𝑓𝑓�𝑥𝑥�(3)� = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 − 2𝑥𝑥1𝑥𝑥2 − 2𝑥𝑥1𝑥𝑥3 − 2𝑥𝑥2𝑥𝑥3 +
4𝑥𝑥1𝑥𝑥2𝑥𝑥3. 

Now we obtain the mapping of this function into the algebraic 
sum of monotonic functions. The first expansion function is 
formed from the first three summands, covering in aggregate all 
the remaining positive terms of sum: 

𝑓𝑓�𝑥𝑥�(3)� = (𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3 − 𝑥𝑥1𝑥𝑥2𝑥𝑥3) − 

−2𝑥𝑥1𝑥𝑥2 − 2𝑥𝑥1𝑥𝑥3 − 2𝑥𝑥2𝑥𝑥3 − 4𝑥𝑥1𝑥𝑥2𝑥𝑥3 = 

= 𝜑𝜑1(𝑥𝑥�3) − 𝑥𝑥1𝑥𝑥2 − 𝑥𝑥1𝑥𝑥3 − 𝑥𝑥2𝑥𝑥3 + 3𝑥𝑥1𝑥𝑥2𝑥𝑥3. 

The subsequent expansion functions are obtained in the same 
way: 

𝑓𝑓�𝑥𝑥�(3)� = 𝜑𝜑1�𝑥𝑥�(3)� − (𝑥𝑥1𝑥𝑥2 ∨ 𝑥𝑥1𝑥𝑥3 ∨ 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 +

+𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥2𝑥𝑥3 − 𝑥𝑥1𝑥𝑥2𝑥𝑥3) + 3𝑥𝑥1𝑥𝑥2𝑥𝑥3 =

= 𝜑𝜑1�𝑥𝑥�(3)� − 𝜑𝜑2�𝑥𝑥�(3)� + 𝜑𝜑3�𝑥𝑥�(3)�. 

To obtain the threshold representation of the initial function, it 
suffices to transform the monotonic functions of the resulting 
expansion into the threshold form and to perform their algebraic 
addition. 

Each conjunctive term of any logical expansion function is 
transformed into the threshold form in accordance with the 
following identical equation 

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 … 𝑥𝑥𝑠𝑠 = 𝑃𝑃��𝑥𝑥𝑖𝑖+𝑥𝑥𝑖𝑖 + ⋯+𝑥𝑥𝑠𝑠� > 𝑡𝑡 − 1�, 

where t - a number of arguments in the term, P - the predicate 
symbol. Then all the terms are reduced to the common value of the 
right-hand side with the introduction of the corresponding 
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coefficients for the variables, then they are added together and the 
threshold value of the received sum is determined. 

Let’s explain the transformation of the monotonic logic 
function into the threshold form with the function from the 
previous example. 

With the transformation of 𝜑𝜑1�𝑥𝑥�(3)� everything is simple: 

𝜑𝜑1�𝑥𝑥�(3)� = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 = 𝑃𝑃1[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 0]; 

The transformation of 𝜑𝜑2�𝑥𝑥�(3)�  looks somewhat more 
complicated: 

𝜑𝜑2�𝑥𝑥�(3)� = 𝑥𝑥1𝑥𝑥2 ∨ 𝑥𝑥1𝑥𝑥3 ∨ 𝑥𝑥2𝑥𝑥3 = 

= 𝑃𝑃2[(𝑥𝑥1 + 𝑥𝑥2) > 1 + (𝑥𝑥1 + 𝑥𝑥3) > 1 + (𝑥𝑥2 + 𝑥𝑥3) > 1] = 

𝑃𝑃2[(2𝑥𝑥1 + 2𝑥𝑥2 + 2𝑥𝑥3) > 2] = 𝑃𝑃2[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 1]; 

The transformation of 𝜑𝜑3�𝑥𝑥�(3)� is produced just as easily as 
𝜑𝜑1�𝑥𝑥�(3)�: 

𝜑𝜑3�𝑥𝑥�(3)� = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 = 𝑃𝑃3[(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) > 2]. 

Thus, to realize the considered logic function, three threshold 
logic elements are required. The simplicity of the transformations 
in linear algebra becomes obvious. 

D. Representation of the arbitrary vector by the vectors of 
lower significance. This problem has many solutions. The variant 
considered below assumes the solution of this problem in two 
stages: 

- obtaining a representation of the arbitrary vector from Zm by 
the vectors of lower significance; 

- transformation of the obtained representation into the 
representation by means of monotonic vectors. 

Let us first consider the solution of the first stage of the 
problem. The representation of the arbitrary vector by the lower-
valued vectors can be obtained by weighting (each resolution 
vector is included into the final representation with some weight 
coefficient) or unitary (each resolution vector is included into the 
final representation with a unitary weight coefficient) coding. 

1. It is known from the theory of numbers [33] that any number 
a can be uniquely represented in the following form: 

∑ 𝑎𝑎𝑠𝑠−𝑖𝑖𝑘𝑘𝑠𝑠−𝑖𝑖𝑠𝑠
1 ,            (3)   

where s = [logk a] − the closest integer to logk a, as-i − the values of 
the expansion coefficients of the number a in the k-valued number 
system. Due to the uniqueness, this relation determines the 
isomorphism between any number a and the described 
representation of this number. 

The quantity аs–i can be determined from the following 
relation: 

𝑎𝑎𝑠𝑠−𝑖𝑖 = 𝑎𝑎 �𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑠𝑠−𝑖𝑖+1�−𝑎𝑎 �𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝑠𝑠−𝑖𝑖�
𝑘𝑘𝑠𝑠−𝑖𝑖

. 

This operation is linear 

𝑎𝑎 + 𝑏𝑏 = �𝑎𝑎𝑠𝑠−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑘𝑘𝑠𝑠−𝑖𝑖 + �𝑏𝑏𝑠𝑠−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑘𝑘𝑠𝑠−𝑖𝑖 = 

= ∑ (𝑎𝑎𝑠𝑠−𝑖𝑖 + 𝑏𝑏𝑠𝑠−𝑖𝑖)𝑠𝑠
𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖; 

 

𝜆𝜆𝑎𝑎 = ∑ 𝜆𝜆𝑎𝑎𝑠𝑠−𝑖𝑖𝑠𝑠
𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖 = 𝜆𝜆∑ 𝑎𝑎𝑠𝑠−𝑖𝑖𝑠𝑠

𝑖𝑖=1 𝑘𝑘𝑠𝑠−𝑖𝑖, 

thus, it is applicable to the vectors of the linear space. If now we 
associate the vector a to the number a in the linear space Zm, and 
the weighted sums of the vectors as−i of the spaces 𝐾𝐾1𝑚𝑚 and 𝐾𝐾2𝑚𝑚 to 
the weighted sums ∑ 𝑎𝑎𝑠𝑠1−𝑖𝑖

𝑠𝑠1
𝑖𝑖=1 𝑘𝑘𝑠𝑠1−𝑖𝑖   and ∑ 𝑎𝑎𝑠𝑠2−𝑖𝑖

𝑠𝑠2
𝑖𝑖=1 𝑘𝑘𝑠𝑠2−𝑖𝑖  

correspondingly, then the expression (3) is equivalent to the 
representation of the vector а ∈ Zm by the weighted sum of the 
vectors from 𝐾𝐾1𝑚𝑚   or 𝐾𝐾2𝑚𝑚  respectively. Since in both spaces the 
vector a is uniquely represented, both representations are 
isomorphic. Let’s call such a representation by coding, and the 
corresponding linear operator - by the encoding operator. 

Let the vector а ∈ Zm in the canonical basis be represented as 

𝑎𝑎 = 𝑎𝑎1𝑒𝑒1 + 𝑎𝑎2𝑒𝑒2 + ⋯+ 𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚. 

Using expression (3), we expand each coordinate of the vector 
a with respect to the bases k1 and k2. As a result, we obtain its 
representation in the following form 

𝑎𝑎𝑖𝑖 = �𝑎𝑎𝑖𝑖,𝑠𝑠1−𝑖𝑖

𝑠𝑠1

𝑖𝑖=1

𝑘𝑘1
𝑠𝑠1−𝑖𝑖 , 

or 

𝑎𝑎𝑖𝑖 = �𝑎𝑎𝑖𝑖,𝑠𝑠2−𝑖𝑖

𝑠𝑠2

𝑖𝑖=1

𝑘𝑘2
𝑠𝑠2−𝑖𝑖, 

 

where ai,s-i − the expansion components of the number ai (i − е 
vector components ai of the vector representation a). 

Then the vector representation a in each of the spaces can be 
described in the following form 

𝑎𝑎 = �𝑎𝑎1,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎1,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + ⋯+ 𝑎𝑎1,0𝑘𝑘0� + 

+�𝑎𝑎2,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎2,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + ⋯+ 𝑎𝑎2,0𝑘𝑘0� + ⋯

+ �𝑎𝑎𝑚𝑚,𝑠𝑠−1𝑘𝑘𝑠𝑠−1 + 𝑎𝑎𝑚𝑚,𝑠𝑠1−2𝑘𝑘
𝑠𝑠−2 + +𝑎𝑎𝑚𝑚,0𝑘𝑘0�, 

or 

𝑎𝑎 = �𝑎𝑎1,𝑠𝑠−1 + 𝑎𝑎2,𝑠𝑠−1 + ⋯+ 𝑎𝑎𝑚𝑚,𝑠𝑠−1�𝑘𝑘𝑠𝑠−1 + 

+�𝑎𝑎1,𝑠𝑠−2 + 𝑎𝑎2,𝑠𝑠−2 + ⋯+ 𝑎𝑎𝑚𝑚,𝑠𝑠−2�𝑘𝑘𝑠𝑠−2 + ⋯ 

+�𝑎𝑎1,0 + 𝑎𝑎2,0 + ⋯+ 𝑎𝑎𝑚𝑚,0�𝑘𝑘0. 

Thus, the arbitrary vector a can be written in the following form 

𝑎𝑎 = ���𝑎𝑎𝑖𝑖,𝑠𝑠−𝑖𝑖

𝑚𝑚

𝑖𝑖=1

� 𝑘𝑘𝑠𝑠−𝑖𝑖
𝑠𝑠

𝑖𝑖=1

, 
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i.e.  а is represented by the weighted sum s of the vectors from 𝐾𝐾1𝑚𝑚 
or 𝐾𝐾2𝑚𝑚 

Example 5. Let k1 = 10, n = 1.  The problem is to represent the 
vector a = {0, 1, 3, 9, 7, 6, 9, 4, 3, 8} by its k2-weighted and k2-
unitary sums of the vectors when k2 = 3.  

Solution. Since �𝑙𝑙𝑙𝑙𝑔𝑔𝑘𝑘2𝑘𝑘1� = ⌈𝑙𝑙𝑙𝑙𝑔𝑔310⌉ = 2, then the vector a 
can be represented by the weighted sum of three vectors а2, а1 and 
а0. The coordinates of the highest weight vector а2 are determined 
as 

𝑎𝑎2 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚33 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚32 

32
= 

=
(0139769348) − (0130760438)

9
= (0001001000).

 
The components of the subsequent vectors а1 and а0 are 

determined similarly: 

𝑎𝑎1 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚32 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚31 

31
= 

=
(0130760348) − (0100100102)

3
= (0010220112); 

𝑎𝑎0 =
𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚31 − 𝑎𝑎 𝑚𝑚𝑙𝑙𝑚𝑚30 

30
= 

=
(0100100102) − (0000000000)

1
= (0100100102).

 
Thus, 

𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖3𝑖𝑖3
0 = (0001001000)32 + (0010220112)31 +

(0100100102)30.
 2. We now represent the arbitrary number a as follows: 

𝑎𝑎 = ∑ (𝑎𝑎 − ∑ 𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖=0 )𝑠𝑠−1

𝑖𝑖=0 &(𝑘𝑘2 − 1),   (4)           

where s - the nearest larger integer 

𝑠𝑠 = �𝑘𝑘1−1
𝑘𝑘2−1

�. 

 
For the reasons stated above, this representation is also an 
isomorphism. 

If we associate each coordinate of the vector a with its 
representation in form (4), we obtain: 

𝑎𝑎 = �𝑎𝑎1&(𝑘𝑘2 − 1) + �𝑎𝑎1 − 𝑎𝑎11&(𝑘𝑘2 − 1)� +⋯+ 𝑎𝑎1 −�𝑎𝑎1𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1) + 

+ �𝑎𝑎2&(𝑘𝑘2 − 1) + �𝑎𝑎2 − 𝑎𝑎21&(𝑘𝑘2 − 1)�+ ⋯+ 𝑎𝑎2 −�𝑎𝑎2𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1) + ⋯ 

+ �𝑎𝑎𝑚𝑚&(𝑘𝑘2 − 1) + �𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑚𝑚1&(𝑘𝑘2 − 1)�+ ⋯+ 𝑎𝑎𝑚𝑚 −�𝑎𝑎𝑚𝑚𝑖𝑖

𝑠𝑠−1

𝑖𝑖+1

�&(𝑘𝑘2 − 1). 

 

Thus, 

𝑎𝑎 = �𝑎𝑎𝑖𝑖 ,
𝑠𝑠−1

0

 

where 𝑎𝑎𝑖𝑖 = (𝑎𝑎 − ∑ 𝑎𝑎𝑖𝑖𝑠𝑠−1
𝑖𝑖+1 )&(𝑘𝑘2 − 1), i.e. the arbitrary vector а ∈ 

Zm is represented by the k2-unitary sum of vectors from Zm. 

Example 6. Present the original vector from the previous 
example using unitary coding. 

Solution. Since under the same initial conditions 𝑠𝑠 = �10−1
3−1

� =
4, the vector a can be represented by the unitary sum of five vectors 
а4, а3, а2, а1 and а0, where 

𝑎𝑎4 = 𝑎𝑎&(3 − 1) = (0139769438)&(3 − 1) =
(0122222222); 

𝑎𝑎3 = (𝑎𝑎 − 𝑎𝑎4)&(3 − 1) = (0012222212); 

𝑎𝑎2 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3)&(3 − 1) = (0002222002); 

𝑎𝑎1 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3 − 𝑎𝑎2)&(3 − 1) = [0002102002]; 

𝑎𝑎0 = (𝑎𝑎 − 𝑎𝑎4 − 𝑎𝑎3 − 𝑎𝑎2 − 𝑎𝑎1)&(3 − 1) = 

= [0001001000]. 

Thus, 

𝑎𝑎 = �𝑎𝑎𝑖𝑖

3

0

= (0122222222) + (0012222212) + 

+(0002222002) + (0002102002) + 

+0001001000. 

The solution of the second stage of the problem, i.e. the 
transformation of the obtained representation into the 
representation by means of monotonic lower-valued vectors, can 
be obtained on the base of algorithm 2. 

Thus, the body of the linear space theory determines easy-to-
use means of representing arbitrary vectors of any given value by 
monotonic vectors of greater, similar or lesser significance, and 
also converting monotonic functions to the threshold form. 

4. Synthesis of Logic and Threshold Elements 
In linear algebra, the logic function is represented by a 

weighted algebraic sum of terms. As a whole the variables, terms 
and function take values from the set of numbers 0, 1, ..., k - 1. The 
algebraic sum is realized by operations of the linear space, and 
individual terms - depending on the choice made - by other 
operations chosen for technical, technological or operational 
reasons. In this article, “Truncated Difference” and 
“Comparison” are used as such operations. In the future, the 
developers of linear LSIs can be motivated to choose other 
operations. Thus, the process and the possibilities of logic 
synthesis will be further demonstrated on the bases based on the 
truncated difference and comparison operations. 

To solve the problems of logic synthesis in linear algebra, first, 
it is necessary to solve the problem of the formation of bases. 

In Boolean algebra, 17 previously defined functionally 
complete systems of logic functions of two arguments are known 
[34]. Selecting any of them, you can get its linear analog and 
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perform a logic synthesis of the circuit that implements the given 
logic function according to the established algorithm. Therefore, it 
is possible to construct bases as a mapping of Boolean functionally 
complete systems to a linear space. For truncated difference and 
comparison operations, the bases can be formed directly. 

To form the bases, we need: 

- a set of operations; 

- a set of generating functions. 

The following operation are considered as the basic ones: 

- logical operations in their traditional understanding; 

- operation “truncated difference”; 

- operation “comparison”. 

Constants 1, logical variables 1x , 2x , …, nx  and their totals 
subjected to the effect of basic operations are used as generators 
for the formation of bases. 

The following methods of logic synthesis of digital structures 
are considered: 

- direct synthesis in a given basis (logic synthesis in the linear 
space); 

- synthesis with preliminary transformation of the value of the 
given function (for example, a multivalued two-digit 
implementation); 

- synthesis with preliminary expansion of the given function 
into the algebraic sum of monotonic functions (threshold 
synthesis). 

The first method is the most obvious and consists in the 
representation of the realized logic function in the chosen basis. 

The second method presupposes a preliminary representation 
of the realized function in the form of an algebraic sum of logic 
functions larger, smaller or equal to the original value. The 
methods of this transformation have been described in the previous 
section. 

Finally, the third method consists of the preliminary 
representation of the realized function by the algebraic sum of 
monotonic logic functions. In this case, each monotonic function 
is realized by a single threshold element. 

Note that the synthesis of digital structures with increasing of 
their complexity, as usual, requires the involvement of methods of 
system engineering. 

A. Basic operations of logic synthesis. The set of operations 
most often used to represent logic functions will be considered as 
basic operations of logic synthesis. In Boolean algebra, such 
operations can be considered as operations of the basic functional 
system AND (&), OR (˅), (  ̅), and also the operations “modulo 2 
sum” (⊕), “logic equivalence” (~) “dual stroke” (↓), “Sheffer 
stroke” (|), “prohibition with respect to х1 (х2)” (𝑥𝑥1�̅�𝑥2) , 
“implication from х1 to х2)” (𝑥𝑥1 ∨ �̅�𝑥2 ), majority operation 𝑥𝑥1 ⋕
𝑥𝑥2 ⋕ 𝑥𝑥3. 

By basic operations of linear algebra we mean arithmetic 
operations (operations of the linear space), as well as operations 
used to form bases. We classify the current realizations of logical 
operations: the difference module, the truncated difference, the 

arithmetic sum and the difference, the multiplication by a constant 
coefficient, the operations of changing the sign to them. Perhaps 
there are other arithmetic operations suitable for the use in linear 
logic synthesis, but they are not considered in this article. 

Since our task is logic synthesis in linear algebra, we start with 
the logic synthesis of basic operations of linear algebra. 

Algebraic sum. The operation is realized by the assembly 
connection of conductors, over which the currents flow. The 
conditional graphic representation of the operation of the algebraic 
sum is shown in Figure 2. 

   

 I0

I1

I0-I1

I0 > I1

 I0

I1

I1-I0

I0 < I1

 
Figure 2: Conditional graphical representation of the algebraic addition of 

currents. 

The arithmetic sum differs from the algebraic one in that in the 
latter case the signals of only one sign (i.e. only inflowing or only 
flowing out) are fed to the input of the element. From the output, 
the sum of the signals is removed. The positive direction of the 
input currents is the current direction to the connection point Σ1, 
i.e. the positive current flowing into the connection point. The 
negative direction of the input currents is the direction of the 
current from the connection point of the conductors Σ1, i.e. 
negative - the current flowing from the connection point. For the 
output (resulting) current, the positive direction is the direction 
from the connection point Σ1, and the negative direction - to the 
connection point Σ1, 

The number of positive and negative inputs is determined by 
the function being implemented. Since the logical variables take 
values from the positive semi-axis of the numerical axis, when 
subtracting, it is necessary to meet the condition that the total sum 
of the negative summands (current quanta) doesn’t exceed the total 
sum of the positive terms of the sum. Otherwise, instead of the 
algebraic sum, the truncated difference operation is performed, in 
which the subtraction from zero is a logical component of this 
operation and which carries the meaning of the comparison 
operation with zero (Figure 3) 

        

  _.x1

-x2

-y -y
-x2

_.

 
Figure 3:  Conditional graphic representation of the truncated difference operation. 

The operation of multiplying (dividing) by a constant 
coefficient consists in multiplying the input signal by several 
outputs and then combining the outputs of the multiplied signal 
(when multiplying) or outputting some part of the input signal 
(when dividing), as shown in Figure 4. 

The comparison operation is used to determine the relationship 
between the compared variables. It can be performed in two forms: 
in the relative form, i.e. in the form of determining the difference 
in the values of the variables, or in the absolute form, i.e. in the 
form of the “more-less” comparison itself. The conditional graphic 
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symbols of the comparison elements in these forms are shown in 
Figure 5. 

x
 

-y
 

y-x

 
а 

 
-x y

 
-yx

 
b 

Figure 4: Conditional graphic representation of the operation of  
multiplication (a) and division (b). 

-x1

-x2

-y
 x1

x2

y

 
а 

 

-x2

y−
 x1

x2

y
-x1

 
b 

Figure 5: Conditional graphic representation of the comparison operation:   
relative (a) and absolute (b). 

The operation of changing the sign of terms allows changing 
the sign of the term, thereby transforming it from the summand to 
the subtrahend and vice versa. It is performed by the current 
inverter, the conditional graphic representation of which is shown 
in Figure 6. 

           

  
x -y -x y

1 1

 
а                                     b 

Figure 6: Conditional graphic representation of the operation of changing the sign. 

The operation of changing the sign can functionally be 
combined with the operations of multiplication and division by the 
constant coefficient. 

B. Formation of bases. The bases being formed are bases of the 
linear space, and according to the form they are sets of variables 
and their various combinations (terms) combined by the selected 
operations. We can approach to the formation of bases from 
different sides. For the two-valued synthesis, as it was shown 
above, it is possible, for example, to construct bases equivalent to 

17 functionally complete systems (logical-arithmetic), and then 
create their analogs in linear algebra.  

To form the multivalued bases, we can use the cuts of 
multivalued variables (10 combinations of such cuts are proposed 
in [18]), and then construct their analogs in linear algebra. Such a 
solution is also applicable for the two-valued bases. The problem 
of forming the bases is solved uniformly for the cuts of any type, 
so we demonstrate its solution on the basis of the upper cuts of the 
first level, which are analogs of the functionally complete system 
AND, NOT (OR, NOT). 

The bases of this type for k = 2, n = 2 and n = 3, and for k = 3, 
n = 2 are given below. For each basis, the basic and inverse 
matrices are presented. Two-digit operations & and ∨ and their 
multivalued analogs 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1𝑥𝑥2)  and 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1𝑥𝑥2)  are used as 
generating operations. Therefore, the bases of this type are called 
logical-arithmetic. 

The two-valued logical-arithmetic bases of two variables have 
the form: 

- conjunctive (AND, NOT) 

&(В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1)𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

𝑥𝑥1&𝑥𝑥2

� = �
1
0

1 1 1
1 0 1

0
0

0 1 1
0 0 1

�; 

�&(В1,В1)(2)�
−1

= �
1
0
0
0

−1
   1
   01

−1
   0
   1
   1

   1
−1
−1
   1

�; 

- disjunctive (OR, NOT) 

∨ (В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1) ∨ 𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �
1
0

1 1 1
1 0 1

0
0

0 1 1
1 1 1

�; 

(∨ (В1,В1)2)−1 = �
1
0
0
0

     0
     0
   −1

   1

   0
−1
    0
    1

−1
   1
   1
−1

�. 

The two-valued logical-arithmetic bases of three variables 
have the similar form: 

&(В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥1𝑥𝑥2
𝑥𝑥1𝑥𝑥3
𝑥𝑥2𝑥𝑥3
𝑥𝑥1𝑥𝑥2𝑥𝑥3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 1

0 1
0 1

0 0
0 0

1 1
0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 

�&(В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 −1
0    1

−1 −1
   0     0

0   0
0   0    1     0

0     0

   1   1
−1 −1

  1 −1
  0   1

−1 −1
   1    0

−1   1
   0 −1

 0    0
 0    0

    0     1
    0     0

 0    0
0   0     0     0

 0     0

   0 −1
   0   1

−1   1
   0 −1

   0    0
   0    0    1 −1

 0    1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 
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∨ (В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2
𝑥𝑥1˅𝑥𝑥3
𝑥𝑥2˅𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2˅𝑥𝑥3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 1
0 1

1 1
0 1

0 0
0 1

1 1
1 1

0 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 

�∨ (В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1     0
   0      0

     0    0
     0    0

   0     0
   0      0

     0   0
     0 −1

   0    0
   0    0     0 −1

−1    1
   0 −1
   0    1

    0    1
    1 −1

  0    0
0     0  

  0   0
−1   0

 0 −1
0    1

   0    0
   1    1

−1   0
   1     0

    0    1
    1 −1

   1     1
−1 −1

    0 −1
−1    1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

The three-valued logical-arithmetic analogs of these 
bases look like this: 

- conjunctive 

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥1
(2)

𝑥𝑥2
(1)

𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1),𝑥𝑥2

(1)�
𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1

(2), 2𝑥𝑥2
(1)�

𝑥𝑥2
(2)

𝑚𝑚𝑖𝑖𝑛𝑛�2𝑥𝑥1
(1),𝑥𝑥2

(2)�
𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1

(2),𝑥𝑥1
(2)� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1    0
0    0    0
0    0    0

−1    1    0
   2 −2    0
−1    1    0

   0    0    0
−1    1    0
   1 −1    0

0    2 −1
0    0    0
0    0    0

   0 −2    1
   0    2 −1
   0    0    0

   
0     0    0
0 −1    1
0    1 −1

0 −1    1
0    0    0
0    0    0

   0    1 −1
   0    0    1
   0 −1    0

   
0    0    0
0    0 −1
0    0    1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

- disjunctive 

𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥2

(1)

𝑥𝑥2
(2)

𝑥𝑥1
(1)

𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2
(1),𝑥𝑥1

(1)�
𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2

(2), 2𝑥𝑥1
(1)�

𝑥𝑥1
(2)

𝑚𝑚𝑎𝑎𝑥𝑥�2𝑥𝑥2
(1),𝑥𝑥1

(2)�
𝑚𝑚𝑎𝑎𝑥𝑥�𝑥𝑥2

(2),𝑥𝑥1
(2)� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
2 2 2

0 1 1
0 2 2
0 0 0

0 1 1
1 2 2
0 1 1

0 1 1
2 2 2
0 2 2

0 1 2
0 1 2
0 1 2

0 1 2
2 2 2
1 1 2

0 1 2
2 2 2
2 2 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

 

�𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1    0    0
0    0    0
0 −1    0

   0 −1    0
   0    2    0
   0 −1    0

   
0    0    0
0 −1    0
0    1     0

0    0    0
0    0    0
0    2 −1

   0    2 −1
   0 −2    1
   0    0    0

 
   0    0    0
   0    1 −1
   0 −1    1

0    0    0
0    0    0
0 −1    1

−1 −1    1
   2    0 −1
−1    1    0

   0    0     0
−1    0     1
   1    0  −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

 

To obtain linear analogs of the above logical-arithmetic bases, 
we can use the relations that establish the connection between 
logical operations, on the one hand, and with the operations used 
to form the bases of linear space, on the other hand. For the bases 
of the considered type these relations are as follows: 

- logical operations - truncated difference operation 

𝑥𝑥(𝑖𝑖) = 𝑖𝑖 ∸ (𝑖𝑖 ∸ 𝑥𝑥) = 𝑥𝑥 ∸ (𝑥𝑥 ∸ 𝑖𝑖); 

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖𝑖𝑖) = (𝑥𝑥 ∸ 𝑗𝑗) ∸ (𝑥𝑥 ∸ 𝑖𝑖); 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) = 𝑥𝑥2 ∸ (𝑥𝑥2 ∸ 𝑥𝑥1); 

𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1) = 𝑥𝑥2 + (𝑥𝑥1 ∸ 𝑥𝑥2). 

- logical operations - comparison operation  

𝑥𝑥(𝑖𝑖) = �(𝑥𝑥 > 𝑗𝑗);
𝑖𝑖−1

𝑖𝑖=0

 

𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖𝑖𝑖) = ∑ 𝑃𝑃𝑡𝑡(𝑥𝑥 > 𝑡𝑡)𝑖𝑖−𝑗𝑗
𝑡𝑡=1 ; 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑃𝑃{[(𝑥𝑥1 > 0) + (𝑥𝑥2 > 0)] > 1} + 

+𝑃𝑃{[(𝑥𝑥1 > 1) + (𝑥𝑥2 > 1)] > 1}; 

𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) = 𝑃𝑃{[(𝑥𝑥1 > 0) + (𝑥𝑥2 > 0)] > 0} + 

+𝑃𝑃{[(𝑥𝑥1 > 1) + (𝑥𝑥2 > 1)] > 0}. 

Using the above relations, we can easily obtain linear analogs 
of the above bases: 

- conjunctive k = 2, n = 2 and n = 3 

&(В1,В1)(2) =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1)𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

(𝑥𝑥1 + 𝑥𝑥2) ∸ 1
� = �

1
0

1 1 1
1 0 1

0
0

0 1 1
0 0 1

�;     

�&(В1,В1)(2)�
−1

= �
1
0
0
0

−1
   1
   01

−1
   0
   1
   1

   1
−1
−1
   1

�; 

&(В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥1𝑥𝑥2
𝑥𝑥1𝑥𝑥3
𝑥𝑥2𝑥𝑥3
𝑥𝑥1𝑥𝑥2𝑥𝑥3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

(𝑥𝑥1 + 𝑥𝑥2) ∸ 1
(𝑥𝑥1+𝑥𝑥3) ∸ 1
(𝑥𝑥2+𝑥𝑥3) ∸ 1

(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) ∸ 2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 1

0 1
0 1

0 0
0 0

1 1
0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 
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�&(В1,В1,𝐵𝐵1)(2)�
−1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
 1 −1
0    1

−1 −1
   0     0

0   0
0   0    1     0

0     0

   1   1
−1 −1

  1 −1
  0   1

−1 −1
   1    0

−1   1
   0 −1

 0    0
 0    0

    0     1
    0     0

 0    0
0   0     0     0

 0     0

   0 −1
   0   1

−1   1
   0 −1

   0    0
   0    0    1 −1

 0    1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

 

- disjunctive k = 2, n = 2 and 3 

∨ (В1,В1)2 =

⎣
⎢
⎢
⎢
⎡

1
𝑥𝑥1

(1)

𝑥𝑥2
(1)

𝑥𝑥1
(1) ∨ 𝑥𝑥2

(1)⎦
⎥
⎥
⎥
⎤

= �

1
𝑥𝑥1
𝑥𝑥2

𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1)
� = 

= �
1
0

1 1 1
1 0 1

0
0

0 1 1
1 1 1

�, 

 

(∨ (В1,В1)2)−1 = �
1
0
0
0

     0
     0
   −1

   1

   0
−1
    0
    1

−1
   1
   1
−1

�, 

∨ (В1,В1,𝐵𝐵1)(2) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2
𝑥𝑥1˅𝑥𝑥3
𝑥𝑥2˅𝑥𝑥3

𝑥𝑥1˅𝑥𝑥2˅𝑥𝑥3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2)]
1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥3)]
1 ∸ [1 ∸ (𝑥𝑥2 + 𝑥𝑥3)]

1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3)]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1
0 1

1 1
0 1

0 0
0 0

1 1
0 0

1 1
0 1

1 1
0 1

0 0
1 1

1 1
1 1

0 1
0 1

1 1
0 1

0 0
0 1

1 1
1 1

0 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

�∨ (В1,В1,𝐵𝐵1)(2)�
−1

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1     0
   0      0

     0    0
     0    0

   0     0
   0      0

     0   0
     0 −1

   0    0
   0    0     0 −1

−1    1
   0 −1
   0    1

    0    1
    1 −1

  0    0
0     0  

  0   0
−1   0

 0 −1
0    1

   0    0
   1    1

−1   0
   1     0

    0    1
    1 −1

   1     1
−1 −1

    0 −1
−1    1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

Similarly, we obtain linear analogs of multivalued bases: 

- conjunctive, k = 3, n = 2 

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)

[1 − (1 ∸ 𝑥𝑥1)] − (1 ∸ 𝑥𝑥2)
𝑥𝑥1 ∸ 2(1 ∸ 𝑥𝑥2)

𝑥𝑥2
2[1 − (1 ∸ 𝑥𝑥1)] − (2 ∸ 𝑥𝑥2)

𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1    0
0    2 −1
0 −1    1

−1    1    0
   0 −2    1
   0    1 −1

   0    0    0
   0    0    0
   0    0    0

0    0    0
0    0    0
0    0    0

   2 −2    0
   0    2 −1
   0    0    1

−1     1   0
   0 −1    1
   0  0 −1

0    0    0
0    0    0
0    0    0

−1    1    0
   0    0    1
   0 −1    0

   
1 −1      0
0    1 −1
0    0    1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

- disjunctive 

𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)
1 ∸ (𝑥𝑥1 + 𝑥𝑥2)

𝑥𝑥2 + {2[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ 𝑥𝑥2}
𝑥𝑥2

𝑥𝑥1 + {2[1 ∸ (1 ∸ 𝑥𝑥2)]∸ 𝑥𝑥1}
𝑥𝑥1 + (𝑥𝑥2 ∸ 𝑥𝑥1) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 1 1
0 1 2

1 1 1
1 1 1
2 2 2

1 1 1
1 1 1
2 2 2

0 0 0
0 2 2
0 1 2

1 1 1
1 2 2
1 1 2

2 2 2
2 2 2
2 2 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 

�𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵1,𝐵𝐵1)(3)�
−1

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1    0    0
0    0    0
0    0    0

   0 −1    0
   0    2 −1
−1 −1    1

 0    0    0
 0    0    0
 0    0    0

0    0    0
0    0    0
0    0    0

   0    2 −1
   0 −2    2
   2    0 −1

 
0 −1    1
0   1 −2
0   0    1

0 −1    0
0    2 −1
0 −1    1

   0 −1    1
   0    0 −1
−1    1    0

 
0    1 −1
0 −1    2
0    0 −1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 
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C. Logic synthesis of basic functions. The resulted conditional 
graphic designations of operations of the linear space can be used 
for graphic representation of basic Boolean logic operations in 
linear algebra and construct functional schemes of logic elements 
on their base. For this it is sufficient: 

- to choose the basis from the listed above; 

- to use the previously described technique of logic synthesis 
in linear algebra. 

We choose a conjunctive version of the chosen basis as an 
object of logic synthesis in which we perform a logic synthesis of 
the two-valued and three-valued functions of circular shift 

(𝑥𝑥1&𝑥𝑥2)⨁1 = [1 1 1 0], 

and 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = [1 1 1 1 2 2 1 2 0], 

and 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = [2 2 2 2 0 0 2 0 1]. 

In accordance with the above, the first action is to obtain the 
expansion vector of the value vector of the function in terms of the 
basis. Multiplying the vectors written above by the columns of the 
inverse matrix of the bases &(В1,В1)(2) and 𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) results 
in the following:  

𝑤𝑤[(𝑥𝑥1&𝑥𝑥2)⨁1] = [0 1 1 − 2]; 

𝑤𝑤[𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1] ⇒ [1 0 0 0 3 0 0 0 − 2]; 

𝑤𝑤[𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1] ⇒ [2 0 0 0 − 3 0 0 01]. 

Weighing the basis vectors with respect to the obtained 
coefficients, we obtain expressions of the logic functions in the 
given basis 

(𝑥𝑥1&𝑥𝑥2)⨁1 = 1 − (𝑥𝑥1 + 𝑥𝑥1 − 2𝑥𝑥1&𝑥𝑥1); 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = 1 + 3𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�; 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 3𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� + 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�. 

The functional schemes corresponding to these expressions are 
shown in Figure 7 a, b, c. 

To obtain the equivalent expressions of the functions in linear 
analogs of the logical-arithmetic basis under consideration, one 
can proceed in two ways: 

- replace the used basis vectors with their linear analogs in the 
expressions obtained; 

- use the above relations between logic and linear operations 
and convert the expressions written above into the linear form. 

In all three cases, we obtain the following results: 

(𝑥𝑥1&𝑥𝑥2) ⊕ 1 = 1 − {𝑥𝑥1 + 𝑥𝑥1 − 2[(𝑥𝑥1 + 𝑥𝑥1) ∸ 1]}; 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊕ 1 = 1 + 3{[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ (1 ∸ 𝑥𝑥2)} − 

−2{[(𝑥𝑥1 ∸ 1) + (𝑥𝑥2 ∸ 1)] ∸ 1}; 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 3{[1 ∸ (1 ∸ 𝑥𝑥1)] ∸ (1 ∸ 𝑥𝑥2)} + 

+{[(𝑥𝑥1 ∸ 1) + (𝑥𝑥2 ∸ 1)] ∸ 1}. 
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Figure 7: Functional schemes of the logical-arithmetic realization of the 
circular shift operation: a - two-valued, b - three-valued with a shift to the right,    

c - three-valued with a shift to the left. 

The functional schemes corresponding to these expressions are 
shown in Figure 8, a, b, c. 

The difference between the linear representations obtained 
from the arithmetic-logical representation is the possibility of 
physical realization. The authors of the article have obtained more 
than 25 patents for the circuit implementation of two-valued and 
three-valued logic circuits. 

D. Expansion of the arbitrary function into the algebraic sum 
of monotonic functions of the same value. To obtain the 
representation of the functions under consideration by the 
algebraic sum of monotonic functions, we expand them into the 
algebraic sum of monotonic functions within each value. For the 
two-valued function, the sequence graph of nondecreasing 
components has the form shown in Figure 9. 
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Figure 8: Functional schemes of the linear realization of the circular shift operation 
based on the truncated difference: a - two-valued, b - three-valued with a shift to 

the right, c - three-valued with a shift to the left. 
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Figure 9: Sequence graph of nondecreasing components of the two-valued  

functions of two variables. 

The structure of the expansion function of the equivalence 
�̅�𝑥1�̅�𝑥2 ∨ 𝑥𝑥1𝑥𝑥2 = (𝑥𝑥1&𝑥𝑥2) ⊕ 1 into the algebraic sum of monotonic 
functions is given in Figure 10. 
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Figure 10: The structure of the expansion of the two-valued function �̅�𝑥1�̅�𝑥2 ∨ 𝑥𝑥1𝑥𝑥2  

into the algebraic sum of monotonic functions. 

Here and below, the double circle marks the terms the values 
of which violate the monotonicity of the function. 

It follows from the structure of the expansion that the 
representation of the function under consideration by the algebraic 
sum of monotonic functions has the following form 

𝑓𝑓�𝑥𝑥�(2)� = (𝑥𝑥1&𝑥𝑥2) ⊕ 1 = 1 − 𝑥𝑥1 ∨ 𝑥𝑥2 + 𝑥𝑥1&𝑥𝑥2. 

Carrying out the similar transformations for the three-valued 
functions, the sequence graph of nondecreasing components of 
which is shown in Figure 11. 
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Figure 11: Sequence graph of nondecreasing components of the three-valued 

functions of two variables. 

we obtain the following representations of the functions under 
consideration by the algebraic sum of monotonic functions: 

- for 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1. 
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Figure 12: The structure of the expansion of the three-valued function 
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⨁1 into the algebraic sum of monotonic functions. 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1 = 1 −𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2
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(1), 𝑥𝑥2

(1)�; 

− for 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1. 
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Figure 13: The structure of the expansion of the three-valued function 
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⊖ 1 into the algebraic sum of monotonic functions. 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1 = 2 − 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� +

+𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�. 
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To obtain the equivalent representations of the expansion 
functions in linear analogs of the basis under consideration, we can 
proceed in the same way as with the functions themselves. 

Expansion of the arbitrary function into the algebraic sum of 
smaller value. 

We consider this operation with the help of the above 
transformation of the three-valued function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1,  by 
unitary and weighted coding of the values of variables and 
functions. 

In these cases, the encoding of variables and functions looks 
like this: 

- unitary coding 
x x2 x1 

0 0 0 

1 0 1 

2 1 1 

Hence, it follows that for the unitary coding 

𝑥𝑥 = 𝑥𝑥1 + 𝑥𝑥2;   

– weighted coding 
x x2 x1 

0 0 0 

1 0 1 

2 1 0 

 

It follows that at the weighted coding 

𝑥𝑥 = 𝑥𝑥1 + 2𝑥𝑥2. 

Using the basic and its inverse matrix, we obtain the 
expressions for the two-valued expansion functions from the  
multivalued arguments: 

- for the unitary coding 

𝑓𝑓1 = 1 + 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�; 

𝑓𝑓2 = 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�; 

𝑓𝑓 = 𝑓𝑓1 + 𝑓𝑓2; 

- for the weighted coding 

𝑓𝑓1 = 1 −𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)�; 

𝑓𝑓2 = 2𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(1), 𝑥𝑥2

(1)� − 𝑚𝑚𝑖𝑖𝑛𝑛�𝑥𝑥1
(2), 𝑥𝑥2

(2)�; 

𝑓𝑓 = 𝑓𝑓1 + 2𝑓𝑓2. 

The representation of the three-valued function 
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1  by the two-valued ones for both versions of 
coding is given in Table 2. 

Table 2 ─ The expansion of the three-valued function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2)⨁1  into the sum 
of the two-valued ones 

𝑥𝑥2 𝑥𝑥1 Unitary Weighted 

𝑓𝑓2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓1 

0 0 0 1 0 1 

0 1 0 1 0 1 

0 2 0 1 0 1 

1 0 0 1 0 1 

1 1 1 1 1 0 

1 2 1 1 1 0 

2 0 0 1 0 1 

2 1 1 1 1 0 

2 2 0 0 0 0 

 

Replacing the three-valued variables with the two-valued ones 
in accordance with the rules given above, we obtain the two-valued 
expansion functions in the following form: 

- for the unitary coding 

𝑓𝑓1 = 1 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22; 

𝑓𝑓2 = 𝑥𝑥11𝑥𝑥21 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22; 

- for the weighted coding 

𝑓𝑓1 = 1 − 𝑥𝑥11𝑥𝑥21; 

𝑓𝑓2 = 2𝑥𝑥11𝑥𝑥21 − 𝑥𝑥11𝑥𝑥12𝑥𝑥21𝑥𝑥22. 

The functional schemes of the linear realization of the circular 
shift operation by the expansion into the sum of the two-valued 
functions are shown in Figure 14. 
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Figure 14: Functional schemes of linear realization of the circular shift operation 
by the expansion into the sum of the two-valued functions: a - on the basis of the 

unitary coding, b - on the basis of the weighted coding. 

http://www.astesj.com/


N. I. Chernov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 168-190 (2018) 

www.astesj.com     183 

For the threshold representation and the subsequent threshold 
realization, it suffices to transform the equations obtained above 
into the threshold form. After completing this transformation, we 
get: 

- for the unitary coding 

𝑓𝑓1 = 1 > [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3]; 

𝑓𝑓2 = [(𝑥𝑥11+𝑥𝑥21) > 1] − [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3]; 

- for the weighted coding 

𝑓𝑓1 = 1 − [(𝑥𝑥11+𝑥𝑥21) > 1]; 

𝑓𝑓2 = 2[(𝑥𝑥11+𝑥𝑥21) > 1] − [(𝑥𝑥11+𝑥𝑥12+𝑥𝑥21 + 𝑥𝑥22) > 3]. 

The functional schemes shown in Figure 15 correspond to 
these equations. 
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Figure 15: Functional schemes of linear realization of the circular shift operation 
by the expansion into the sum of the threshold two-valued functions: a - on the 

basis of the unitary coding, b - on the basis of the weighted coding. 

 

The considered complex of transformations of logic functions 
in linear algebra proves useful in the design of digital structures for 
various applications. 

5. Circuitry of the Linear Logic and Threshold Elements 
A. Basic functional nodes of digital logic elements. The 

implementation of the mathematically predetermined set of linear 
operations over the current signals requires the corresponding set 
of hardware. The circuit implementation of digital signal 
transformation functions based on the mathematical tool of linear 
algebra can be reduced to performing a relatively simple set of 
operations over the current signals. These operations include: 

- conversion of the standard logic signals into the binary 
current signals matched with a reference current quantum I0; 

- formation of the multivalued (non-binary) algebraic sums of 
current signals; 

- performing the comparing operations of the received sums 
with the given levels of the reference currents. 

These operations are typical for analog microcircuitry, 
therefore the main nodes of various functional elements can be 
constructed on the basis of the widely used analog structures. In 
addition, TTL circuitry and CMOS circuitry of these operations 
completely coincide. 

The reference signal driver. It is designed to generate voltages 
that provide operational modes of elements of digital circuits 
synthesized in linear algebra. The schematic configuration of the 
driver is shown in Figure 16. 

 

 
Q1

Q2

Q3

Q4

R

Vcc

Voff

Eoff1

Eoff2

Voff

(+)

(─)

 
Figure 16: Reference signal driver. 

The symmetric structure of the reference signal source is 
necessary for realizing the operations of converting “inflowing” 
and “flowing out” currents when creating the algebraic sums of 
variables in the mathematical tool of linear algebra. The only 
current-stabilizing two-terminal network, in particular case the 
resistor R, determines the levels of all reference signals. )(+

offV  and 
)(−

offV  are reference for setting the operating modes of current 
mirrors, and Еoff1 and Еoff2 - for setting the offset in the comparators 
of the currents. It can also be replaced by some semiconductor 
structure, and then the circuit becomes completely homogeneous 
and highly technological. It is also possible to make the two-
terminal network R as an external element, which will allow 
changing the power consumption and the associated characteristics 
of the LSI during the debugging process. 

The reference current source (RCS, Figure 17). The operating 
mode of the RCS is set by the reference voltages )(+

offV for the 

current sources and )(−
offV for the current sinks. The problem of 

constructing the RCS for digital circuits synthesized in linear 
algebra is completely similar to their problems in analog circuitry.   

                                                  
а                                        b 

Figure 17: RCS of: a – the current current, b – the current sink. 
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The current follower (logic interpretation - direction 
converter). It is intended for the coordination of current directions 
at their algebraic summation. The schematic configurations of 
some versions of current followers in TTL circuitry are shown in 
Figure 18. 

Ix Iy
 

Vcc

Ix Iy

 
а                                       b 

Figure 18: Current direction converter of: a – the sink current,  b - the source 
current. 

Circuitry of CMOS converters of the current direction is 
similar. 

Algebraic current adder. It is an wired pack of the outputs of 
current mirrors with current directions determined by the 
mathematical representation of the realized logic function. To 
agree the operating modes of subsequent elements, it is provided 
with a buffer stage. The schematic configuration of the algebraic 
adder is shown in Figure 19. 

Ix1

Ix2

Ix1 – Ix2

-(Ix2 – Ix1)

2
ccV

     

x1 y1=-(x1-x2)

y2=x2-x1
-x2

2
ccV

 
a                                       b 

Figure 19: Algebraic current adder: 
a - TTL circuit, b - CMOS circuit. 

Current comparators. They are designed to determine the 
excess value of one of the input currents over the other. The 
schematic configurations of current comparators are given in 
Figures 20 and 21. 

 

x1

-x2

y1=x2-x1

y2=-(x1-x2)

Vcc

2
ссV

y1=x2-x1x1

-x2 y2=-(x1-x2)

Vcc

2
ccV

  
a                                                b 

Figure 20: Comparator based on the truncated difference: 
a - bipolar circuit, b - CMOS circuit. 

In the circuit in Figure 21, the excess of one of the input 
currents (Ix1) over the other (Ix2) is determined by subtracting the 
second current from the first. One of the compared currents must 
be a source current and the second one – a current sink. Such a 
comparator is applicable for any logic value. 

 
Vcc

Ix1

Ix2

I0

Ix2>Ix1 Ix1>Ix2

Voff
(─)

2
ccV

Vcc

I0

Ix1

Ix2

Ix1>Ix2 Ix2>Ix1

Voff
(+)

2
ccV

 
а                                                          b 

Figure 21: Current сomparator based on the comparison: a - for current sinks,       
b - for source currents. 

In the circuit of Figure 21, a at Ix1 > Ix2 the left-hand transistor 
of the differential stage (DS) is closed and the current of the current 
mirror “leaves” through the right transistor of the DS. At Ix1 < Ix2, 
the right transistor of the DS is closed and the current of the current 
mirror “goes” through the left transistor. The output current of the 
DS I0 is the current sink. 

In the circuit in Figure 21, b everything appears in a similar 
way, but with other current directions. Such a scheme is applicable 
for implementation of the two-valued digital structures. 

In the previous section, the difference between the two-valued 
and multivalued implementations of the comparison operation is 
shown. In the latter case, it is possible to determine not only the 
fact, but the magnitude of the excess of one input signal over 
another one. In Figure 22 there is a circuit of the three-valued 
comparator performing such a modified comparison operation. 

x1

-x2

I0I0 I0

Rload1 Rload2

Vcc

2
ccV 2

ccV

 
Figure 22: Modified multivalued comparator based on the comparison. 

Such a scheme can be constructed for any value, increasing 
accordingly the number of parallelly operating DSs available to 
work with different values of currents. 

Logic elements AND, OR, NOT. The representations of the 
operations of the two-valued basic functionally complete system 
in linear algebra using the truncated difference have the following 
form 
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𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) ∸ 1; 

𝑥𝑥1 ∨ 𝑥𝑥2 = 1 ∸ [1 ∸ (𝑥𝑥1 + 𝑥𝑥2)]; 

�̅�𝑥 = 1 − 𝑥𝑥. 

The schematic configuration of these elements are shown in 
Figures 23, 24 and 25, correspondingly. 

Vcc 

1

-x2-x1

y=-(x1+x2)-1

Voff
(+)

2
ccV

 
Figure 23: Schematic configuration of the element AND. 

Vcc 

-x1 -x2

1 1

y=-{1-[1-(x1+x2)]}..

Voff
(+)

Voff
(+)

2
ccV

2
ccV

 
Figure 24: Schematic configuration of the element OR. 

Vcc 

1

-x

y = ─ (1─ x)

Voff
(+)

2
ccV

 
Figure 25: Schematic configuration of the element NOT. 

Comparing the schemes shown in Figures 24 and 25, it is easy 
to see that removing the circuit of in Figure 25 from the scheme of 
Figure 24, we obtain the OR-NOT element. 

Logic element “Inhibition”. The representation of the two-
valued operation in linear algebra using the truncated difference 
has the following form 

𝑥𝑥1&�̅�𝑥2 = 𝑥𝑥1 ∸ 𝑥𝑥2. 

For the multivalued version, the two-valued inversion 
operation (in accordance with the accepted generalization 
ideology) should be replaced with the direct 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊕ 1),  or 
inverse min 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊖ 1)  cycle operation, or left unchanged; 
i.e. in the following form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 1 ∸ 𝑥𝑥2). Other ideologies of 
generalization are also possible. 

When using the comparison operation, the above expressions 
for operations of the functionally complete system take the 
following form 

𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 1; 

𝑥𝑥1 ∨ 𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 0; 

�̅�𝑥 = 1 > 𝑥𝑥. 

The implementation of these functions on the basis of the 
comparison operation can be performed with the help of the 
universal logic element (ULE), the schematic configuration of 
which is shown in Figure 26. 

I1
*=I0

I1

Ix1

Out.i1

RR

R R

Ini

Q1

Q2

Q3* Q4*

Q3 Q4

Out.i2

I1=I0

Out.i2
*Out.i2

Vcc

2
ccV

2
ccV

 
Figure 26: Basic scheme of the universal logic element. 

At the inequality I1 < Ix1, the source difference current is 
generated at the node In.i of the ULE. It will “go” to the emitter of 
the transistor Q1, increasing the voltage at the first input (In.1) of 
the voltage comparator up to the value VOFF + Ube1, where Ube1 ≈ 
0.7V - voltage of the open emitter junction of the transistor Q1. In 
this case, the input transistors Q3 and Q4 of the voltage comparator 
(VC) switch to the inverse states - the collector current of the 
transistor Q3 becomes zero, and the transistor Q4 starts to transmit 
the current of the reference current source I2 = I0 to the second 
current output (Out.i2) of the ULE. 

Thus, depending on the difference in the numerical values of 
the currents I1 and Ix1, the output currents of the ULE take one of 
two values: either it is the current of the reference current source I1 
= I0 or “zero” (no current). Since the current I1 (𝐼𝐼1∗) is equal to the 
current quantum I0, then in one of the current outputs of the voltage 
comparator a standard current signal I0 of one of the logic levels is 
generated, and in its second output - an inverse logic level signal. 
Depending on the numerical values of I1 (I1 = 0,5I0, I1 = I0, I1 = 1,5I0) 
and the methods of forming the input current signals of the ULE 
(Figure 26), various logic functions can be performed, for example 
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– �̅�𝑥 = 1 − 𝑥𝑥  at 𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

; 

– 𝑥𝑥1&𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 1  when 𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 1,5𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 1,5𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

; 

– 𝑥𝑥1 ∨ 𝑥𝑥2 = (𝑥𝑥1 + 𝑥𝑥2) > 0  if  𝑦𝑦1 = �𝐼𝐼0 𝑎𝑎𝑡𝑡 0,5𝐼𝐼1 > 𝐼𝐼𝑥𝑥
0 𝑎𝑎𝑡𝑡 0,5𝐼𝐼1 ≤ 𝐼𝐼𝑥𝑥

. 

In the last two expressions 𝐼𝐼𝑥𝑥 ≡ 𝑥𝑥1 + 𝑥𝑥2. 

The element considered above can be used as a logic element, 
or as a threshold one; i.e. the generalization of the ordinary and 
threshold logics in the linear representation is very close. In the 
first case, unitary variables are fed to the inputs of the element. 
Besides, the number of inputs must correspond to the number of 
the variables. In the second case, the weighted sum of the variables 
should be fed to the “positive” input, and the constant equal to the 
calculated threshold value should be fed to the “negative” input. It 
is noteworthy that the described element can serve as an element 
of the homogeneous matrix, which can be used for matrix synthesis 
of the current digital structures. In addition, it is possible to 
construct universal current logic modules on its basis. 

Similarly, the Ban operation can be expressed in terms of the 
truncated difference as 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 + 1 ∸ 𝑘𝑘[1 ∸ (𝑥𝑥2 ∸ 1)]}); 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 − 1 + 𝑘𝑘[1 ∸ 𝑥𝑥2]}), 

and through the comparison - as 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, [𝑥𝑥2 + 1 ∸ 𝑘𝑘(𝑥𝑥2 > 2)]); 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, {𝑥𝑥2 − 1 + 𝑘𝑘[1 > 𝑥𝑥2]}), 

Cut formers. In fact, the cut former is an input signal limiter at 
the given level. As a former, the schemes that implement the 
operations 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) (upper cuts) and 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) (lower cuts) 
can be used. 

Buffer output stage. The combination of the algebraic adder 
and the current follower (converter) can be applied as a buffer 
output stage. With the help of the latter, the given number of the 
output circuits can be arranged to provide the required output 
branching factor. 

B. The synthesis of logical schemes. Let’s consider it through 
the example of the two-valued and multivalued circular shift 
elements discussed above. They can be represented as a single 
operation in the form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 ⊕ 1) or 𝑚𝑚(𝑥𝑥1, 𝑥𝑥2 ⊖ 1), or as a 
compound operation, i.e. as the sequential combination of 
operations working on one another 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)  or 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥1, 𝑥𝑥2) 
and operations ⨁1 or ⊖1, that is, in the form 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊕ 1 or 
𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊖ 1. We confine ourselves to the synthesis of the 
circuits using the operation 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2). 

In accordance with [17-32], the synthesis of the functional 
scheme corresponding to any logic function consists in multiplying 
the row-vector of the values of the function by the inverse basic 
matrix and obtaining the expansion vector of the function from the 
selected basis, and then recording the representation of the function 
as a weighted sum of the basis vectors. We perform the synthesis 
of the selected schemes using the basis presented below. 

In the two-valued case, the element AND-NOT has an 
arithmetic-logical representation, described by the expression 

𝑥𝑥1&𝑥𝑥2�������� = 1 − 𝑥𝑥1&𝑥𝑥2, 

which can be represented by the truncated difference in the 
following form 

𝑥𝑥1&𝑥𝑥2�������� = 1 − [(𝑥𝑥1 + 𝑥𝑥2) ∸ 1], 

 and by comparison - in the following form 

𝑥𝑥1&𝑥𝑥2�������� = 1 > [(𝑥𝑥1 + 𝑥𝑥2) > 1]. 

The schematic configurations of the elements can be 
constructed directly according to these expressions. Figure 27 
shows an element scheme based on the truncated difference. 

x1 x2

Vcc

Out1 Out2

Voff
(+)

Voff
(─)

2
ccV

 
Figure 27: Schematic configuration of the element of AND-NOT based on the 

truncated difference. 

We proceed similarly for the three-valued schemes in the first 
case (by the single operation). Using the basis 

𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 ∸ (1 ∸ 𝑥𝑥1)

𝑥𝑥1
1 ∸ (1 ∸ 𝑥𝑥2)

[1 − (1 ∸ 𝑥𝑥1)] − (1 ∸ 𝑥𝑥2)
𝑥𝑥1 ∸ 2(1 ∸ 𝑥𝑥2)

𝑥𝑥2
2[1 − (1 ∸ 𝑥𝑥1)] − (2 ∸ 𝑥𝑥2)

𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 2

1 1 1
0 1 1
0 1 2

0 0 0
0 0 0
0 0 0

1 1 1
0 1 1
0 1 1

2 2 2
0 2 2
0 1 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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with the inverse matrix 

�𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵1,𝐵𝐵1)(3)�
−1

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1    0
0    2 −1
0 −1    1

−1    1    0
   0 −2    1
   0    1 −1

   0    0    0
   0    0    0
   0    0    0

0    0    0
0    0    0
0    0    0

   2 −2    0
   0    2 −1
   0    0    1

−1     1   0
   0 −1    1
   0  0 −1

0    0    0
0    0    0
0    0    0

−1    1    0
   0    0    1
   0 −1    0

   
1 −1      0
0    1 −1
0    0    1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

we obtain the following results for the single operation: 

- resolution vectors  

𝑤𝑤(𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁1) = [1 0 0 0 3 0 0 0 − 2]; 

𝑤𝑤(𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊝ 1) = [2 0 0 0 − 3 0 0 0 1]; 

- linear expressions of the functions 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)⨁ 1 = 1 + 3[1 − (1 ∸ 𝑥𝑥1) − (1 ∸ 𝑥𝑥2)] −. 

−2[𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)] . 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ⊝ 1 = 2 − 3[1 − (1 ∸ 𝑥𝑥1) − (1 ∸ 𝑥𝑥2)] + 

+[𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2)]. 

The schematic configuration of the element of the right circular 
shift, synthesized directly from the above expression, is shown in 
Figure 28. 
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2
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ccV
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ccV
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Figure 28: CMOS element of the right circular shift. 

The schematic configuration of the element of the left circular 
shift, synthesized directly from the expression given above, is 
given in Figure 29. 

Similarly, for the compound operation: 

- the resolution vector 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) 

𝑤𝑤�𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)� = [0 0 0 0 0 0 0 0 1], 

- linear expression of the function  𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2).                     (5) 

-х1

х2

х1

-1 -1

Vcc

min (x1,x2) 1=

Out1

= min (x1,x2)-1+
+3[1-min (x1,x2)]

-

2
ccV

2
ccV

2
ccV

2
ccV

 

Figure 29: CMOS element of the left circular shift. 

Similarly, for the compound operation: 

- the resolution vector 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) 

𝑤𝑤�𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2)� = [0 0 0 0 0 0 0 0 1], 

- linear expression of the function  𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) 

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1 ∸ (𝑥𝑥1 ∸ 𝑥𝑥2).                     (5) 

- resolution vectors of the operations 𝑥𝑥⨁1 or 𝑥𝑥 ⊖ 1: 

𝑤𝑤(𝑥𝑥⨁1) = [1 3 − 2]; 

𝑤𝑤(𝑥𝑥 ⊝ 1) = [2 − 3 1]. 

- linear expressions of the functions: 

𝑥𝑥 ⊕ 1 = 1 + [1 ∸ (1 ∸ 𝑥𝑥)] − 2𝑥𝑥; 

𝑥𝑥 ⊝ 1 = 2 − 3[1 ∸ (1 ∸ 𝑥𝑥)] + 𝑥𝑥. 

The schematic configuration of the element 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) ,  
synthesized directly from expression (5) discussed above, is shown 
in Figure 30. 

 

-x1

-x2

Vcc

-[x1-(x1-x2)]2
ccV

2
ccV

 
Figure 30: Schematic configuration of the element 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1,𝑥𝑥2). 

The schemes of the elements of the left and right cycles are 
shown in Figures 31 and 32. 
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2
ccV
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Figure 31: Element of the right cycle. 

+1

Vcc

-x

-(xӨ1)

2
ccV

2
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Figure 32: The element of the left cycle. 

To obtain the final expression in the procedure for synthesizing 
a particular logic element, it is sufficient to substitute 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2), 
for x in the last expression, and for the circuit implementation, - 
use the above implementation of the function 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥1, 𝑥𝑥2), then 
connect the circuit (𝑥𝑥⨁1) or (𝑥𝑥 ⊝ 1) to its output. 

C. To demonstrate the possibilities of the sequential circuit 
synthesis, we use the results of the logic element synthesis obtained 
above. 

Boolean approach to the logic synthesis of triggers consists in 
supplying the memory element with a control circuit that provides 
a specified law for the operation of a specific type of the trigger. In 
the two-valued case, the memory element is a scheme of two 
2AND-NOT elements covered by the positive feedback (Figure 
33): 

&

&
1x

0x
1y

0y

 
Figure 33: Two-valued trigger (memory element). 

The linear synthesis of the two-valued triggers in linear algebra 
does not differ fundamentally from Boolean synthesis [17]. The 
schematic configuration of the trigger can be constructed in the 
same way as it is done in Boolean logic (for example – Figure 34): 

When moving to higher values while remaining the general 
idea of synthesis, it is necessary to use the elements and operations 
that are a generalization of the two-valued operations and logic 
elements. The operations min (x1,x2)  and max (x1,x2) are 
generalization of the operations & and ˅ is. As for the inversion 
operation, to generalize it for a multi-valued case it is convenient 
to represent it in the form of �̅�𝑥 = 𝑥𝑥⨁1 = 𝑥𝑥 ⊝ 1 and generalize it 

by a circular shift of Post (left or right). The general functional 
configuration of the memory element based on three-valued 
elements of the direct circular shift is shown in Figure 35. 

Vcc

RS

Voff
(+) Voff
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Voff
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Voff
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2
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Figure 34: Two-valued RS-flip-flop in the studied basis based on the truncated 

difference. 
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Figure 35: Three-valued trigger on the elements of the direct circular shift. 

The general functional configuration of the memory element 
based on the three-valued elements of the inverse circular shift is 
given in Figure 36. 
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Figure 36: Three-valued trigger on the elements of the inverse circular shift. 

The functional schemes of the memory elements of higher 
significance look similar. 

Thus, to construct any multivalued memory element, it is 
necessary to synthesize the elements of direct and inverse circular 
shifts. To create a trigger of the given type (D-, RS-, JK-, etc.), it 
is required to equip the memory element with the corresponding 
control circuit. 

The control circuits of the memory elements are constructed on 
the base of the verbal description of the operation of a specific type 
of the trigger. The result of the analysis of this description is the 
detection of logic control functions for each input of the memory 
element. 

For example, the RS-flip-flop operates according to the 
following algorithm: 

- the values of the input signals S = R =  k –1 correspond to the 
storage mode; 
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- the signal S increases the trigger state index relatively to the 
current state towards the state k-1, and the signal R reduces the 
state index towards the state “0”; 

- the value of the state index change is equal to the value of the 
input signal: the signal equal to 1 can increase (or decrease) the 
current state index by 1, the signal equal to 2 - by 2, etc .; besides, 
the signal S increases the trigger state index to the state k-1, and 
the signal R reduces the state index to “0”; the state change on the 
cycle is impossible (we leave this for the universal triggers!); 

- to change the trigger state index relatively to the current state 
i, the signal S can take values from 1 to k-1-i (larger values are 
equivalent to the value of k-1-i). Similarly, the signal R can take 
the values from 1 to i -1 (larger values are equivalent to the value 
i -1); 

- all combinations are inhibited combinations of values of the 
input signals, except 0 – k-1, 1 – k-1, k-2 – k-1, k-1 – k-1, k-1 – 0, 
k-1 – 1, …, k-1– k-2. 

Now it is possible to synthesize the logic function of the control 
circuit of the RS-flip-flop. Its output signal is a multi-valued signal 
x that sets the next state of the memory element, and the input 
signals are multivalued signals S and R, as well as the current 
trigger state index. 

The truth table of the control functions of the three-valued RS-
flip-flop, compiled on the basis of this description, has the 
following form: 

S R 
1tQ +  0x  1x  2x  

0 2 
2Q  0 1 1 

1 2 
1Q  1 0 1 

2 2 
tQ  1 1 1 

2 1 
1Q  1 0 1 

2 0 
0Q  1 1 0 

From the last table it follows that the logic functions for 
controlling the state of the memory element are described as 
follows: 

𝑥𝑥0 = 𝑃𝑃(𝑆𝑆 > 0) = 1 ∸ (1 ∸ 𝑆𝑆); 

𝑥𝑥1 = 1 > [1 > (1 > 𝑆𝑆)] > [1 > (1 > 𝑅𝑅)] = 

= 1 ∸ [1 ∸ |1 ∸ 𝑆𝑆|] ∸ [1 ∸ |1 ∸ 𝑅𝑅|]; 

𝑥𝑥2 = 𝑃𝑃(𝑅𝑅 > 0) = 1 ∸ (1 ∸ 𝑅𝑅). 

The combination of the memory element circuit and the control 
circuit results in the implementation of the trigger of the given 
type. 

Similarly, arguing, we can obtain the logical control functions 
of the three-valued D-flip-flop: 

𝑥𝑥0 = (1 ∸ 𝐶𝐶)&(1 ∸ 𝐷𝐷) = 1 ∸ [(1 ∸ 𝐷𝐷) ∸ 𝐶𝐶] = 

= 1 ∸ [(1 ∸ 𝐶𝐶) ∸ 𝐷𝐷]; 

𝑥𝑥1 = (1 ∸ 𝐶𝐶)&[𝐷𝐷 ∸ 2(𝐷𝐷 ∸ 1)] = 1 ∸ {𝐷𝐷 ∸ [2(𝐷𝐷 ∸ 1) ∸ 𝐶𝐶]} = 

1 ∸ [1 ∸ (|𝐷𝐷 ∸ 1| + 𝐶𝐶)]; 

𝑥𝑥2 = (1 ∸ 𝐶𝐶)&(𝐷𝐷 ∸ 1) = 1 ∸ [(𝐷𝐷 ∸ 1) ∸ 𝐶𝐶] = 

= 𝐷𝐷 ∸ [(1 ∸ 𝐶𝐶) ∸ 1]. 

In the same way, we can obtain the description of the control 
system of any other multivalued trigger, the number of types of 
which is certainly greater than the two-valued one. 

Combining the control circuit and the memory element in 
series, it is possible to obtain the schematic configuration of the 
trigger of any type and any value. 

6. Conclusion 
1. The mathematical tool of linear algebra can be newly applied 

in problems of logic synthesis and circuit implementation of the 
current digital structures. 

2. Linear algebra: 

- enables to create not only a two-valued, but also a really 
properly functioning multivalued element base for digital signal 
processing devices; 

- conduces the design of the digital element base with the 
improved technological, technical and operational characteristics 
(in comparison with the potential logic based on Boolean algebra); 

- can serve as a basis for creating LSI on the basis of matrix 
fields of homogeneous elements (as in modern Altera design 
systems, etc.); 

- improves the reliability of current digital LSIs synthesized on 
its basis, under extreme operating conditions (temperature, 
radiation, in-phase interferences, etc.). 

3. Two-valued and three-valued triggers based on cyclic shift 
elements are considered. It is shown that in the transition to greater 
significance, while preserving the general idea of synthesis, it is 
necessary to use operations that are generalizations of two-valued 
operations and the corresponding logical elements. 

4. The presents a basic set of current logic elements for the 
devices of automation, which allows solving the problems of 
transformation of the current signals in a different and more 
efficient way. 

5. In the schemes of the developed class is provided a 
differential representation of the output signal that minimizes the 
effect of temperature and radiation on their basic parameters. 
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