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 This article examines the hydrogen storage phenomenon in a spherical cavity. The 
hydrogen gas or liquid is subjected to high pressures, leading to significant loss of mass of 
hydrogen, and requires materials that can withstand these high pressures also minimize 
losses.  For all these reasons, the problem is considered at the quantum scale. So in 
quantum mechanics it studies the theory of wave functions corresponding to the hydrogen  
with  the correct expressions development  of  the radial functions and the spherical 
harmonics, and also the energy stored, and then the graphic applications that gives a 
spatial representation of each function with a program informatics. 
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1. Introduction  

Hydrogen is the lightest of gases and possesses the lowest 
density. However at ambient temperature and pressure it occupies 
a large volume, a car, whose weekly need is on average 5 Kg of 
hydrogen, must have a spherical tank of radius r # 2.44 m. This 
necessitates compressing it at high pressures up to P # 800 Bars [1]. 
The immense interest generated by hydrogen comes from the fact 
that it has the best energy per weight ratio of all fuels and the 
ecological nature of the combustion product (water vapor). But 
much of the energy is lost during storage. From the pedagogical 
point of view, it is also the most taught and involved in research. 
In particular in quantum mechanics, this deals with the state of 
particles such as the electron. This aspect is treated in this article 
in order to solve the problem of storage of the hydrogen by 
minimizing losses as much as possible. The solutions envisaged 
are, first, the improvement of the theory to understand the physical 
phenomena that occur in the physical system, especially the 
resolution of the transcendental equation, and then the means of 
perfecting the materials constituting the cavity (tank). 

The confinement of atoms or molecules in a finite region of space 
is an important subject, for example, in the context of quantum 
dots, encapsulation in fullerenes, or other aspects of 

nanotechnology. Confinement in a cavity has also been used to 
simulate the effects of high pressure. A hydrogen atom at the 
center of a spherical cavity was first studied by Michels & al. in 
1937 [2] in order to model hydrogen at high pressure, as well as 
by Sommerfeld and Welker in 1938 [3], and also in an extended 
body of subsequent work [4, 5, 6, 7]. 

Most of these works use the standard Dirichlet boundary 
condition with a vanishing wave function at the cavity wall, while 
some use Neumann boundary conditions, i.e. a vanishing gradient 
of the wave function perpendicular to the wall. A notable 
exception is where the most general so called Robin boundary 
condition has been considered [8].  

Al-Hashimi in a recent article 2012 [9], has well studied the 
problem of hydrogen which is confined in a spherical cavity using 
the conditions at the limits of Robin, he also introduced a 
transcendental equation for the calculation of the energies. 

However to solve theoretically, hydrogen gas transmission 
phenomenon that is enclosed in a spherical cavity or into a conical 
cavity and under high pressure, two equations are necessary: the 
Schrödinger equation, equation (1), which is well known and, the 
Victor Gustave Robin boundary condition equation (2) 

𝐻𝐻.𝜓𝜓(�⃗�𝑥) = E�k�⃗ �.𝜓𝜓(�⃗�𝑥)                           (1) 
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𝛾𝛾(�⃗�𝑥)𝜓𝜓(�⃗�𝑥) + 𝑛𝑛�⃗ (�⃗�𝑥).∇��⃗ 𝜓𝜓(�⃗�𝑥) = 0,     �⃗�𝑥 ∈ 𝜕𝜕Ω             (2) 
 

The self-adjoint extension parameter   𝛾𝛾(�⃗�𝑥)   takes   into account   
the constituent material of the cavity, 𝜓𝜓(�⃗�𝑥) is the wave function, 
∂Ω is the limit of a spatial region Ω and 𝑛𝑛�⃗ (�⃗�𝑥) is the unit vector 
perpendicular to the surface. As usual, the wave function can be 
factored as the product of a radial function 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟)  with a 
spherical harmonic function 𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) according to the following 
expression 

𝜓𝜓(�⃗�𝑥) = 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟).𝑌𝑌ℓ𝑙𝑙(𝜃𝜃,𝜑𝜑)                      (3) 

This equation is difficult to solve because of the size, effectively 
the radial function is graphically traceable in 2D graph, and the 
spherical harmonic function in 3D dimension. And thus the 
product, ie the wave function, is of dimension greater than or 
equal to four. 
2. Theory of spherical harmonics 

The spherical harmonic functions are defined either as the 
eigenfunctions of angular momentum in quantum physics, or as 
the solutions of the Laplace equation ∇2𝑓𝑓 = 0 [10, 11, 12, 13]. 
Solving this equation in spherical coordinates leads to the 
following expressions [14]: 

𝑌𝑌ℓ𝑙𝑙(𝜃𝜃,𝜑𝜑) = (−1)𝑙𝑙𝑘𝑘(ℓ,𝑚𝑚)𝑃𝑃ℓ𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)𝑒𝑒𝑖𝑖𝑙𝑙𝑖𝑖           (4) 

where  𝑃𝑃ℓ𝑙𝑙  is the Legendre associated polynomial of degree ℓ      
and order m  

𝑃𝑃ℓ𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃) = (−1)𝑚𝑚

2ℓℓ!
(1 − (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)2)

𝑚𝑚
2  𝑑𝑑

ℓ+𝑚𝑚

𝑑𝑑𝑑𝑑ℓ+𝑚𝑚
 ((𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)2 − 1)ℓ (5) 

and 𝑘𝑘(ℓ,𝑚𝑚) is the normalization function: 

𝑘𝑘(ℓ,𝑚𝑚) = (−1)𝑙𝑙 � (2ℓ+1) 
4𝜋𝜋

(ℓ−𝑙𝑙)!
(ℓ+𝑙𝑙)!

                      (6) 

2.1. Expressions of the spherical harmonics 

The terms of spherical harmonics which have 
azimuthally quantum numbers ℓ = 1, ℓ = 2 and ℓ = 3 are defined, 
in quantum mechanics, as follows: 

𝓵𝓵 = 𝟎𝟎    : Necessarily implies that the magnetic quantum number 
is zero (m=0). 

𝑌𝑌00(𝜃𝜃,𝜑𝜑) = 1
√4𝜋𝜋

                              (7) 

𝓵𝓵 = 𝟏𝟏: There are three possible values for m: m = 1, m = 0 and m 
= -1. 

𝑌𝑌11(𝜃𝜃,𝜑𝜑) = −� 3
8𝜋𝜋

sin𝜃𝜃 𝑒𝑒𝑖𝑖𝑖𝑖                       (8) 

𝑌𝑌10(𝜃𝜃, 𝜑𝜑) = � 3
4𝜋𝜋

cos 𝜃𝜃                              (9) 

𝑌𝑌1−1(𝜃𝜃,𝜑𝜑) = � 3
8𝜋𝜋

sin𝜃𝜃 𝑒𝑒−𝑖𝑖𝑖𝑖                    (10) 

𝓵𝓵 = 𝟐𝟐: There are five possible values for m: m = 2, m = 1, m = 0, 
m = -1 and m = -2. 

𝑌𝑌22(𝜃𝜃,𝜑𝜑) = � 15
32𝜋𝜋

𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃𝑒𝑒𝑖𝑖2𝑖𝑖                      (11) 

𝑌𝑌21(𝜃𝜃,𝜑𝜑) = −�15
8𝜋𝜋

sin𝜃𝜃 cos 𝜃𝜃 𝑒𝑒𝑖𝑖𝑖𝑖              (12) 

𝑌𝑌20(𝜃𝜃,𝜑𝜑) = � 5
16𝜋𝜋

(3𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 1)                (13) 

𝑌𝑌2−1(𝜃𝜃,𝜑𝜑) = �15
8𝜋𝜋

sin𝜃𝜃 cos 𝜃𝜃 𝑒𝑒−𝑖𝑖𝑖𝑖             (14) 

𝑌𝑌2−2(𝜃𝜃,𝜑𝜑) = � 15
32𝜋𝜋

𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃𝑒𝑒−𝑖𝑖2𝑖𝑖                 (15) 

𝓵𝓵 = 𝟑𝟑: There are seven possible values for the magnetic quantum 
number m: m = 3, m = 2, m = 1, m = 0, m = -1, m = -2 and m = -
3. 

𝑌𝑌33(𝜃𝜃,𝜑𝜑) = −� 35
64𝜋𝜋

sin3 𝜃𝜃 𝑒𝑒𝑖𝑖3𝑖𝑖                         (16) 

𝑌𝑌32(𝜃𝜃,𝜑𝜑) = �105
32𝜋𝜋

cos𝜃𝜃 sin2 𝜃𝜃𝑒𝑒𝑖𝑖2𝑖𝑖                   (17) 

𝑌𝑌31(𝜃𝜃,𝜑𝜑) = −� 21
64𝜋𝜋

sin 𝜃𝜃 (5𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 1)𝑒𝑒𝑖𝑖𝑖𝑖     (18) 

𝑌𝑌30(𝜃𝜃,𝜑𝜑) = � 7
16𝜋𝜋

(5𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃 − 3 cos𝜃𝜃)             (19) 

𝑌𝑌3−1(𝜃𝜃,𝜑𝜑) = � 21
64𝜋𝜋

sin 𝜃𝜃 (5𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 1)𝑒𝑒−𝑖𝑖𝑖𝑖    (20) 

𝑌𝑌3−2(𝜃𝜃,𝜑𝜑) = �105
32𝜋𝜋

cos 𝜃𝜃 sin2 𝜃𝜃 𝑒𝑒−𝑖𝑖2𝑖𝑖              (21) 

𝑌𝑌3−3(𝜃𝜃,𝜑𝜑) = � 35
64𝜋𝜋

sin3 𝜃𝜃 𝑒𝑒−𝑖𝑖3𝑖𝑖                       (22) 

3. Theory of the radial functions 

As a preparation for the hydrogen problem, in this 
section we consider a ‘‘free’’ particle in a spherical cavity with 
general   reflecting   boundary    conditions specified by the self-
adjoint extension parameter γ . And after that, we study the 
problem of the hydrogen atom in a spherical cavity with general 
reflecting boundary conditions, again specified by the self-adjoint 
extension parameter γ ∈  ℝ (real numbers). 

3.1. Particle in a spherical cavity with general reflecting 
boundaries  

Let us consider the Hamiltonian of a free particle of mass M in 
spherical coordinates: 

𝐻𝐻 = 𝑃𝑃�⃗ 2

2𝑀𝑀
= − ℏ2

2𝑀𝑀
∆= − ℏ2

2M
�∂r2 + 2

r
∂r −

L2����⃗

r2
�            (23) 
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with angular momentum 𝐿𝐿�⃗  in a spherical cavity of radius R. As 
usual, the wave function can be factorized as: 

𝜓𝜓(�⃗�𝑥) = 𝜓𝜓𝑘𝑘ℓ(𝑟𝑟).𝑌𝑌ℓ𝑙𝑙(𝜃𝜃,𝜑𝜑)                       (24) 

where the angular dependence is described by the spherical 
harmonics 𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑). For ℏ = 1, the radial wave function obeys 
to: 

− 1
2M
�∂r2 + 2

r
∂r −

ℓ(ℓ+1)
r2

�𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) = 𝐸𝐸𝜓𝜓𝑘𝑘ℓ(𝑟𝑟)         (25) 

𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝐸𝐸 =
𝑘𝑘2

2𝑀𝑀
 

For a spherical cavity, the most general perfectly reflecting 
boundary condition of equation (2) takes the form: 

𝛾𝛾𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) + ∂r𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 0                      (26) 

For positive energy the normalizable wave function is given by 
the spherical Bessel functions: 

𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) = 𝐴𝐴 𝐽𝐽ℓ(𝑘𝑘𝑟𝑟)                             (27) 

For general ℓ at γ = − ℓ /R, the ground state has zero 
energy with the radial wave function given by: 

𝜓𝜓(𝑟𝑟) = �2ℓ+3
𝑅𝑅3

�𝑟𝑟
𝑅𝑅
�
ℓ
                            (28) 

Consider the following cases: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ℓ = 0 ∶  𝜓𝜓(𝑟𝑟) = � 3

𝑅𝑅3

ℓ = 1 ∶    𝜓𝜓(𝑟𝑟) = � 5
𝑅𝑅3
�𝑟𝑟
𝑅𝑅
�

ℓ = 2 ∶   𝜓𝜓(𝑟𝑟) = � 7
𝑅𝑅3
�𝑟𝑟
𝑅𝑅
�
2

ℓ = 3 ∶  𝜓𝜓(𝑟𝑟) = � 9
𝑅𝑅3
�𝑟𝑟
𝑅𝑅
�
3

 

                      (29) 

3.2. Hydrogen atom in a spherical cavity with general reflecting 
boundaries  

In this section consider an electron bound to a proton that is 
localized at the center of a spherical cavity with general reflecting 
boundary conditions, again specified by the self-adjoint extension 
parameter  γ ∈  ℝ  . The Hamiltonian radial equation of the 
hydrogen atom, in spherical coordinates, takes the expression: 

− 1
2M
�∂r2 + 2

r
∂r −

ℓ(ℓ+1)
r2

− e2

r
� 𝜓𝜓𝜈𝜈ℓ(𝑟𝑟) = 𝐸𝐸𝜓𝜓𝜈𝜈ℓ(𝑟𝑟)      (30) 

and the normalizable wave function is given by: 

𝜓𝜓𝜈𝜈ℓ(𝑟𝑟) = 𝐴𝐴 �2𝑟𝑟
𝜈𝜈𝑎𝑎
�
ℓ
𝐿𝐿𝜈𝜈−ℓ−12ℓ+1 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
�        (31) 

 

where 𝐿𝐿𝜈𝜈−ℓ−12ℓ+1 �2𝑟𝑟
𝜈𝜈𝑎𝑎
� is an associated Laguerre function [15] and 

[16], and a is the Bohr radius and A is a constant.  

Consider the following cases: 

⎩
⎪⎪
⎨

⎪⎪
⎧ ℓ = 0 ∶  𝜓𝜓𝜈𝜈0(𝑟𝑟) = 𝐴𝐴𝐿𝐿𝜈𝜈−11 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
� 

ℓ = 1 ∶  𝜓𝜓𝜈𝜈1(𝑟𝑟) = 𝐴𝐴 �2𝑟𝑟
𝜈𝜈𝑎𝑎
� 𝐿𝐿𝜈𝜈−23 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
�

ℓ = 2 ∶  𝜓𝜓𝜈𝜈2(𝑟𝑟) = 𝐴𝐴 �2𝑟𝑟
𝜈𝜈𝑎𝑎
�
2
𝐿𝐿𝜈𝜈−35 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
� 

ℓ = 3 ∶  𝜓𝜓𝜈𝜈3(𝑟𝑟) = 𝐴𝐴 �2𝑟𝑟
𝜈𝜈𝑎𝑎
�
3
𝐿𝐿𝜈𝜈−47 �2𝑟𝑟

𝜈𝜈𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

𝜈𝜈𝑎𝑎
� 

    (32) 

And for  𝜈𝜈 = 4, expressions (32) take the form : 

⎩
⎪⎪
⎨

⎪⎪
⎧ ℓ = 0 ∶  𝜓𝜓40(𝑟𝑟) = 𝐴𝐴𝐿𝐿31 �

𝑟𝑟
2𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
� 

ℓ = 1 ∶  𝜓𝜓41(𝑟𝑟) = 𝐴𝐴 � 𝑟𝑟
2𝑎𝑎
� 𝐿𝐿23 �

𝑟𝑟
2𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
�

ℓ = 2 ∶  𝜓𝜓42(𝑟𝑟) = 𝐴𝐴 � 𝑟𝑟
2𝑎𝑎
�
2
𝐿𝐿15 �

𝑟𝑟
2𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
� 

ℓ = 3 ∶  𝜓𝜓43(𝑟𝑟) = 𝐴𝐴 � 𝑟𝑟
2𝑎𝑎
�
3
𝐿𝐿07 �

𝑟𝑟
2𝑎𝑎
� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
� 

       (33) 

4. Implementation and graphs of the spherical harmonics 
functions [17] 

The graphs of spherical harmonic functions, calculated 
above, were modeled and mapped with “SPharm” program 
Matlab environment 7.8.0 (R2009a). The essential functions are 
plotted on figure (1) and figure (2) below: 

 
𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) 
 

 
|𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑| 

 
𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅 𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) 

 
 
 

𝒀𝒀𝟎𝟎𝟎𝟎 
 

 
                           

 
 
 

𝒀𝒀𝟏𝟏𝟎𝟎 
 
 
 
 

         

              

Figure (1): The module and the real part of the 
spherical harmonic functions: 𝑌𝑌00,𝑌𝑌10. 

4.1. Graphs of the radial functions and the density functions for 
the hydrogen atom  

 Knowing the associated Laguerre functions expressions: 
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K.I. Bey / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 157-163 (2018) 

www.astesj.com                     160 
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐿𝐿31 �

𝑟𝑟
2𝑎𝑎
� = −1

6
� 𝑟𝑟
2𝑎𝑎
�
3

+ 2 � 𝑟𝑟
2𝑎𝑎
�
2
− 6 � 𝑟𝑟

2𝑎𝑎
� + 4

𝐿𝐿23 �
𝑟𝑟
2𝑎𝑎
� = 1

2
� 𝑟𝑟
2𝑎𝑎
�
2
− 5 � 𝑟𝑟

2𝑎𝑎
� + 10

𝐿𝐿15 �
𝑟𝑟
2𝑎𝑎
� = −� 𝑟𝑟

2𝑎𝑎
� + 6

𝐿𝐿07 = 1

        (34) 

 
 
𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑  

 
|𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑| 

 
𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅 𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) 

 
 
 
 
 
 
 
𝒀𝒀𝟐𝟐𝟎𝟎 

                   

 
 
 
 
 
 
 
 
𝒀𝒀𝟑𝟑𝟎𝟎 

 
 
 

          

 

            

Figure (2): The module and the real part of the spherical harmonic functions: 
𝑌𝑌20,𝑌𝑌30. 

The radial functions take the expressions: 

ℓ = 0 ∶  𝜓𝜓40(𝑟𝑟) = 𝐴𝐴0 �−
1
6
� 𝑟𝑟
2𝑎𝑎
�
4

+ 2 � 𝑟𝑟
2𝑎𝑎
�
3
− 6 � 𝑟𝑟

2𝑎𝑎
�
2

+

                                   4 � 𝑟𝑟
2𝑎𝑎
�� . 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
�                                     (35) 

ℓ = 1 ∶  𝜓𝜓41(𝑟𝑟) = 𝐴𝐴1 �
1
2
� 𝑟𝑟
2𝑎𝑎
�
4
− 5 � 𝑟𝑟

2𝑎𝑎
�
3

+ 10 � 𝑟𝑟
2𝑎𝑎
�
2
� . 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
�  

(36) 

ℓ = 2 ∶  𝜓𝜓42(𝑟𝑟) = 𝐴𝐴2 �− �
𝑟𝑟
2𝑎𝑎
�
4

+ 6 � 𝑟𝑟
2𝑎𝑎
�
3
� . 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟

4𝑎𝑎
�            (37) 

ℓ = 3 ∶  𝜓𝜓43(𝑟𝑟) = 𝐴𝐴3 �
𝑟𝑟
2𝑎𝑎
�
4

. 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑟𝑟
4𝑎𝑎
�                                    (38) 

𝐴𝐴0,𝐴𝐴1,𝐴𝐴2,𝐴𝐴3  are constants which can be calculated with the 
normalization condition: 

∫ 𝑟𝑟2+∞
0 |𝜓𝜓𝜈𝜈𝑙𝑙(𝑟𝑟)|2𝑑𝑑𝑟𝑟 = 1                   (39) 

The calculations were made with  𝐴𝐴0 = 𝐴𝐴1 =  𝐴𝐴2 =  𝐴𝐴3 = 2, the 
graphs are shown in figure (3) below:  

 

Figure (3): The radial functions: 𝜓𝜓40(𝑟𝑟), 1-red;  𝜓𝜓41(𝑟𝑟), 2-bleu; 𝜓𝜓42(𝑟𝑟), 3-
green; 𝜓𝜓43(𝑟𝑟), 4-black (the x-axis in 10-9 meter). 

The probability density function gives the maximum 
probability of finding the electron at a position 𝑟𝑟 =  𝑟𝑟0  on the 
radius of the sphere; this is reflected by a maximum of this 
function at the point 𝑟𝑟0 . The graphs of probability density 
functions 𝑢𝑢𝜈𝜈ℓ2 (𝑟𝑟) = 𝑟𝑟2 𝜓𝜓𝜈𝜈ℓ2(𝑟𝑟), for the hydrogen atom, are shown 
in figures (4, 5, 6 and 7): 

 

Figure (4): density 𝑢𝑢402 (𝑟𝑟)which has four maximums. 

 

Figure (5): density 𝑢𝑢412 (𝑟𝑟) which has three maximums. 

 

Figure (6): density 𝑢𝑢422 (𝑟𝑟) which has two maximums. 
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Figure (7): density 𝑢𝑢432 (𝑟𝑟) which has one maximum. 

5. The transcendental equation of the energy spectrum 

Knowing the most general perfectly reflecting boundary 
condition by the equation (26), the energy spectrum is thus 
determined from the transcendental equation  

𝛾𝛾𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) + ∂r𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) = �𝛾𝛾 + ℓ
𝑟𝑟
� 𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) − 𝑘𝑘𝐽𝐽ℓ+1(𝑘𝑘𝑟𝑟)  = 0    (40) 

This transcendental equation, which expresses the energy of the 
physical system, arises from the resolution of the Schrödinger 
equation and takes into account parameters relating to the 
quantification of the energy considered to be the real number k, 
and also of a second parameter ℓ, which is the azimuthally 
quantum number which generates the degeneration of the 
stationary states of energy. A third parameter, the self-adjoint 
extension parameter 𝛾𝛾, is also considered  and concerns surface 
boundary conditions, taking into account the state of the surface 
as well as the material constituting the inner envelope of the cavity. 
In fact, this envelope must prevent the loss of energy at the atomic 
scale; the inside of the envelope is therefore made reflective so 
that all the particles arriving at the wall are deflected towards the 
inside of the cavity. 

In the following, the expressions of the Bessel functions 
for ℓ and (ℓ +1) orders, and also the derivative: 

𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) = �𝑘𝑘𝑟𝑟
2
�
ℓ
∑ (−1)𝑛𝑛

𝑛𝑛!(𝑛𝑛+ℓ)!
+∞
𝑛𝑛=0 �𝑘𝑘𝑟𝑟

2
�
2𝑛𝑛

                    (41) 

𝐽𝐽ℓ+1(𝑘𝑘𝑟𝑟) = �𝑘𝑘𝑟𝑟
2
�
ℓ+1

∑ (−1)𝑛𝑛

𝑛𝑛!(𝑛𝑛+ℓ+1)!
+∞
𝑛𝑛=0 �𝑘𝑘𝑟𝑟

2
�
2𝑛𝑛

         (42) 

  

 𝑑𝑑𝐽𝐽ℓ(𝑘𝑘𝑟𝑟)
𝑑𝑑𝑟𝑟

= 𝑑𝑑𝐽𝐽ℓ(𝑘𝑘𝑟𝑟)
𝑑𝑑(𝑘𝑘𝑟𝑟)

𝑑𝑑(𝑘𝑘𝑟𝑟)
𝑑𝑑𝑟𝑟

= 𝑑𝑑(𝑘𝑘𝑟𝑟)
𝑑𝑑𝑟𝑟

= 𝑘𝑘 𝑑𝑑𝐽𝐽ℓ(𝑘𝑘𝑟𝑟)
𝑑𝑑(𝑘𝑘𝑟𝑟)

 

= ℓ
𝑟𝑟

 𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) + 2
𝑟𝑟

 �𝑘𝑘𝑟𝑟
2
�
ℓ
∑ (−1)𝑛𝑛

(𝑛𝑛−1)!(𝑛𝑛+ℓ)!
+∞
𝑛𝑛=0 �𝑘𝑘𝑟𝑟

2
�
2𝑛𝑛

    (43) 

Substituting these expressions, equations (41, 42 and 43) in the 
equation (40), the transcendental equation become: 

𝛾𝛾𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) +
ℓ
𝑟𝑟

 𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) +
2
𝑟𝑟

 �
𝑘𝑘𝑟𝑟
2
�
ℓ

�
(−1)𝑛𝑛

(𝑛𝑛 − 1)! (𝑛𝑛 + ℓ)!
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�
𝑘𝑘𝑟𝑟
2
�
2𝑛𝑛

= 

�𝛾𝛾 + ℓ
𝑟𝑟
� 𝐽𝐽ℓ(𝑘𝑘𝑟𝑟) − 𝑘𝑘 �𝑘𝑘𝑟𝑟

2
�
ℓ+1

∑ (−1)𝑛𝑛

𝑛𝑛!(𝑛𝑛+ℓ+1)!
+∞
𝑛𝑛=0 �𝑘𝑘𝑟𝑟

2
�
2𝑛𝑛

= 0          (44) 

5.1. Calcul of the energies states 

Consider now the equation giving the boundary 
condition for an indifferent position r: 

𝛾𝛾𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) + ∂r𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) = 0                    (45) 

The solution of this equation (45) was find as: 

𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) = 𝜓𝜓0 exp (−𝛾𝛾. 𝑟𝑟)                      (46) 

With applying the conditions at the wall of the cavity for r = R 
and at the center of the cavity for r = 0: 

𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 0  𝑅𝑅𝑛𝑛𝑑𝑑  𝜓𝜓𝑘𝑘ℓ(0) = 𝜓𝜓0                (47) 

The exact wave function, which takes into account the self-adjoint 
extension parameter  𝛾𝛾 , is then found like: 

𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 𝜓𝜓0 exp (−𝛾𝛾.𝑅𝑅)                     (48) 

For 𝛾𝛾 → +∞, the boundary condition reduces to  𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 0, as 
well as the textbook case. 

It is well know that, the wave function which is 
depending on the wave vector 𝑘𝑘�⃗  and on the space vector  𝑟𝑟, is 
written as in the following form:  

𝜓𝜓𝑘𝑘ℓ(𝑟𝑟) = 𝐴𝐴(𝑟𝑟). exp (−𝑠𝑠. 𝑘𝑘�⃗ . 𝑟𝑟)                   (49) 

And for the radial component for r = R: 

𝜓𝜓𝑘𝑘ℓ(𝑅𝑅) = 𝐴𝐴(𝑅𝑅). exp(−𝑠𝑠. 𝑘𝑘.𝑅𝑅) = 0                 (50) 

𝐴𝐴(𝑅𝑅) ≠ 0, 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 exp(−𝑠𝑠. 𝑘𝑘.𝑅𝑅) = 0 ⟹ �cos(𝑘𝑘𝑅𝑅) = 0
sin(𝑘𝑘𝑅𝑅) = 0     (51) 

Thus: 

�𝑘𝑘𝑅𝑅 = (2𝑛𝑛 + 1) 𝜋𝜋
2
⟹ 2𝑘𝑘𝑅𝑅 = (2𝑛𝑛 + 1)𝜋𝜋

𝑘𝑘𝑅𝑅 = 𝑛𝑛𝜋𝜋
               (52) 

 

 

Therefore: 

 
2𝑘𝑘𝑅𝑅 − 𝑘𝑘𝑅𝑅 = (2𝑛𝑛 + 1)𝜋𝜋 − 𝑛𝑛𝜋𝜋 = (𝑛𝑛 + 1)𝜋𝜋            (53) 

At the end, the wave vector k takes the following form: 

𝑘𝑘 = (𝑛𝑛+1)𝜋𝜋
𝑅𝑅

                                   (54) 

The corresponding energies are then given by: 

𝐸𝐸𝑛𝑛0(𝑘𝑘) = 𝑘𝑘2

2𝑀𝑀
= (𝑛𝑛+1)2𝜋𝜋2

2𝑀𝑀𝑅𝑅2
     𝑤𝑤𝑠𝑠𝑤𝑤ℎ  ℏ2 = 1            (55) 
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This equation (55) is also valid for ℓ = 1 and  𝛾𝛾 = 2
𝑅𝑅 

, so: 

𝐸𝐸𝑛𝑛0(𝑘𝑘) = 𝐸𝐸𝑛𝑛1(𝑘𝑘) = (𝑛𝑛+1)2𝜋𝜋2

2𝑀𝑀𝑅𝑅2
   𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝛾𝛾 = 2

𝑅𝑅 
          (56) 

For ℓ = 0, the equation (44) become with using the equation (40): 

𝛾𝛾 𝐽𝐽0(𝑘𝑘𝑟𝑟) − 𝑘𝑘 𝐽𝐽1(𝑘𝑘𝑟𝑟) = 0                         (57) 

By substituting the expressions of 𝐽𝐽0(𝑘𝑘𝑟𝑟) 𝑅𝑅𝑛𝑛𝑑𝑑 𝐽𝐽1(𝑘𝑘𝑟𝑟)  one can 
arrive at the following relation: 

𝛾𝛾 = 𝑘𝑘2𝑟𝑟
2(𝑛𝑛+1)

                                    (58) 

Then at the wall of the cavity for, r = R and taking into account 
the equation (54), the equation (57) becomes: 

𝛾𝛾 = (𝑛𝑛+1)2𝜋𝜋2

2(𝑛𝑛+1)𝑅𝑅
= (𝑛𝑛+1)𝜋𝜋2

2𝑅𝑅
                         (59) 

In order to know the meaning of the self-extension parameter, it 
is important to express the natural number 𝑛𝑛 as a function of 𝛾𝛾 
according to the following relation: 

𝑛𝑛 = �2𝛾𝛾𝑅𝑅
𝜋𝜋2

− 1�                                (60) 

and consequently, the energy as a function of 𝛾𝛾  arises from 
equation (55) as: 

𝐸𝐸𝛾𝛾0 =
�2𝛾𝛾𝛾𝛾
𝜋𝜋2

�
2
𝜋𝜋2

2𝑀𝑀𝑅𝑅2
= 2𝛾𝛾2

𝜋𝜋2𝑀𝑀
                           (61) 

It is then easy to obtain the two conditions: 

�
  𝑠𝑠𝑓𝑓  𝛾𝛾 → +∞  𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝐸𝐸𝛾𝛾0(𝑘𝑘)  → +∞  

𝑅𝑅𝑛𝑛𝑑𝑑
𝑠𝑠𝑓𝑓  𝛾𝛾 → 0  𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝐸𝐸𝛾𝛾0(𝑘𝑘)  → 0

             (62) 

These conditions, equation (61), mean that when the self-adjoint 
extension parameter  𝛾𝛾 is high, tends to the infinite, the storage of 
the hydrogen energy is well good and there are little or no losses. 
On the other hand, when the self-adjoint extension parameter  𝛾𝛾 
is small, tends to zero, the hydrogen energy storage make many 
losses, and it is not good.  

5.2. Graphs of the energies states 

The energy graph as a function of the radius R of the spherical 
cavity, 𝐸𝐸𝑛𝑛0 = 𝑓𝑓(𝑅𝑅) , for the following values of 𝑛𝑛  ( 𝑛𝑛 =
0, 1, 2, 3, 4 𝑅𝑅𝑛𝑛𝑑𝑑 5) is shown in the figure (8).  

For radii𝑅𝑅 = 1, 2, 3, 4 𝑅𝑅𝑛𝑛𝑑𝑑 5, the energies of the lowest level 𝑛𝑛 =
0 are respectively (in Joules): 

5,42. 1030; 1,36. 1030; 0,60. 1030; 0,34. 1030; 0,22. 1030   (63) 

The graph of energy as a function of the self-adjoint parameter, 
𝐸𝐸𝛾𝛾0 = f (𝛾𝛾), is shown in figure (9).  

 

Figure (8): Energy 𝐸𝐸𝑛𝑛0 with function of R and n 
(n=0, 1, 2, 3, 4 and 5). 

 

Figure (9): Energy 𝐸𝐸𝛾𝛾0 with function of  𝛾𝛾. 

The case, gamma tends towards infinity is treated previously and 
the energy depends on the number 𝑛𝑛. There is no contradiction 
since energy tends to infinity in both cases: when 𝑛𝑛 and 𝛾𝛾 tend 
towards infinity. 

6. Conclusion 

This article studies both a free particle and an electron 
bound in a hydrogen atom confined to a spherical cavity with 
general perfectly reflecting boundary conditions characterized by  

a self-adjoint extension parameter. It is well known that hydrogen 
gas need high pressure, about 700 to 800 bars, to minimize the 
volume because the hydrogen density is very small. And also the 
material of the cavity must be lightweight, like fullerenes or other 
aspects of nanotechnology, with a perfectly reflecting wall inside. 

The subject requires much knowledge to take into account the 
thermodynamics effect like the pressure, so this modeling is based 
on the calculation of the wave functions especially the radial 
function. And also a calculation of the clean energies that are 
stored in the cavity was approached. 

The solutions depend on the self-adjoint extension parameter 
which takes into account the physical properties of the cavity wall. 
For some values of this parameter, the radial wave function is 
expressed with function of the Laguerre polynomials. These radial 
functions tend quickly to zero (equal to zero at about  3. 10−9 
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meter), this proves that the cavity must be made with a 
nanotechnology material. 

The calculation of the clean energy inside the cavity indicates that 
the maximum storage is reached when the self-adjoint extension 
parameter tends to infinity this corresponds to R tending to zero. 
This is done experimentally by making the inside surface of the 
cavity perfectly reflective, and also impervious to the passage of 
electrons to the outside of the cavity. On the other hand, if this 
parameter tends towards (or equal) zero, particle leakage is 
important, which causes significant losses of energies (energy 
stored equal zero       for𝛾𝛾 = 0). 
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