
Advances in Science, Technology and Engineering Systems Journal
Vol. 7, No. 1, 14-26 (2022)

www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

ASTES Journal
ISSN: 2415-6698

Value Trace Problems for Code Reading Study in C Programming
Xiqin Lu1, Nobuo Funabiki*,1, Htoo Htoo Sandi Kyaw1, Ei Ei Htet1, Shune Lae Aung2, Nem Khan Dim2

1Department of Electrical and Engineering, Okayama University, Okayama, 700-8530, Japan
2Department of Computer Studies, University of Yangon, Yangon, 11041, Myanmar

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 05 July, 2021
Accepted: 02 January, 2022
Online: 13 January, 2022

Keywords:
C programming
Value trace problem
Code reading
Self-study
Grammar concept
Algorithm
Pointer

C programming is taught in a lot of universities across the world as the first computer
programming language. Then, for novice students, it is important to read many simple C
source codes and understand their behaviors to be familiar to the programming paradigm.
Unfortunately, effective tools to support independent code reading study at home have not
been well designed. Heretofore, we have proposed the value trace problem (VTP) for Java
programming. A VTP instance consists of one source code, several questions, and the correct
answers to them. Each question asks the value of a critical variable or output message in the
source code. The correctness of any student answer is checked instantly by string matching
at the answer interface for self-study. In this paper, we present the value trace problem (VTP)
for code reading self-study of C programming. 42 VTP instances are generated using simple
C source codes on basic grammar concepts and fundamental data structures & algorithms
in textbooks and websites. In addition, for hard instances on pointer and algorithms, the
devices of hints, multiple choice questions, and references are provided to improve their solution
performances. For evaluations, we requested 49 undergraduate students in Japan, China, and
Myanmar to independently solve them at home. Their average correct answer rate reached
94.29%, where our devices for hard instances improved it by 33.26%. Thus, the effectiveness of
our proposal is confirmed in motivating self-study of C programming to novice students.

1 Introduction

Presently, C programming is widely taught in many universities
across the world as the first computer programming language. In
addition to information technology (IT) departments, many depart-
ments including science, agriculture and mechanical/electrical engi-
neering are teaching C programming courses. Actually, the study of
C programming can offer basic knowledge to study more advanced
and practical languages such as Java, JavaScript, and Python. Be-
sides, students in IT departments should study C programming in
parallel with computer architecture, because they can learn accesses
to memories or registers through it. Furthermore, C is still the third
most popular programming language, despite the long time passed
from the appearance. Then, for such novice students, it is important
to read and understand a lot of simple source codes to be familiar
to the C programming structure. Unfortunately, effective tools to
support independent code reading self-study at home have not been
well designed within our knowledge.

Heretofore, we have proposed and implemented the Java pro-

gramming learning assistant system (JPLAS) for Java programming
study [1]. As the objected-oriented programming language, Java is
now widely used in IT societies. For assisting Java programming
studies at different learning levels, JPLAS provides several types
of exercise problems with different difficulties. For any problem
type, the student answer to a question is marked automatically at
the system to support programming self-studies.

Among them, the value trace problem (VTP) is presented for
novice students to study basic concepts of programming grammar
and skills through code reading study [2]. A VTP instance consists
of one source code, several questions, and the correct answer strings
to them. Each question asks the value of a critical variable or an
important output in the given code. The correctness of any student
answer is marked through string matching with the correct answer
string at the answer interface using the web browser instantly.

The manual collection of C source codes and the manual selec-
tion of the variables or output messages from each source code for
questions can be the limitation of VTP. When a teacher uses VTP
in the programming course, he/she needs to carefully collect the

*Corresponding Author: Nobuo Funabiki, 3-1-1 Tsushimanaka, Okayama University, funabiki@okayama-u.ac.jp

www.astesj.com
https://dx.doi.org/10.25046/aj070103

14

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj070103


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

source codes and select the variables or messages with their timing
whose actual values or contents should be traced in the questions,
so that they can be synchronized with the course progress. One
way to generate VTP instances by a teacher efficiently is the use of
sample source codes that will be provided with the textbook in the
course. Usually, the teacher can download them from the website.
Then, he/she can select the variables or output messages that are
closely related to the teaching topics in each class of the course. The
impossibility of practicing source code writing by a student will be
another limitation of VTP. It should be offered by other problem
types such as the code writing problem [3].

In this paper, we present the value trace problem (VTP) for code
reading self-study of C programming by extending our previous
works for Java programming. To assist the study of novice students,
42 simple C source codes on basic grammar concepts and fundamen-
tal data structures & algorithms are collected from textbooks and
websites. Here, fundamental data structures & algorithms are often
taught using C programs in IT departments. Then, by analyzing
critical variables/messages and adding necessary standard output
statements in them, the corresponding VTP instances are generated
manually.

The memory management using pointer in C programming can
be a hard topic for novice students to study, although it is the remark-
able feature in implementing fast and efficient programs. Besides,
some fundamental algorithms can be difficult, because novice stu-
dents are often not familiar to them. Therefore, we additionally
provide the devices of hints, multiple choice questions, and refer-
ences to improve the solving performances by the students for the
hard VTP instances on pointer and algorithms.

For evaluations of the proposal, we asked 49 students in Japan,
China, and Myanmar to independently solve the generated 42 VTP
instances at home. Then, the results showed that the average cor-
rect answer rate among them reached 94.29% that is sufficiently
high, where the devices for hard instances improved it by 33.26%.
Thus, the effectiveness of our proposal is confirmed in motivating
self-study of C programming by novice students [4]–[10].

VTP can be applied for studying other programming languages
such as JavaScript and Python in addition to Java in a straightfor-
ward way. Besides, VTP can be used for studying a natural language
such as English or Japanese as the potential application. For natural
language study, the instance may give a sentence or a paragraph
and ask the appearing keywords in the questions. Here, the variable
for programming study becomes the key concept in the sentence or
paragraph for natural language study, and the value becomes the
keyword.

The remaining part of this paper is organized as follows: Sec-
tion 2 discusses related works in literature. Section 3 presents the
value trace problem (VTP) for C programming. Section 4 presents
devices to improve the solving performances for hard instances on
pointer and algorithms. Section 5 shows their evaluation results.
Finally, Section 6 concludes this paper with future works.

2 Related Works in Literature

In this section, we introduce related works in literature. Some pa-
pers presented programming study tools, and some discussed the

importance of code reading in programming study.

2.1 Programming Study Tools

In [11], the author reviewed some tools to support teaching and
learning of programming, and categorized them into four groups:
1) tools that include simple reduced development environments, 2)
example-based environments, 3) tools that are based on visualiza-
tions and animations, and 4) simulation environments. Our proposal
can be categorized to 2).

In [12], the author presented a tool called QuizPACK, which
is similar to the value trace problem (VTP), and showed that this
tool significantly improved the knowledge of semantics. A question
in QuizPACK asks the value of a particular expression (usually a
variable) in a fragment of a program. A teacher needs to prepare a
set of problems using source code fragments and expressions to be
questioned manually. If compared with VTP in this paper, the ad-
vantage of QuizPACK is that the constants related to the questioned
variables in the code and their correct answers can be generated
dynamically so that different students can solve the same question
with the different correct answers. On the other hand, VTP fixes the
constants and the correct answers. The disadvantage of QuizPACK
is that it can only ask the ending values of the variables in the code
fragment. It cannot ask the values at the different timing of the
program. Thus, QuizPACK is not suitable for studying algorithms,
where different algorithms can give the same variable values.

In [13], the author presented a problem-solving environment
named LECGO (Learning Environment for programming using C us-
ing Geometrical Objects) for learning C programming by beginners.
LECGO emphasized: (a) multiple external representations in stu-
dent learning, (b) motivation through performing problem-solving
activities from the familiar and meaningful context, (c) the active
participation of students by using hands-on experience, (d) appropri-
ate feedback to aid self-corrections, and (e) holistic, activity-based,
multi-media, multi-representational and multi-layered content for
learning basic concepts.

In [14], the author presented Gidget, which is a game such that
the eponymous robot protagonist is cast as a fallible character that
blames itself for not being able to correctly write code to complete
its missions. Players of Gidget can learn programming by debugging
the problematic code.

In [15], the author presented a game-based learning support
environment for novice students to learn programming. This envi-
ronment exploits game composition tasks to make the elementary
programming more intuitive to be learnt, and comprises concept
visualization techniques, to allow the students to learn key concepts
in programming through game object manipulations.

In [16], the author proposed the web-based programming as-
sisted system for cooperation (WPASC) for facilitating cooperative
programming learning, and investigated cooperative programming
learning behaviors of students and its relationships with learning
performances.

In [17], the author presented systematic literature review results
on assessment tools for programming assignments, to help instruc-
tors make their selections in programming courses. They identified
three specialties in assessment tools, namely, contests, quizzes, and
software testing. In contests, a tool compiles the source code of a

www.astesj.com 15

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

student, runs it with a set of test cases for the input, and informs
whether the code is accepted or not. In quizzes, it gives a set of
questions, where for each question, a student enters a fragment of
a code in the interface of the tool. In software testing, it checks
the correctness of the source code of a student by comparing its
output with the output of the model code, or by running the test
code against the source code. VTP in this paper is different from
any of them.

In [18], the author presented a system that combines the dual
objectives of automated grading and program repairing for introduc-
tory programming courses called GradeIT. It grades the submitted
source code with the number of passed test cases, the inverse of
time spent to solve, and the fraction of successful compilations. For
the last one, the compilation score is defined by 1 – (number of
compilation errors in the code) / (maximum number of compilation
errors among students). For repairing, it uses simple re-writing rules
to fix simple but frequent compile time errors.

In [19], the author proposed a plug-in system to Moodle called
LAPLE (Learning Analytics in Programming Language Education)
to provide a learning dashboard to capture the behaviors of the stu-
dents in the classroom and identify the difficulties faced by different
students looking at different knowledge. LAPLE asks the students to
write full source codes, and collects and analyzes the compiling logs
of the students every five minutes to yield real-time visualizations
for feedbacks during the class. The authors analyzed the distribution
of the classified 36 error types, and encouraged the students to pay
attentions to the frequent error types. LAPLE is designed for use at
programming classes, while VTP is for use at homes for self-studies.

2.2 Code Reading in Programming Study

In [20], the author concluded that through literature reviews and in-
terviews, code reading is connected to comprehending programs and
algorithms, or algorithmic ideas, as well as details, and is needed
in many aspects of learning programming, but at the same time,
there is not much knowledge about the reading and comprehension
process of learners. They claimed that a possible means to foster
programming learning is to teach code reading directly, including
reading strategies. The value trace problem in this paper can be
one way to achieve it for C programming study, which supports the
novelty of this paper.

In [21], the author concentrated on finding out whether reading
programs before writing programs is more efficient for students to
learn programming. He asked software developers and found that
computer science graduates should understand existing codes, since
most developers need to maintain and extend existing systems. He
concluded that if students get through the syntax of programming
more quickly by conducting code reading exercises, class time could
be spent on issues such as the efficiency and readability of software.
Code reading problems are important for beginners to learn a new
programming language.

In [22], the author concluded that programming learning should
focus on algorithmic thinking, rather than programming language
features and skills. Programming learning could help improve prob-
lem solving skills through algorithmic thinking. The generated
VTP instances in this paper cover important algorithmic topics such
as stack, queue, and sorting algorithms, which will be helpful for

developing algorithmic thinking.
In [23], the author indicated that source code reading behaviors

are important in teaching programming skills as well as designing
IDEs and programming languages. A source code is a different type
of text than a natural-language text. It is highly formal and struc-
tured, and has a very limited vocabulary of keywords, operators,
and separators, yet, tremendous combination possibilities for literals
and identifiers. They recorded programmers’ eye movements when
reading short source codes. The results show that most attention is
oriented towards understanding of identifiers, operators, keywords,
and literals, relatively little reading time is spent on separators.

3 Value Trace Problem for C program-
ming

In this section, we present the value trace problem (VTP) for C
programming.

3.1 Definition of Value Trace Problem

The mission of VTP is to let students trace the value of a critical
variable or an important output in the given source code by care-
fully reading and understanding its behaviors. To generate a VTP
instance, one source code, a set of questions with the answer forms,
and the correct answer strings to them need to be prepared. A
question requests the current value of the important variable or mes-
sage in the source code that is specified by the teacher. Therefore,
the source code should contain the standard output statements that
correspond to them, so that the students can easily find which values
are asked in the questions.

3.2 Design Goals of Value Trace Problem

VTP for C programming have the following design goals:

1) A variety of C source codes are given to beginners for code
reading study.

2) A student can solve the questions in a VTP instance by read-
ing the given source code and understanding its behavior
carefully.

3) Any answer from a student will be checked through string
matching at the interface automatically, and the result will be
returned to the student instantly.

4) A teacher can choose proper source codes in terms of contents
and difficulty levels for the VTP instance that will be assigned
at each class in the programming course.

3.3 VTP Instance Generation Procedure

A new VTP instance can be generated by the following procedure:

1. A proper source code for studying a basic grammar concept
or a fundamental data structure/algorithm is selected.

2. The important variables or output messages to be traced in
the source code are selected.

www.astesj.com 16

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

3. The corresponding standard output statements are added in
the code.

4. The questions of asking the values/messages at the standard
outputs and their correct answers are prepared.

5. The source code, the corresponding questions, and the correct
answers are put together into one input text file.

6. The program in [4] is executed with the input text file to gen-
erate the CSS/HTML/JavaScript files for the answer interface
on the web browser.

7. The generated VTP instance is registered as the assignment
to students.

3.4 Answer Interface

The answer interface using the web browser in [4] is adopted for
the students to solve the generated VTP instances in this paper. The
necessary functions such as string matching for answer marking
and the answer data storage for submissions are implemented in
JavaScript so that this interface can be used without the Internet
connection.

To use this answer interface, the correct answers to the ques-
tions need to be distributed to the students, so that their answers can
be marked instantly at offline. Then, to prevent the students from
looking at the correct answers before solving the questions, the hash
values of them are taken using SHA256 before the distributions.
Actually, each correct answer is concatenated with the assignment
and problem IDs before hashed, so that the same correct answers
for the different questions are converted to the different hash values.
It can avoid knowing the correct answer from the same hash value
for a different question. At the marking, any answer from a student
is concatenated and hashed using SHA256 for string matching with
the hashed correct answer.

3.5 Example VTP Instances

Two VTP instances generated in this paper are illustrated here as
the typical examples for the variable trace study and the pointer
trace study in C programming.

3.5.1 VTP Instance for Variable Trace Study

Figure 1 shows the input text file for the if in for-loop instance at
ID=12 in Table 1. This file contains the source code, the questions
with four answer forms, and their correct answers, which must be
done manually. Each correct answer is separated by ”,”. This in-
stance asks to trace the value of num and the logic implemented by
two if. A student needs to read and understand the source code, and
then fill in the forms with correct answers.

int main(void){
int max = 9;
int n;
for (n = 2; n <= max; n++){
if (n == max){
printf("%d is prime number \n", max);

}

else if(max % n == 0){
printf("%d is not prime \n", max);

break;
}

}

return 0;
}

What is the value of max? _1_

What is the output? _2_ is _3_ _4_

9,9,not,prime

Figure 1: Input text file for VTP instance at ID=12.

Figure 2: Answer interface for VTP instance at ID=12.

www.astesj.com 17

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

int main(void)
{

int test[5] = {80,60,55,22,75};

printf("test[0] is %d \n", test[0]);

printf("test[1] is %d \n", test[1]);

printf("The address of test[0] is %p \n", &

test[0]);

printf("test is %p \n", test);

printf("The address of test[1] is %p \n", &

test[1]);

printf("That is *test is %d \n", *test);

return 0;
}

hint:The address of test[0] is 0028FF20

1 word 4 bit in this system

What is the output of this program?
test[0] is _1_

test[1] is _2_

The address of test[0] is _3_

test is _4_

The address of test[1] is _5_

That is *test _6_

80,60,0028FF20 ,0028FF20 ,0028FF24,80

Figure 3: Input text file for VTP instance at ID=9.

Figure 2 illustrates the answer interface on a web browser for
this VTP instance. After a student fills in the answer forms, he/she
should click the blue button ”Answer”. If the student answer is
incorrect, the form color will be red. For the correct one, it becomes
white. Using this interface, a student can fix the mistakes and submit
the answers instantly, until all the answers become correct.

3.5.2 VTP Instance for Pointer Trace Study

Figure 3 shows the input text file for the memory address with
pointer for integer array instance at ID=9 in Table 1. This instance
asks to trace the memory address or the value given by pointer
including the one for the array test. Figure 4 depicts the answer
interface for this sample VTP instance.

3.6 Generations of Value Trace Problem Instances

Now, we present the generated 42 value trace problem (VTP) in-
stances with 586 answer forms for studying basic grammar concepts
and fundamental data structures & algorithms in C programming.

Table 1 shows the topic, the number of lines (#of lines) in the
source code, the number of questions, and the number of answer
forms in each VTP instance. Here, to encourage novice students
solving all of them without giving up halfway, we took the following
stances at their generations:

Figure 4: Answer interface for VTP instance at ID=9.

1. A short source code with less than 30 lines is basically se-
lected for each instance. Actually, the average number of
lines among the source codes becomes 24.5. However, source
codes for fundamental data structures & algorithms are longer
due to their natures.

2. The number of questions is limited to at most four for each
instance. Actually, the average number of questions becomes
1.26.

3. The difficulty level of each instance is gradually increased
from the first to the last roughly, by following C programming
textbooks.

www.astesj.com 18

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

3.6.1 VTP Instances for Basic Grammar Concepts

For studying basic grammar concepts, 26 VTP instances were gen-
erated using the C source codes in the websites [5]-[7]. The selected
grammar concepts are essential in fundamental C programming.

3.6.2 VTP Instances for Fundamental Data Structures & Algo-
rithms

To study fundamental data structures & algorithms of C program-
ming, 16 VTP instances were generated using the source codes in
the textbook [8]. They can be hard subjects for novice students
in IT departments. To let them read the implemented algorithm
procedure in each source code step-by-step and understand the be-
haviors, the hallway actual values of the important variables in the
code are asked in the questions. For example, the actual values
of the array variables to store the sorted data and the variable for
pivot at each iteration are asked in the VTP instance for quick sort.
These questions can also avoid answering them without correctly
understanding the algorithm implementation in the source code.

4 Devices for Hard VTP Instances

In this section, we present our devices to improve the solution
performances for hard VTP instances on pointer and algorithms.

4.1 Hard VTP Instances

In our preliminary application of our generated VTP instances to
limited students, the instances at ID=22, ID=28, ID=31, ID=38,
and ID=41 in Table 1 showed low correct answer rates compared
with the others. These results suggest that not a few students do not
understand the topics of memory address, linked list, reverse polish
notation, quick sort, and data size of pointer well. They are related
to memory managements by pointer or algorithms.

To improve the comprehensions on these topics and the solution
performances of students, the following devices are presented in
this paper:

1) We add tips in questions on pointers.

2) We give hints in the answer interface on memory addresses.

3) We prepare multiple choice questions on linked lists.

4) We add links to reference websites in the answer interface on
algorithms.

4.2 Tips in Questions

On tips for pointers, Figures 5 and 6 show the source code and
the questions for the VTP instance at ID=41. In the questions, the
size of one word in this system is described by (64-bit size system),
and the targeting data in each question is described by Data size
of normal variables, Data size of pointer, and Data size of pointer
reference.

Table 1: Generated 42 VTP instances.

ID topic
#of

lines
#of

questions
#of

forms
1 two-dimensional array 18 1 12
2 max function 7 1 5
3 arithmetic 6 1 6
4 data type 12 1 16
5 for-loop 10 1 1
6 for-loop with character 11 1 9
7 function call 12 1 10
8 function for swap 21 1 4

9
memory address with

pointer for integer array 11 1 56

10 car structure 12 1 2
11 output in for-loop 9 1 8
12 if in for-loop 15 2 4
13 book structure 14 1 3

14
pointer for

one-D array 8 1 2

15 if in if with integer 24 2 2
16 arithmetic with if 11 2 2
17 if in if with character 27 2 4
18 while loop 19 1 8
19 structure data setting 18 1 7
20 output format specifier 11 1 4

21
memory address with

pointer for character array 10 4 11

22
memory address with

pointer for various array 24 1 13

23 four arithmetic operations 11 1 4

24
greatest common divisor

(GCD) 21 1 4

25 inner product operation 16 1 1
26 linear search 23 1 5
27 binary search 29 1 17
28 linked list 67 1 7
29 tree traversal algorithms 81 3 63
30 stack data structure 47 1 8
31 reverse polish notation 67 2 12
32 queue data structure 55 1 4
33 insertion sort algorithm 25 1 30
34 selection sort algorithm 28 1 18
35 bubble sort algorithm 27 1 37
36 shell sort algorithm 24 1 23
37 merge sort algorithm 34 1 16
38 quick sort algorithm 38 1 56
39 heap sort algorithm 44 1 42
40 pointer 12 1 6
41 data size of pointer 20 1 9
42 list structure 47 1 12

maximum 81 4 63
minimum 6 1 1
average 24.50 1.26 13.95

total 1029 53 586

www.astesj.com 19

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

#include <stdio.h>

main()

{

char vch, *pch;
int vin, *pin;
double vdo, *pdo;
printf("sizeof(vch) = %d\n", sizeof(vch));

printf("sizeof(vin) = %d\n", sizeof(vin));

printf("sizeof(vdo) = %d\n", sizeof(vdo));

printf("sizeof(pch) = %d\n", sizeof(pch));

printf("sizeof(pin) = %d\n", sizeof(pin));

printf("sizeof(pdo) = %d\n", sizeof(pdo));

printf("sizeof(*pch) = %d\n", sizeof(*pch));

printf("sizeof(*pin) = %d\n", sizeof(*pin));

printf("sizeof(*pdo) = %d\n", sizeof(*pdo));

}

Figure 5: Source code for VTP instance at ID=41.

(64-bit size system)

What is the output of this program?
Data size of normal variables

sizeof(vch) = _1_

sizeof(vin) = _2_

sizeof(vdo) = _3_

Data size of pointer

sizeof(pch) = _4_

sizeof(pin) = _5_

sizeof(pdo) = _6_

Data size of pointer reference

sizeof(*pch) = _7_

sizeof(*pin) = _8_

sizeof(*pdo) = _9_

Figure 6: Questions for VTP instance at ID=41.

4.3 Hints in Answer Interface

On hints for memory addresses, Figures 7-9 show the source code,
the hints, and the questions for the VTP instance at ID=22. The
hints describe the byte size of each data type with the word size that
is necessary to calculate the increase of the memory address, and the
memory addresses of the first two elements in the array variables,
so that students can answer the question on them.

#include <stdio.h>

int main(void){
int vch, vsh, vin, vfl, vdo;
vch = sizeof(char);
vsh = sizeof(short);
vin = sizeof(int);
vfl = sizeof(float);
vdo = sizeof(double);

printf("%d %d %d %d %d \n", vch, vsh, vin,

vfl, vdo);//hintA

char arr1[] = {’o’,’k’,’a’,’y’,’a’,’m’,’a’};
int arr2[5] = {1,2,3,4,5};
float arr3[5] = {1.1,2.2,3.3,4.4,5.5};
double arr4[5] = {1.0,2.2,3.5,22.4,10.0};

printf("arr1[4] is %c \n", arr1[4]);

printf("arr2[3] is %d \n", arr2[3]);

printf("arr3[2] is %f \n", arr3[2]);

printf("arr4[1] is %f \n", arr4[1]);

printf("The address of arr1[2] is %p \n", &

arr1[2]);//hintB

printf("The address of arr2[2] is %p \n", &

arr2[2]);//hintC

printf("The address of arr3[3] is %p \n", &

arr3[3]);//hintD

printf("The address of arr4[2] is %p \n", &

arr4[2]);//hintE

return 0;
}

Figure 7: Source code for VTP instance at ID=22.

hintA: Data types and sizes(32-bit system)

char: 1 byte
short: 2 bytes
int 4: bytes
float: 4 bytes
double: 8 bytes

hintB: The address of arr1[0] is 0028FE30

The address of arr1[1] is 0028FE31

hintC: The address of arr2[0] is 0028FE20

The address of arr2[1] is 0028FE24

hintD: The address of arr3[1] is 0028FEF4

The address of arr3[2] is 0028FEF8

hexadecimal: the symbols "0"˜"9" to represent

values zero to nine, and "A"˜"F" to represent

values ten to fifteen.

hintE: The address of arr4[0] is 0028FE10

The address of arr4[1] is 0028FE18

Figure 8: Hints for VTP instance at ID=22.

www.astesj.com 20

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

What is the output of this program?
_1_ _2_ _3_ _4_ _5_

arr1[4] is _6_

arr2[3] is _7_

arr3[2] is _8_

arr4[1] is _9_

The address of arr1[2] is _10_

The address of arr2[2] is _11_

The address of arr3[3] is _12_

The address of arr4[2] is _13_

Figure 9: Questions for VTP instance at ID=22.

4.4 Multiple Choice Questions

On multiple choice questions for linked lists, Figures 10 and 11 show
the source code and the questions for the VTP instance at ID=28.
The multiple choice questions of the correct answers are used at Q1
and Q3 as the hints to understand the pointer and structure in the
linked list.

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <time.h>

#include <stdlib.h>

struct cell{

struct cell *next;

int data;
};

typedef struct cell cell_t;

cell_t *list_alloc(int data){
cell_t *new = NULL;
new = (cell_t *)malloc(sizeof(cell_t));
if(new == NULL){

fprintf(stderr, "ERROR: list_alloc(): %s\

n", strerror(errno));

return(NULL);
}

new->next = NULL;
new->data = data;
return(new);

}

int list_add(cell_t *header, int data){
cell_t *next = NULL;

cell_t *prev = header;

next = list_alloc(data);

if(next == NULL) return(-1);
while(prev->next != NULL){

prev = prev->next;

}

prev->next = next;

return 0;
}

void list_free(cell_t *header){
cell_t *temp = header;

cell_t *swap = NULL;

while(temp != NULL){

Figure 10: Source code for VTP instance at ID=28.

Figure 11: Questions for VTP instance at ID=28.

www.astesj.com 21

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

4.5 Links to Websites in Answer Interface

On links to reference websites for algorithms, the links to the web-
sites that explain reverse polish notation in [9] and quick sort algo-
rithm in [10] are included in the answer interface. By clicking these
links, the students can easily access to the necessary information to
solve them.

5 Evaluations
In this section, we evaluate the generated 42 VTP instances with
586 answer forms by applying them to 49 undergraduate students
in Myanmar (21 students), Japan (18 students), and China (10 stu-
dents) who are currently studying or have studied C programming
and fundamental data structures & algorithms.

5.1 Solution Results for Individual VTP Instances

First, the solution results for the 42 individual VTP instances by
the 49 students are analyzed. Figure 12 shows the total number of
answer submission times and the average correct answer rate (%)
for each VTP instance submitted by the students. As the summary,
Table 2 shows the maximum, minimum, average, and standard de-
viation (SD) of the total number of submissions and the average
correct answer rate among the 42 VTP instances. The average cor-
rect rate 94.29% and the average number of submissions 139.17 by
all the students (2.84 by one student) for each instance suggest that
the generated VTP instances are of moderate difficulty for novices
to study C programming.

Table 2: Summary of solution results for individual VTP instances.

total# of
submissions

average correct
rate

maximum 628 100 %
minimum 55 82.32 %
average 139.17 94.29%

SD 106.14 4.84%

5.1.1 VTP Instances with Low Results

The VTP instances for pointer or fundamental data structures &

algorithms are generally difficult for the students. For the eight
instances at ID=21, 24, 28, 29, 30, 32, 36, and 37, which are on
pointer, stack, linked list, and sorting, the average correct answer
rate is under 90%.

For the VTP instance ID=41 linked list, the correct answer rate
82.32% is lowest and the number of answer submissions 628 is high-
est among the 42 instances. This topic is still hard for the students,
regardless of the presented devices in Section 4. However, it is
observed that the students tried to solve this instance by referencing
to the devices.

For the VTP instance for merge sort at ID=37, both the correct
rate 85.87% and the number of submissions 101 are relatively low.
Many students gave up solving it correctly at early time, which
suggests their insufficiency in understanding this algorithm. Like

for quick sort, the device of adding the link to the reference website
in the answer interface will be necessary for this instance.

5.1.2 Distribution of Correct Answer Rates

Figure 13 shows the distribution of the correct answer rates among
the 42 VTP instances. 34 instances achieved more than the 90%
correct rate and seven did 100%, which indicates that these in-
stances are moderate for novice students. However, the rates of
eight instances were less than 90%, which need to be improved.

Figure 13: Distribution of correct answer rates among instances.

5.1.3 Distribution of Submission Times

Figure 14 shows the distribution of the number of answer submis-
sion times among the VTP instances. 21 instances were solved
within 100 submissions. 30 instances were within 150 submissions
by all the students or 3.57 submissions by one student. However,
for the three instances at ID=22, 28, and 29, the answers were
submitted more than 300 times, which will need to be improved.

Figure 14: Distribution of submission times among instances.

5.2 Solution Results for Individual Students

Next, the solution results for the individual students to the 42 VTP
instances are analyzed. Figure 15 shows the total number of answer

www.astesj.com 22

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

Figure 12: Solution results for individual VTP instances.

submissions and the average of the correct answer rates among all
the instances for each student. Table 3 shows the summary results
for each student. The results suggest that most of the students well
solved the VTP instances.

Table 3: Summary of solution results for individual students.

total # of
submissions

correct
answer rate

maximum 394 100%
minimum 38 58.75%
average 119.29 94.29%

SD 89.61 8.25%

5.2.1 Students with Low Results

For 11 students at ID=8, 10, 11, 12, 13, 15, 18, 19, 33, 46, and
49, the average correct answer rate among the 42 VTP instances is
smaller than 90%.

For the student at ID=18, both the correct answer rate 58.75%
and the number of answer submissions 38 are lowest among the
students. Even, this student did not try to solve some instances.
The teacher should find the reason and help this student studying C
programming. The five students at ID=10, 12, 33, 46, and 49 also
have the similar proclivities.

For the two students at ID=8 and 15, the number of submissions
is relatively high. Thus, they made sufficient efforts to solve the
VTP instances. It can be expected that the proper guidance by the

teacher can quickly improve their performances.

5.2.2 Distribution of Correct Answer Rates

Figure 16 shows the distribution of the correct answer rates among
the 49 students. 38 students achieved over 90% correct answer rates.
Eight students at ID=22, 24, 26, 27, 28, 32, 39, and 44 achieved
100%.

Figure 16: Correct answer rate distribution of students.

www.astesj.com 23

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

Figure 15: Results for each student.

5.2.3 Distribution of Submission Times

Figure 17 shows the distribution of the number of answer submis-
sion times among the students. For 30 students, the total number of
submissions was smaller than 100, where the excellent student at
ID=39 correctly solved any instance except one instance by submit-
ting the answers only one time. For the four students at ID=5, 9,
31, and 36, the total number of submissions exceeded 300, and the
answer rate is larger than 90%. It was found that these students did
not give up solving them.

Figure 17: Submission times distribution among students.

5.3 Evaluations of Devices for Hard Instances

To evaluate the effectiveness of the presented devices in Section 4,
we compare the solution results with and without using them for the
four hard VTP instances at ID=22, 28, 31, and 38.

5.3.1 Comparison Results

In our preliminary application, we applied the four instances to
21 students among 49 without using the proposed devices. Then,
to avoid the solution improvements by solving the same instances
twice by the same students, the results of the remaining 28 students
are used as the results with them.

Table 4 compares the average number of answer submission
times and the average correct answer rate for the four instances by
the students between the with group and the without group. In the
without group, the average correct answer rate for any instance was
smaller than 70%, which suggests that many students suffered from
solving them. Then, in the with group, it was improved to higher
than 80%, which can be considered as the minimum rate that every
student should exceed. The average number of submissions was
increased except for ID=31, because the students were motivated to
continue solving them due to the devices.

Table 4: Comparisons of solution results for hard instances.

average # of
submissions

average correct
answer rate

ID topic with without with without

22
memory address

with pointer
for various array

7.95 7.17 91.29% 54.40%

28 linked list 14.95 1.92 82.32% 56.00%

31
reverse polish

notation 5.36 6.88 90.61% 52.00%

38
quick sort
algorithm 5.93 1.71 100.00% 68.79%

average 8.55 4.42 91.06% 57.80%

www.astesj.com 24

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

5.3.2 t-test Analysis

t-test is applied to the solution results to check the significant dif-
ference between the average correct answer rates of the two groups.
The p-value is 1.179E − 16 and is smaller than 0.05, which means
that there is the significant difference between them. Thus, it is
confirmed that the proposed devices for the hard VTP instances are
effective in improving the solution performances of novice students.

5.4 Discussions

At solving the VTP instances, some students may reach the correct
answers without understanding them well. They may randomly
submit possible answers or copy the answers of other students. For-
tunately, the answer interface can record any submitted answer of
a student. By analyzing the records, it may be possible to find the
undesirable behaviors of students, which will be in our next study.

6 Conclusion
This paper presented the value trace problem (VTP) for independent
code reading study of C programming. 42 VTP instances were gen-
erated using simple C source codes for basic grammar concepts and
fundamental data structures & algorithms in textbooks or websites.
Besides, the devices of tips, hints, multiple choice questions, and
links to reference websites were presented for hard instances on
pointer and algorithms to improve the solution performances.

For evaluations, the generated 42 VTP instances were assigned
to 49 undergraduate students in Japan, China, and Myanmar to be
solved at home using the answer interface that can run offline. The
average correct answer rate among all the VTP instances reached
94.29%, where by our proposed devices, the average rate for the four
hard instances was improved by 33.26% from 57.80% before im-
provements. Thus, the effectiveness of our proposal was confirmed
in motivating self-study of C programming to novice students at
home.

A limitation of VTP is the manual selection of variables or out-
put messages in the source code for questions, in addition to the
manual collection of C source codes. An algorithm should be inves-
tigated to automatically generate a new VTP instance from a given
source code. Another limitation is the impossibility of practicing
source code writing by students.

As future works, we will study the automatic VTP generation
algorithm, make new VTP instances using C source codes for other
grammar concepts and algorithms, such as file I/O, error handing,
recursions, and graph algorithms, and apply them to students in C
programming courses. Then, more comprehensively and formally,
we will study the methodologies of organizing and conducting ped-
agogical experiments to verify the effectiveness of the proposal
in increasing motivations of novice students to study C program-
ming, and the methods of processing the results of pedagogical
experiments.

References
[1] Sio-Iong Ao, IAENG Transactions on Engineering Sciences - Special Issue for

the International Association of Engineers Conferences 2016 Volume II, 2018.

[2] N. Funabiki, K.K. Zaw, W.-C. Kao, “A proposal of value trace problem for
algorithm code reading in Java programming learning assistant system,” Infor-
mation Engineering Express, 1(3), 2015, doi:10.52731/iee.v1.i3.39.

[3] K.K. Zaw, W. Zaw, N. Funabiki, W.C. Kao, “An informative test code approach
in code writing problem for three object-oriented programming concepts in
java programming learning assistant system,” IAENG International Journal of
Computer Science, 46(3), 2019.

[4] N. Funabiki, H. Masaoka, N. Ishihara, I.W. Lai, W.C. Kao, “Offline answering
function for fill-in-blank problems in Java Programming Learning Assistant
System,” in 2016 IEEE International Conference on Consumer Electronics-
Taiwan, ICCE-TW 2016, 2016, doi:10.1109/ICCE-TW.2016.7521045.

[5] Pointer and gcc, https://ubuntuforums.org/archive/index.php/t-858030.html.

[6] FCP 2 If else.ppt, https://dokumen.tips/documents/fcp2ifelseppt.html.

[7] Loop and break, https://www.loopandbreak.com.

[8] T. Hikita, Algorithms by C, Science Pub., 1995.

[9] Reverse polish notation, http://www.cs.man.ac.uk/ pjj/cs212/fix.html.

[10] Quick Sort, https://www.programiz.com/dsa/quick-sort.

[11] M. G`ómez-Albarr`án, The teaching and learning of programming: A
survey of supporting software tools, Computer Journal, 48(2), 2005,
doi:10.1093/comjnl/bxh080.

[12] P. Brusilovsky, S. Sosnovsky, “Individualized Exercises for Self-Assessment
of Programming Knowledge: An Evaluation of QuizPACK,” ACM
Journal on Educational Resources in Computing, 5(3), 6, 2005,
doi:10.1145/1163405.1163411.

[13] M. Kordaki, “A drawing and multi-representational computer environ-
ment for beginners’ learning of programming using C: Design and pi-
lot formative evaluation,” Computers and Education, 54(1), 69–87, 2010,
doi:10.1016/j.compedu.2009.07.012.

[14] M.J. Lee, A.J. Ko, “Personifying programming tool feedback improves
novice programmers’ learning,” in ICER’11 - Proceedings of the ACM
SIGCSE 2011 International Computing Education Research Workshop, 2011,
doi:10.1145/2016911.2016934.

[15] F.W.B. Li, C. Watson, “Game-based concept visualization for learning
programming,” in MM’11 - Proceedings of the 2011 ACM Multime-
dia Conference and Co-Located Workshops - ACM International Work-
shop on Multimedia Technologies for Distance Learning, MTDL’11, 2011,
doi:10.1145/2072598.2072607.

[16] W.Y. Hwang, R. Shadiev, C.Y. Wang, Z.H. Huang, “A pilot study of
cooperative programming learning behavior and its relationship with stu-
dents’ learning performance,” Computers and Education, 58(4), 2012,
doi:10.1016/j.compedu.2011.12.009.

[17] D.M. Souza, K.R. Felizardo, E.F. Barbosa, “A systematic literature review of
assessment tools for programming assignments,” in Proceedings - 2016 IEEE
29th Conference on Software Engineering Education and Training, CSEEandT
2016, Institute of Electrical and Electronics Engineers Inc.: 147–156, 2016,
doi:10.1109/CSEET.2016.48.

[18] S. Parihar, R. Das, Z. Dadachanji, A. Karkare, P.K. Singh, A. Bhattacharya,
“Automatic grading and feedback using program repair for introductory pro-
gramming courses,” in Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE, Association for Computing Machinery:
92–97, 2017, doi:10.1145/3059009.3059026.

[19] X. Fu, A. Shimada, H. Ogata, Y. Taniguchi, D. Suehiro, “Real-time learning
analytics for C programming language courses,” in ACM International Con-
ference Proceeding Series, Association for Computing Machinery: 280–288,
2017, doi:10.1145/3027385.3027407.

[20] T. Busjahn, C. Schulte, “The use of code reading in teaching program-
ming,” in ACM International Conference Proceeding Series, 3–11, 2013,
doi:10.1145/2526968.2526969.

www.astesj.com 25

http://www.astesj.com


X. Lu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 1, 14-26 (2022)

[21] T. Vandegrift, ”Reading before writing: can students read and understand code
and documentation?,” SIGCSE ’05 Cojoined Meeting, 2005.

[22] D. Kwon, I. Yoon, and W. Lee, ”D.Y. Kwon, I.K. Yoon, W.G. Lee, “Design
of programming learning process using hybrid programming environment for
computing education,” KSII Transactions on Internet and Information Systems,
5(10), 1799–1813, 2011, doi:10.3837/tiis.2011.10.007.

[23] T. Busjahn, R. Bednarik, C. Schulte, “What influences dwell time during
source code reading? Analysis of element type and frequency as factors,”
in Eye Tracking Research and Applications Symposium (ETRA), 2014,
doi:10.1145/2578153.2578211.

www.astesj.com 26

http://www.astesj.com

	Introduction
	Related Works in Literature
	Programming Study Tools
	Code Reading in Programming Study

	Value Trace Problem for C programming
	Definition of Value Trace Problem
	Design Goals of Value Trace Problem
	VTP Instance Generation Procedure
	Answer Interface
	Example VTP Instances
	VTP Instance for Variable Trace Study
	VTP Instance for Pointer Trace Study

	Generations of Value Trace Problem Instances
	VTP Instances for Basic Grammar Concepts
	VTP Instances for Fundamental Data Structures & Algorithms


	Devices for Hard VTP Instances
	Hard VTP Instances
	Tips in Questions
	Hints in Answer Interface
	Multiple Choice Questions
	Links to Websites in Answer Interface

	Evaluations
	Solution Results for Individual VTP Instances
	VTP Instances with Low Results
	Distribution of Correct Answer Rates
	Distribution of Submission Times

	Solution Results for Individual Students
	Students with Low Results
	Distribution of Correct Answer Rates
	Distribution of Submission Times

	Evaluations of Devices for Hard Instances
	Comparison Results
	t-test Analysis

	Discussions

	Conclusion

