
Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 2, 329-345 (2018)

www.astesj.com
Special Issue on Advancement in Engineering Technology

ASTES Journal
ISSN: 2415-6698

Efficient Alignment of Very Long Sequences
Chunchun Zhao*, Sartaj Sahni
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL,

USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 20 March, 2018
Accepted: 16 April, 2018
Online: 30 April, 2018

Keywords:
Sequence alignment
Energy efficient
Multi core

We consider the problem of aligning two very long biological se-
quences. The score for the best alignment may be found using the
Smith-Waterman scoring algorithm while the best alignment itself may
be determined using Myers and Miller’s alignment algorithm. Neither
of these algorithms takes advantage of computer caches to obtain high
efficiency. We propose cache-efficient algorithms to determine the
score of the best alignment as well as the best alignment itself. All
algorithms were implemented using C and OpenMP, and benchmarked
using real data sets from the National Center for Biotechnology In-
formation (NCBI) database. The test computational platforms were
Xeon E5 2603, I7-x980 and Xeon E5 2695. Our best single-core cache-
efficient scoring algorithm reduces the running time by as much as
19.7% relative to the Smith-Waterman scoring algorithm and our best
cache-efficient alignment algorithm reduces the running time by as
much as 17.1% relative to the Myers and Miller alignment algorithm.
Multicore versions of our cache-efficient algorithms scale quite well
up to the 24 cores we tested; achieving a speedup of 22 with 24 cores.
Our multi-core scoring and alignment algorithms reduce the running
time by as much as 61.4% and 47.3% relative to multi-core versions
of the Smith-Waterman scoring algorithm and Myers and Miller’s
alignment algorithm, respectively.

1 Introduction

Sequence alignment is a fundamental and well-studied
problem in the biological sciences. In this problem,
we are given two sequences A[1 : m] = a1a2 · · ·am and
B[1 : n] = b1b2 · · ·bn and we are required to find the
score of the best alignment and possibly also an align-
ment with this best score. When aligning two sequences,
we may insert gaps into the sequences. The score of an
alignment is determined using a matching (or scoring)
matrix that assigns a score to each pair of characters
from the alphabet in use as well as a gap penalty model
that determines the penalty associated with a gap se-
quence. In the linear gap penalty model, the penalty
for a gap sequence of length k > 0 is kg, where g is
some constant while in the affine model this penalty
is gopen + (k − 1) ∗ gext. The affine model more ac-
curately reflects the fact that opening a gap is more
expensive than extending one. Two versions of sequence
alignment–global and local–are of interest. In global
alignment, the entire A sequence is to be aligned with

the entire B sequence while in local alignment, we wish
to find a substring of A and B that have the highest
alignment score. The alphabet for DNA, RNA, and
protein sequences is, respectively, {A, T, G, C}, {A, U,
G, C}, and {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,
R, S, T, V, W, Y}.

Figure 1 illustrates these concepts using the DNA
sequences A[1 : 8] = {AGTACGCA} and B[1 : 5] =
{TATGC}. The symbol ‘_’ denotes the gap charac-
ter. The alignment of Figure 1(a) is a global alignment
and that of Figure 1(b) is a local one. To score the
alignments, we have used the linear penalty model with
g = −2 and the scores for pairs of aligned characters,
which are taken from BLOSUM62 matrix in [1], are
c(T,T) = 5, c(A,A) = 4, c(C,C) = 9, c(G,G) = 6, and
c(C,T) =−1. The score for the shown global alignment
is 17 while that for the shown local alignment is 23. If
we were using an affine penalty model with gopen =−4
and gext =−2, then the penalty for each of the gaps in
positions 1 and 8 of the global alignment would be −4
and the overall score for the global alignment would be

*Corresponding Author: Chunchun Zhao, czhao@cise.ufl.edu

www.astesj.com 329
https://dx.doi.org/10.25046/aj030236

http://www.astesj.com
http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

13.

Figure 1: Example alignments using the linear gap
penalty model. (a) Global alignment (b) Local align-
ment

In [2], the authors first proposed an O(mn) time
algorithm, called Needleman-Wunsch(NW) algorithm,
for global alignment using the linear gap model. This al-
gorithm requires O(n) space when only the score of the
best alignment is to be determined and O(mn) space
when the best alignment is also to be determined. In [3],
the authors proposed a new algorithm called Smith-
Waterman(SW) algorithm, which modified the NW
algorithm so as to determine the best local alignment.
In [4], the author proposed a dynamic programming al-
gorithm called Gotoh algorithm, for sequence alignment
using an affine gap penalty model. The asymptotic com-
plexity of the SW and Gotoh algorithms is the same as
that of the NW algorithm.

When mn is large and the best alignment is sought,
the space, O(mn), required by the algorithms of NW,
SW and Gotoh exceeds what is available on most com-
puters. The best alignment for these large instances can
be found in [5] using sequence alignment algorithms de-
rived from Hirschberg’s linear space divide-and-conquer
algorithm for the longest common subsequence problem.
In [6], the authors developed a Myers-Miller alignment
algorithm. It is the linear space O(mn) time version of
Hirschberg’s algorithm for global sequence alignment
using an affine gap penalty model. And in [7], the
authors do this for local alignment.

In an effort to speed sequence alignment, fast
sequence-alignment heuristics have been developed. As
in [8, 9, 10],BLAST, FASTA, and Sim2 are a few exam-
ples of software systems that employ sequence alignment
heuristics. Another direction of research, also aimed at
speeding sequence alignment, has been the development
of parallel algorithms. Parallel algorithms for sequence
alignment may be found in [11]-[19], for example.

In this paper, we focus on reducing the number
of cache misses that occur in the computation of the
score of the best alignment as well as in determining
the best alignment. Although we explicitly consider
only the linear gap penalty model, our methods readily
extend to the affine gap penalty model. Our interest
in cache misses stems from two observations–(1) the
time required to service a last-level-cache (LLC) miss is
typically 2 to 3 orders of magnitude more than the time
for an arithmetic operation and (2) the energy required
to fetch data from main memory is typically between 60
to 600 times that needed when the data is on the chip.
As a result of observation (1), cache misses dominate
the overall running time of applications for which the
hardware/software cache prefetch modules on the tar-

get computer are ineffective in predicting future cache
misses. The effectiveness of hardware/software cache
prefetch mechanisms varies with application, computer,
and compiler. So, if we are writing code that is to be
used on a variety of computer platforms, it is desirable
to write cache-efficient code rather than to rely exclu-
sively on the cache prefetching of the target platform.
Even when the hardware/software prefetch mechanism
of the target platform is very effective in hiding memory
latency, observation (2) implies excessive energy use
when there are many cache misses.

This paper is an extension of work originally in [20],
which has been presented by us in the 2015 IEEE 5th
international conference on Computational Advances
in Bio and Medical Sciences (ICCABS). The main con-
tributions are

1. cache efficient single-core and multi-core algo-
rithms to determine the score of the best align-
ment;

2. cache efficient single-core and multi-core algo-
rithms to determine the best alignment.

The rest of the paper is organized in the following
way. In Section 2, we describe our cache model. Our
cache-efficient algorithms for scoring and alignment are
developed and analyzed in Section 3. Experimental
results are presented in Section 4. In Section 5, we
present a discussion of these results and in Section 6,
we present the limitations of our work. Finally, we
conclude in Section 7.

2 Cache Model
For simplicity in the analysis, we assume a single cache
comprised of s lines of size w words (a word is large
enough to hold a piece of data, typically 4 bytes) each.
So, the total cache capacity is sw words. The main
memory is partitioned into blocks also of size w words
each. When the program needs to read a word that is
not in the cache, a cache miss occurs. To service this
cache miss, the block of main memory that includes the
needed word is fetched and stored in a cache line, which
is selected using the LRU (least recently used) rule.
Until this block of main memory is evicted from this
cache line, its words may be read without additional
cache misses. We assume the cache is written back
with write allocate. Write allocate means that when
the program needs to write a word of data, a write miss
occurs if the block corresponding to the main memory
is not currently in cache. To service the write miss,
the corresponding block of main memory is fetched and
stored in a cache line. Write back means that the word
is written to the appropriate cache line only. A cache
line with changed content is written back to the main
memory when it is about to be overwritten by a new
block from main memory.

Rather than directly assess the number of read and
write misses incurred by an algorithm, we shall count
the number of read and write accesses to main memory.

www.astesj.com 330

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Every read and write miss makes a read access. A
read and write miss also makes a write access when the
data in the replacement cache line is written to main
memory.

We emphasize that the described cache model is a
very simplified model. In practice, modern computers
commonly have two or three levels of cache and em-
ploy sophisticated adaptive cache replacement strategies
rather than the LRU strategy described above. Further,
hardware and software cache prefetch mechanisms are
often deployed to hide the latency involved in servicing
a cache miss. These mechanisms may, for example,
attempt to learn the memory access pattern of the
current application and then predict the future need
for blocks of main memory. The predicted blocks are
brought into cache before the program actually tries to
read/write from/into those blocks thereby avoiding (or
reducing) the delay involved in servicing a cache miss.
Actual performance is also influenced by the compiler
used and the compiler options in effect at the time of
compilation. As a result, actual performance may bear
little relationship to the analytical results obtained for
our simple cache model. Despite this, we believe the
simple cache model serves a useful purpose in directing
the quest for cache-efficient algorithms that eventually
need to be validated experimentally.

3 Cache Efficient Algorithms
3.1 Scoring Algorithms
3.1.1 Needleman-Wunsch and Smith-Waterman algo-

rithm

Let Hij be the score of the best global alignment for
A[1 : i] and B[1 : j]. We wish to determine Hmn. In [2],
the authors derived the following dynamic programming
equations for H using the linear gap penalty model.
These equations may be used to compute Hmn.

Hi,0 =−i ∗ g H0,j =−j ∗ g, 0≤ i≤m, 0≤ j ≤ n (1)

When i > 0 and j > 0,

Hi,j = max

 Hi−1,j−1 + c(ai, bj)
Hi,j−1 + c(_, bj) = Hi,j−1− g
Hi−1,j + c(ai,_) = Hi−1,j − g

(2)

where c(ai, bj) is the match score between characters ai

and bj and g is the gap penalty.
For local alignment, Hij denotes the score of the

best local alignment for A[1 : i] and B[1 : j]. In [3], the
Smith-Waterman equations for local alignment using
the linear gap penalty model are:

Hi,0 = 0, H0,j = 0, 0≤ i≤m, 0≤ j ≤ n (3)

When i > 0 and j > 0,

Hi,j = max

0
Hi−1,j−1 + c(ai, bj)
Hi,j−1 + c(_, bj) = Hi,j−1− g
Hi−1,j + c(ai,_) = Hi−1,j − g

(4)

Several authors (in [5, 6], for example) have ob-
served that the score of the best local alignment may be
determined using a single array H[0 : n] as in algorithm
Score(Algorithm 1.)

Algorithm 1 Smith-Waterman scoring algorithm
1: Score(A[1 : m],B[1 : n])
2: for j ← 0 to n do
3: H[j]← 0 //Initialize row 0
4: end for
5: for i ← 1 to m do
6: diag← 0 // Compute row i
7: for j ← 1 to n do
8: nextdiag←H[j]
9: H[j]← max{0,diag + c(A[i],B[j]),H[j − 1]−

g,H[j]− g}
10: diag← nextdiag
11: end for
12: end for
13: return H[n]

The scoring algorithm for the Needleman and Wun-
sch algorithm is similar. It is easy to see that the time
complexity of the algorithm of Algorithm 1 is O(mn)
and its space complexity is O(n).

Figure 2: Memory access pattern for Score algo-
rithm(Algorithm 1).

For the (data) cache miss analysis, we focus on read
and write misses of the array H and ignore misses due
to the reads of the sequences A and B as well as of
the scoring matrix c (notice that there are no write
misses for A, B, and c). Figure 2 shows the memory
access pattern for H by algorithm Score. The first row
denotes the initialization of H and subsequent rows
denote access for different value of i (i.e., different it-
erations of the for i loop). The computation of Hij

is done using a single one-dimensional array H[], fol-
lowing the i’th iteration of the for i loop, H[j] = Hij .
In each iteration of this loop, the elements of H[] are
accessed left-to-right. During the initialization loop, H
is brought into the cache in blocks of size w. Assume
that n is sufficiently large so that H[] does not entirely
fit into the cache. Hence, at some value of j, the cache
capacity is reached and further progress of the initial-
ization loop causes the least recently used blocks of H[]

www.astesj.com 331

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

(i.e., blocks from left to right) to be evicted from the
cache. The evicted blocks are written to main memory
as they have been updated. So, the initialization loop
results in n/w read accesses and (approximately) n/w
write accesses (the number of write accesses is actually
n/w− s). Since the left part of H[] has been evicted
from the cache by the time we start the computation
for row i (i > 0), each iteration of the for i loop also
results in n/w read accesses and approximately n/w
write accesses. So, the total number of read accesses is
(m + 1)n/w ≈mn/w and the number of write accesses
is also ≈mn/w. The number of read and write accesses
is ≈ 2mn/w, when n is large.

We note, however, that when n is sufficiently small
that H[] fits into the cache, the number of read accesses
is n/w (all occur in the initialization loop) and there
are no write accesses. In practice, especially in the case
of local alignment involving a very long sequence, one
of the two sequences A and B is small enough to fit in
the cache while the other may not fit in the cache. So,
in these cases, it is desirable to ensure that A is the
longer sequence and B is the shorter one so that H fits
in the cache entirely. This is accomplished by swap A
and B sequences.

When m < n and H[1 : m] fits into the cache and
H[1 : n] does not, algorithm Score incurs O(mn/w)
read/write accesses, while swap A and B incurs O(m/w)
read/write accesses.

3.1.2 Diagonal Algorithm

An alternative to computing the score by rows is to com-
pute by diagonals. While this uses two one-dimensional
arrays rather than one, it is more readily parallelized
than Score as all elements on a diagonal can be com-
puted at the same time; elements on a row need to be
computed in sequence.

Algorithm 2 Diagonal scoring algorithm
1: Diagonal(A[1 : m],B[1 : n])
2: d2[0]← d1[0]← d1[1]← 0
3: for d ← 2 to m + n do
4: x← (d <= m?0 : d−m);y← (d <= n?d : n);
5: for i ← x to y do
6: j← d− i
7: diag← next + c(A[i] + B[j])
8: left← d1[i− 1]− g
9: up← d1[i]− g

10: next← d2[i]
11: d2[i]←max{0,diag, left,up}
12: end for
13: swap(d1,d2)
14: end for
15: return d1[n]

Algorithm Diagonal (Algorithm 2) uses two one-
dimensional arrays d1[] and d2[], where d2[] stores the
scores for the (d− 2)th diagonal data and d1[] stores
them for the (d−1)th diagonal. When we compute the
element Hi,j in the dth diagonal, the previous diagonal

element Hi−1,j−1 is fetched from d2[] and the previous
left element Hi−1,j and previous upper element Hi,j−1
are fetched from d1[]. The calculated Hi,j overwrites
the old value in d2[].

The total number of read accesses is mn/w for each
diagonal array and the total number of write accesses is
mn/w for both arrays combined. The number of cache
misses for Diagonal is approximately 3mn/w when n
is large.

3.1.3 Strip Algorithm

When neither H[1 : m] nor H[1 : n] fits into the cache,
accesses to main memory may be reduced by comput-
ing Hij by strips of width q such that q consecutive
elements of H[] fit into the cache. Specifically, we par-
tition H[1 : n] into n/q strips of size q (except possibly
the last strip whose size may be smaller than q) as in
Figure 3. First, all Hij in strip 0 are computed, then
those in strip 1, and so on. When computing the values
in a strip, we need those in the rightmost column of the
preceding strip. So, we save these rightmost values in
a one-dimensional array strip[0 : m]. The algorithm is
given in Algorithm 3. We note that sequence alignment
by strips has been considered before. For example, in
[12], the authors using the similar approach in their
GPU algorithm. Their use differs from ours in that they
compute the strips in pipeline fashion with each strip
assigned to a different pipeline stage in round robin
fashion and within a strip, the computation is done by
anti-diagonals in parallel. On the other hand, we do
not pipeline the computation among strips and within
a strip, our computation is by rows.

Algorithm 3 Strip scoring algorithm
1: Strip(A[1 : m],B[1 : n])
2: for j ← 1 to m do
3: strip[j]← 0 //leftmost strip
4: end for
5: for t ← 1 to n/q do
6: for j ← t ∗ q to t ∗ q + q− 1 do
7: H[j]← 0 //Initialize first row
8: end for
9: for i ← 1 to m do

10: diag← strip[i− 1]
11: H[t ∗ q− 1]← strip[i]
12: for j ← t ∗ q to t ∗ q + q− 1 do
13: nextdiag←H[j]
14: H[j]←max{0,diag+c(A[i],B[j]),H[j−1]−

g,H[j]− g}
15: diag← nextdiag
16: end for
17: strip[i]←H[t ∗ q + q− 1]
18: end for
19: end for
20: return H[n]

www.astesj.com 332

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Figure 3: Memory access pattern for Strip algorithm
(Algorithm 3).

It is easy to see that the time complexity of algo-
rithm Strip is O(mn) and that its space complexity is
O(m+n). For the cache misses, we focus on those result-
ing from the reads and writes of H[] and strip[]. The
initialization of strip results in m/w read accesses and
approximately the same number of write accesses. The
computation of each strip makes the following accesses
to main memory:

1. q/w read accesses for the appropriate set of q
entries of H for the current strip and q/w write
accesses for the cache lines whose data are re-
placed by these H values. The write accesses are,
however, not made for the first strip.

2. m/w read accesses for strip and m/w write ac-
cesses. The number of write accesses is less by s
for the last strip.

So, the overall number of read accesses is m/w +
(q/w + m/w) ∗ n/q = m/w + n/w + mn/(wq) and the
number of write accesses is approximately the same as
this. So, the total number of main memory accesses is
≈ 2mn/(wq) when m and n are large.

3.2 Alignment Algorithms
In this section, we examine algorithms that compute
the alignment that results in the best score rather than
just the best score. While in the previous section we
explicitly considered local alignment and remarked that
the results readily extend to global alignment, in this
section we explicitly consider global alignment and re-
mark that the methods extend to local alignment.

3.2.1 Myers and Miller’s Algorithm

When aligning very long sequences, the O(mn) space re-
quirement of the full-matrix algorithm exceeds the avail-
able memory on most computers. For these instances,
we need a more memory-efficient alignment algorithm.
In [6], Myers and Miller have adapted Hirschberg’s
linear space algorithm for the longest common subse-
quence problem to find the best global alignment in
linear space. Its time complexity is O(mn). However,

this linear space adaptation performs about twice as
many operations as does the full-matrix algorithm. In
[11], the authors have developed a hybrid algorithm,
FastLSA, whose memory requirement adapts to the
amount of memory available on the target computing
platform. In this section and the next, we focus on the
adaptation of Myers-Miller algorithm.

It is easy to see that an optimal (global) alignment
is comprised of an optimal alignment of A[1 : m/2] and
B[1 : j] and an optimal alignment of A[m : m/2 + 1]
(A[m : i] is the reverse of A[i : m]) and B[n : j + 1] for
some j, 1 ≤ j ≤ n. The value of j for which this is
true is called the optimal crossover point. Myers and
Miller’s linear space algorithm for alignment determines
the optimal alignment by first determining the optimal
crossover point (si,sj) where si = m/2, and then re-
cursively aligning A[1 : m/2] and B[1 : sj] as well as
A[m : m/2 + 1] and B[n : sj + 1]. Equivalently, an op-
timal alignment of A[1 : m] and B[1 : n] is an optimal
alignment of A[1 : m/2] and B[1 : sj] concatenated with
the reverse of an optimal alignment of A[m : m/2 + 1]
and B[n : sj + 1]. Hence, an optimal alignment is com-
prised of a sequence of optimal crossover points. This is
depicted visually in Figure 4. Figure 4(a) shows align-
ments using 3 possible crossover points at row m/2 of
H. Figure 4(b) shows the partitioning of the alignment
problem into 2 smaller alignment problems (shaded rect-
angles) using the optimal crossover point (meeting point
of the 2 shaded rectangles) at row m/2. Figure 4(c)
shows the partitioning of each of the 2 subproblems of
Figure 4(b) using the optimal crossover points for these
subproblems (note that these crossovers take place at
rows m/4 and 3m/4, respectively). Figure 4(d) shows
the constructed optimal alignment, which is presently
comprised of the 3 determined optimal crossover points.

Figure 4: An alignment as crossover points. (a) Three
alignments (b) Optimal crossover for m/2 (c)Optimal
crossover points at m/4 and 3m/4 (d) Best alignment

www.astesj.com 333

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Algorithm 4 Myers and Miller algorithm
1: MM(A[1 : m],B[1 : n],path[1 : m])
2: if m <= 1 or n <= 1 then
3: Linear search to find optimal crossover

point [si,sj]
4: path[m]← [si,sj]
5: else
6: Htop←MScore(A[1 : m

2],B[1 : n])
7: Hbot←MScore(A[m : m

2 + 1],B[n : 1])
8: Linear search to find optimal crossover

point [si,sj]
9: MM(A[1 : m

2],B[1 : sj],path[1 : m
2])

10: path[m
2]← [si,sj]

11: MM(A[m
2 + 1 : m],B[sj + 1 : n],path[m

2 + 1 : m])
12: end if

The Myers and Miller algorithm, MM (Algo-
rithm 4), uses a modified version of the linear space
scoring algorithm Score (Algorithm 1) to obtain the
scores for the best alignments of A[1 : i] and B[1 : j],
1 ≤ i ≤ m/2, 1 ≤ j ≤ n as well as for the best align-
ments of A[m : i] and B[m : j], m/2 < i≤m, 1≤ j ≤ n.
This modified version MScore differs from Score only
in that MScore returns the entire array H rather than
just H[n]. Using the returned H arrays for the forward
and reverse alignments, the optimal crossover point for
the best alignment is computed as in algorithm MM
(Algorithm 4). Once the optimal crossover point is
known, two recursive calls are made to optimally align
the top and bottom halves of A with left and right parts
of B. The approximately time complexity for iteration
k is O(2mn/2k), hence the total time complexity is
rough 2mn.

In each level of recursion, the number of main mem-
ory accesses is dominated by those made in the calls to
MScore. From the analysis for Score, it follows that
when n is large, the number of accesses to main memory
is ≈ 2mn/w(1 + 1/2 + 1/4 + · · ·) ≈ 4mn/w.

3.2.2 Diagonal Myers and Miller Algorithm

Let Mdiagonal be algorithm Diagonal (Algorithm 2)
modified to return the entire H array rather than
just H[n]. Our diagonal Myers and Miller algorithm
(MMDiagonal) replaces the two statements in algo-
rithm MM (Algorithm 4) that invoke MScore with
a test that causes Mdiagonal to be used in place of
MScore when both of m and n are sufficiently long.

From the analysis for Diagonal, it follows that when
m and n are large, the number of accesses to main mem-
ory is ≈ 3mn/w(1 + 1/2 + 1/4 + · · ·) ≈ 6mn/w.

3.2.3 Striped Myers and Miller Algorithm

Let MStrip be algorithm Strip (Algorithm 3) modi-
fied to return the entire H array rather than just H[n].
Our striped Myers and Miller algorithm (MMStrip)
replaces the two statements in algorithm MM (Algo-
rithm 4) that invoke MScore with a test that causes
MStrip to be used in place of MScore when both of
m and n are sufficiently long.

From the analysis for Strip, it follows that when m
and n are large, the number of accesses to main memory
is ≈ 2mn/(wq)(1 + 1/2 + 1/4 + · · ·) ≈ 4mn/(wq).

3.3 Parallel Scoring Algorithms

3.3.1 Parallel Score Algorithm

As remarked earlier in Score algorithm, the elements
in a row of the score matrix need to be computed
sequentially from left to right because of data depen-
dencies. So, we are unable to parallelize the inner for
loop of Score (Algorithm 1). Instead, we adopt the un-
usual approach of parallelizing the outer for loop while
computing the inner loop sequentially using a single
processor. Initially, processor s is assigned to do the
outer loop computation for i = s, 1≤ i≤ p, where p is
the number of processors. Processor s begins after a
suitable time lag relative to the start of processor s− 1
so that the data it needs for its computation has already
been computed by processor s− 1. That is, processor 1
begins the inner loop computation for i = 1 at time 0,
then, with a suitable time lag, processor 2 begins the
outer loop computation for i = 2, then, with a further
lag, processor 3 begins the i = 3 computation and so
on. When a processor has finished with its iteration
i computation, it starts on iteration i + p of the outer
loop. Synchronization primitives are used to ensure
suitable time lags. The time complexity of the resulting
p-core algorithm PP_Score is O(mn/p).

3.3.2 Parallel Diagonal Algorithm

The inner for loop of Diagonal (Algorithm 2) is easily
parallelized as the elements on a diagonal are inde-
pendent and may be computed simultaneously. So, in
our parallel version, we divide the diagonal d into p
blocks, where p is the number of processors. We as-
sign a block to each processor from left to right as in
Figure 5. The time complexity of the resulting p-core
algorithm PP_Diagonal is O(mn/p).

Figure 5: Parallel Diagonal algorithm.

www.astesj.com 334

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

3.3.3 Parallel Strip Algorithm

In the Strip scoring algorithm, we partition the score
matrix H into n/q strips of size q (Figure 3) and com-
pute the strips one at a time from left to right. Inside
a strip, scores are computed row by row from top to
bottom. We see that the computation of one strip can
begin once the first row of the previous strip has been
computed. In our parallel version of this algorithm, pro-
cessor i is initially assigned to compute strip i, 1≤ i≤ p.
When computing a value in its assigned strip, a pro-
cessor needs to wait until the values (if any) needed
from the strip to its left have been computed. When
a processor completes the computation of strip j, it
proceeds with the computation of strip j + p. Figure 6
shows a possible state in the described parallel strip
computation strategy. We maintain an array signal[]
such that signal[r] = s + 1 iff the row r computation
for strips 1 through s has been completed. This array
enables the processor working on the strip to its right
to determine when it can begin the computation of its
r’th row. The time complexity of the resulting parallel
strip algorithm, PP_Strip, is O(mn/p).

Figure 6: Parallel Strip algorithm.

3.4 Parallel Alignment Algorithms
In the single-core implementation, we divide the H
matrix into two equal size parts and apply the scoring
algorithm to each part. Then, we determine the optimal
crossover point where the sum of the scores from both
directions is maximum. This crossover point is used
to divide the matrix into two smaller score matrices
to which this decomposition strategy is recursively ap-
plied. The first application of this strategy yields two
independent subproblems and following an application
of the strategy to each of these subproblems, we have 4
even smaller subproblems. Following k rounds, we have
2k independent subproblems.

For the parallel version of alignment algorithms, we
employ the following strategies:

• When the number of independent matrices is
small, each matrix is computed using the par-
allel version of score algorithms PP_Score,
PP_Diagonal and PP_Strip; where p proces-
sors are assigned to the parallel computation. In
other words, the matrices are computed in se-
quence.

• When the number of independent matrices is large,
each matrix is computed using the single-core al-
gorithms Score, Diagonal and Strip. Now, p
matrices are concurrently computed.

Let PP_MM , PP_MMDiagonal and
PP_MMStrip, respectively, denote the parallel ver-
sions of MM , MMDiagonal and MMStrip.

4 Results

4.1 Experimental Settings and Test Data
We implemented the single-core scoring and alignment
algorithms in C and the multi-core scoring and align-
ment algorithms in C and OpenMP. The relative per-
formance of these algorithms was measured on the fol-
lowing platforms:

1. Intel Xeon CPU E5-2603 v2 Quad-Core processor
1.8GHz with 10MB cache.

2. Intel I7-x980 Six-Core processor 3.33GHz with
12MB LLC cache.

3. Intel Xeon CPU E5-2695 v2 2xTwelve-Core pro-
cessors 2.40GHz with 30MB cache.

For convenience, we will, at times, refer to these plat-
forms as Xeon4, Xeon6, and Xeon24 (i.e., the number
of cores is appended to the name Xeon).

All codes were compiled using the gcc compiler with
the O2 option. On our Xeon4 platform, we used the
“perf” [21] software to measure energy usage through
the RAPL interface. So, for this platform, we report
cache misses and energy consumption as well as running
time. For the Xeon6 and Xeon24 platforms, we provide
the running time only.

For test data, we used randomly generated pro-
tein sequences as well as real protein sequences
obtained from the Globin Gene Server[22] and
DNA/RNA/protein sequences from the National Center
for Biotechnology Information (NCBI) database [23].
We used the BLOSUM62[1] scoring matrix for all our
experiments. The results for our randomly generated
protein sequences were comparable to those for simi-
larly sized sequences used from the two databases [22]
and [23]. So, we present only the results for the latter
data sets here.

www.astesj.com 335

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

4.2 Xeon E5-2603 (Xeon4)
4.2.1 Score Algorithms

Figure 7 and Table 1 give the number of cache misses
on our Xeon4 platform for different sequence sizes. The
last two columns of Table 1 gives the percent reduction
in the observed cache miss count of Strip relative to
Score and Diagonal. Strip has the fewest cache misses
followed by Score and Diagonal (in this order). Strip
reduces cache misses by up to 86.2% relative to Score
and by up to 92.3% relative to Diagonal.

Figure 7: Cache misses of scoring algorithms, in billions,
on Xeon4.

Figure 8 and Table 2 give the running times of our
scoring algorithms on our Xeon4 platform. In the figure,
the time is in seconds while in the table, the time is
given using the format hh : mm : ss. The table also
gives the percent reduction in running time achieved
by Strip relative to Score and Diagonal.

Figure 8: Run time of scoring algorithms, in seconds,
on Xeon4.

As can be seen, on our Xeon4 platform, Strip is the
fastest followed by Score and Diagonal (in this order).
Strip reduces the running time by up to 17.5% relative
to Score and by up to 22.8% relative to Diagonal. The
reduction in running time, while significant, isn’t as
much as the reduction in cache misses possibly due
to the effect of cache prefetching, which reduces cache
induced computational delays.

Figures 9 and Tables 3 give the CPU and cache
energy consumed, in joules, by our Xeon4 platform.

Figure 9: CPU and cache energy consumption of scoring
algorithms, in joules, on Xeon4.

On our datasets, Strip required up to 18.5% less
CPU and cache energy than Score and up to 25.5% less
than Diagonal. It is interesting to note that the energy
reduction is comparable to the reduction in running
time suggesting a close relationship between running
time and energy consumption for this application.

4.2.2 Parallel Scoring Algorithms

Figure 10 and Table 4 give the number of cache misses
on our Xeon4 platform for our parallel scoring algo-
rithms. PP_Strip has the fewest cache misses fol-
lowed by PP_Score and PP_Diagonal (in this or-
der). PP_Strip reduces cache misses by up to 98.1%
relative to PP_Score and by up to 99.1% relative to
PP_Diagonal. We observe also that the total cache
misses for PP_Score is slightly higher than for Score
for smaller instances and lower for larger instances.
PP_Diagonal, on the other hand, consistently has
more cache misses than Diagonal. PP_Strip exhibits
a significant reduction in cache misses. This is because
we chose the strip width to be such that p strip rows
fit in this cache. Most of the cache misses in the Strip
are from the vector that transfers boundary results
from one strip to the next. When p strips are being
worked on simultaneously, the inter-strip data that is
to be transferred is often in the cache and so many of
the cache misses incurred by the single-core algorithm
are saved. The remaining two algorithms do not allow
this flexibility in choosing the segment size a processor
works on; this size is fixed at O(n/p).

Figure 10: Cache misses of parallel scoring algorithms,
in billions, on Xeon4.

www.astesj.com 336

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 1: Cache misses of scoring algorithms, in millions, on Xeon4.
A |A| B |B| Score Diagonal Strip Imp1 Imp2
human4 97,634 mouse4 94,647 33 74 6 82.1% 92.1%
XM_004403740 104,267 XM_012169741 103,004 38 86 7 81.8% 91.9%
AC006294 200,000 NW_009147196 200,000 144 342 26 81.9% 92.3%
AC006294 200,000 NW_004451499 398,273 363 630 52 85.6% 91.7%
KQ079741 392,981 NW_004451499 398,273 712 1,190 98 86.2% 91.7%
KQ079794 1,083,068 NW_004450885 1,098,196 4,676 9,200 772 83.5% 91.6%

Table 2: Run time of scoring algorithms, in hh:mm:ss, on Xeon4.
A |A| B |B| Score Diagonal Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:39 0:00:42 0:00:33 16.2% 21.6%
XM_004403740 104,267 XM_012169741 103,004 0:00:45 0:00:49 0:00:38 16.2% 22.8%
AC006294 200,000 NW_009147196 200,000 0:02:49 0:03:02 0:02:22 16.2% 22.1%
AC006294 200,000 NW_004451499 398,273 0:05:42 0:05:58 0:04:42 17.5% 21.3%
KQ079741 392,981 NW_004451499 398,273 0:11:03 0:11:44 0:09:14 16.4% 21.4%
KQ079794 1,083,068 NW_004450885 1,098,196 1:24:06 1:28:45 1:10:10 16.6% 20.9%

Figure 11 and Table 5 give the running times for our
parallel scoring algorithms on our Xeon4 platform. In
the figure, the time is in seconds while in the table, the
time is given using the format hh : mm : ss. As in the
table, PP_Strip is the fastest algorithm in practice,
which is up to 40.0% faster than PP_Score and up to
38.4% faster than PP_Diagonal.

Figure 11: Run time of parallel scoring algorithms, in
seconds, on Xeon4.

Table 6 gives the speedup of each of our parallel
scoring algorithms relative to their sequential counter-
parts. As can be seen, the speedup of PP_Strip (i.e.,
Strip/PP_Strip) is between 3.92 and 3.98, which is
quite close to the number of cores (4) on our Xeon4
platform. PP_Score achieves a speedup in the range
2.82 to 2.94 and the speedup for PP_Diagonal is in
the range 3.12 to 3.21.

The excellent speedup exhibited by PP_Strip is
due largely to our ability to greatly reduce cache misses
for this algorithm.

Figures 12 and Tables 7 give the CPU and cache
energy consumed, in joules, by our Xeon4 platform. On
our datasets, PP_Strip required up to 41.2% less CPU
and cache energy than PP_Score and up to 45.5% less
than PP_Diagonal.

Figure 12: CPU and cache energy consumption of par-
allel scoring algorithms, in joules, on Xeon4.

Compared to the sequential scoring algorithms, the
multi-core algorithms use higher CPU power but less
running time. Since the power increase is less than
the decrease in running time, energy consumption is
reduced.

4.2.3 Alignment Algorithms

Figure 13: Cache misses for alignment algorithms, in
billions, on Xeon4.

Figure 13 and Table 8 give the number of cache misses of
our single-core alignment algorithms on our Xeon4 plat-

www.astesj.com 337

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 3: CPU and cache energy consumption of scoring algorithms, in joules, on Xeon4.
A |A| B |B| Score Diagonal Strip Imp1 Imp2
human4 97,634 mouse4 94,647 230.67 252.29 190.6 17.4% 24.5%
XM_004403740 104,267 XM_012169741 103,004 268.29 297.28 221.49 17.4% 25.5%
AC006294 200,000 NW_009147196 200,000 997.88 1100.6 829.36 16.9% 24.6%
AC006294 200,000 NW_004451499 398,273 2026.26 2178.97 1651.46 18.5% 24.2%
KQ079741 392,981 NW_004451499 398,273 3944.3 4300.59 3253.46 17.5% 24.3%
KQ079794 1,083,068 NW_004450885 1,098,196 30125.93 33472.81 24980.35 17.1% 25.4%

Table 4: Cache misses of parallel scoring algorithms, in millions, on Xeon4.
A |A| B |B| PP_Score PP_Diagonal PP_Strip Imp1 Imp2
human4 97,634 mouse4 94,647 34 102 1 96.7% 98.9%
XM_004403740 104,267 XM_012169741 103,004 39 115 1 96.8% 98.9%
AC006294 200,000 NW_009147196 200,000 146 398 4 96.9% 98.9%
AC006294 200,000 NW_004451499 398,273 362 768 7 98.1% 99.1%
KQ079741 392,981 NW_004451499 398,273 628 1,373 14 97.7% 99.0%
KQ079794 1,083,068 NW_004450885 1,098,196 3,642 9,976 121 96.7% 98.8%

form. MMStrip has the fewest number of cache misses
followed by MM and MMDiagonal (in this order).
MMStrip reduces cache misses by up to 81.0% relative
to MM and by up to 90.3% relative to MMDiagonal.

Figure 14 and Table 9 give the running times of our
single-core alignment algorithms on our Xeon4 platform.
As can be seen, MMStrip is the fastest followed by
MM and MMDiagonal (in this order). MMStrip re-
duces running time by up to 15.0% relative to MM , by
up to 13.4% relative to MMDiagonal. As was the case
with our scoring algorithms, the reduction in running
time, while significant, isn’t as much as the reduction
in cache misses.

Figure 14: Run time of alignment algorithms, in Sec-
onds, on Xeon4.

Figures 15 and Tables 10 give the CPU and cache
energy consumption, in joules, by our single-core align-
ment algorithms. On our datasets, MMStrip reduced
up to 17.5% less CPU and cache energy than MM
and up to 18.7% less than MMDiagonal. Once again,
the energy reduction is comparable to the reduction in
running time suggesting a close relationship between
running time and energy consumption for this applica-
tion.

Figure 15: CPU and cache energy consumption of
alignment algorithms, in joules, on Xeon4.

4.2.4 Parallel Alignment Algorithms

Figure 16 and Table 11 give the number of cache misses
of our multi-core alignment algorithms on our Xeon4
platform.

Figure 16: Cache misses for parallel alignment algo-
rithms, in billions, on Xeon4.

PP_MMStrip has the fewest number of cache
misses followed by PP_MM and PP_MMDiagonal
(in this order). PP_MMStrip reduces cache misses by

www.astesj.com 338

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 5: Run time of parallel scoring algorithms on Xeon4.
A |A| B |B| PP_Score PP_Diagonal PP_Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:14 0:00:13 0:00:08 40.0% 37.7%
XM_004403740 104,267 XM_012169741 103,004 0:00:16 0:00:15 0:00:10 39.8% 37.1%
AC006294 200,000 NW_009147196 200,000 0:00:58 0:00:58 0:00:36 39.0% 38.4%
AC006294 200,000 NW_004451499 398,273 0:01:56 0:01:53 0:01:11 39.0% 37.0%
KQ079741 392,981 NW_004451499 398,273 0:03:49 0:03:39 0:02:19 39.3% 36.6%
KQ079794 1,083,068 NW_004450885 1,098,196 0:29:02 0:27:52 0:17:39 39.2% 36.7%

Table 6: Speedup of parallel scoring algorithms on Xeon4.
A |A| B |B| Score/PP Diagonal/PP Strip/PP
human4 97,634 mouse4 94,647 2.82 3.12 3.93
XM_004403740 104,267 XM_012169741 103,004 2.82 3.19 3.92
AC006294 200,000 NW_009147196 200,000 2.89 3.14 3.97
AC006294 200,000 NW_004451499 398,273 2.94 3.18 3.97
KQ079741 392,981 NW_004451499 398,273 2.89 3.21 3.98
KQ079794 1,083,068 NW_004450885 1,098,196 2.90 3.18 3.98

up to 95.5% relative to PP_MM and by up to 98.2%
relative to PP_MMDiagonal.

Figure 17 and Table 12 give the running times for
our parallel alignment algorithms on the Xeon4 plat-
form. PP_MMStrip is faster than PP_MM by up
to 37.4% and faster than PP_MMDiagonal by up to
40.3%.

Figure 17: Run time of parallel alignment algorithms,
in seconds, on Xeon4.

Table 13 gives the speedup of each parallel align-
ment algorithm relative to its single-core counterpart.
The speedup achieved by PP_MMStrip (relative to
MMStrip) ranges from 3.56 to 3.94 while that for
PP_MM is in the range 2.77 to 2.88 and that for
PP_MMDiagonal is in the range 2.53 to 2.81.

Figures 18 and Tables 14 give the CPU and cache en-
ergy consumption, in joules, by our multi-core alignment
algorithms. On our datasets, PP_MMStrip required
up to 29.9% less CPU and cache energy than PP_MM
and up to 42.1% less than PP_MMDiagonal. Once
again, the energy reduction is comparable to the re-
duction in running time suggesting a close relationship
between running time and energy consumption for this
application.

Figure 18: CPU and cache energy consumption of par-
allel alignment algorithms, in joules, on Xeon4.

4.3 I7-x980 (Xeon6)
4.3.1 Scoring Algorithms

Figure 19: Run time of scoring algorithms, in seconds,
on Xeon6

Figure 19 and Table 15 give the running times of our
single-core scoring algorithms on our Xeon6 platform.
As can be seen, Strip is the fastest followed by Score
and Diagonal (in this order). Strip reduces running
time by up to 14.3% relative to Score and by up to
22.4% relative to Diagonal.

www.astesj.com 339

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 7: CPU and cache energy consumption of parallel scoring algorithms on Xeon4.
A |A| B |B| PP_Score PP_Diagonal PP_Strip Imp1 Imp2
human4 97,634 mouse4 94,647 150.12 161.77 88.23 41.2% 45.5%
XM_004403740 104,267 XM_012169741 103,004 174.30 175.68 102.76 41.0% 41.5%
AC006294 200,000 NW_009147196 200,000 631.46 661.29 381.02 39.7% 42.4%
AC006294 200,000 NW_004451499 398,273 1,256.11 1,294.55 760.57 39.5% 41.2%
KQ079741 392,981 NW_004451499 398,273 2,471.51 2,535.50 1,493.38 39.6% 41.1%
KQ079794 1,083,068 NW_004450885 1,098,196 18,830.03 20,253.39 11,477.30 39.0% 43.3%

Table 8: Cache misses for alignment algorithms, in millions, on Xeon4.
A |A| B |B| MM MMDiagonal MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 42 96 12 71.6% 87.6%
XM_004403740 104,267 XM_012169741 103,004 54 119 14 74.5% 88.5%
AC006294 200,000 NW_009147196 200,000 227 488 48 78.6% 90.1%
AC006294 200,000 NW_004451499 398,273 441 926 95 78.4% 89.7%
KQ079741 392,981 NW_004451499 398,273 959 1,851 200 79.1% 89.2%
KQ079794 1,083,068 NW_004450885 1,098,196 7,994 15,642 1,521 81.0% 90.3%

4.3.2 Parallel Scoring Algorithms

Figure 20 and Table 16 give the running times for our
parallel scoring algorithms on our Xeon6 platform. As
with Xeon4, PP_Strip is faster than PP_Score and
PP_Diagonal and reduces the running time by up to
42.5% and 55.6%, respectively.

Figure 20: Run time of parallel scoring algorithms, in
seconds, on Xeon6.

Table 18 gives the speedup of each of our parallel
algorithms relative to their single-core counterparts.
PP_Strip achieves a speedup of up to 5.89, which
is very close to the number of cores. The maximum
speedup achieved by PP_Score and PP_Diagonal
was 4.09 and 4.25, respectively.

4.3.3 Alignment Algorithms

Figure 21 and Table 17 give the running times of our
parallel scoring algorithms on the Xeon6 platform. As
can be seen, MMStrip is the fastest followed by MM
and MMDiagonal (in this order). MMStrip reduces
running time by up to 12.6% relative to MM and by
up to 14.2% relative to MMDiagonal.

Figure 21: Run time of alignment algorithms, in sec-
onds, on Xeon6.

4.3.4 Parallel Alignment Algorithms

Figure 22 and Table 20 give the running times of
our parallel alignment algorithms on the Xeon6.
PP_MMStrip is faster than PP_MM and
PP_MMDiagonal and reduces the running time
by up to 39.9% and 44.8%, respectively.

Figure 22: Run time of parallel alignment algorithms,
in seconds, on Xeon6.

Table 21 gives the speedup of each of our par-
allel algorithms relative to their single-core counter-

www.astesj.com 340

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 9: Run time of alignment algorithms on Xeon4.
A |A| B |B| MM MMDiagonal MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:01:12 0:01:13 0:01:03 12.6% 12.7%
XM_004403740 104,267 XM_012169741 103,004 0:01:27 0:01:24 0:01:14 15.0% 12.8%
AC006294 200,000 NW_009147196 200,000 0:05:16 0:05:14 0:04:33 13.6% 13.0%
AC006294 200,000 NW_004451499 398,273 0:10:25 0:10:18 0:09:04 13.0% 12.0%
KQ079741 392,981 NW_004451499 398,273 0:20:27 0:20:28 0:17:47 13.0% 13.1%
KQ079794 1,083,068 NW_004450885 1,098,196 2:36:12 2:35:53 2:14:59 13.6% 13.4%

Table 10: CPU and cache energy consumption of alignment algorithms on Xeon4.
A |A| B |B| MM MMDiagonal MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 426.38 438.07 369.94 13.2% 15.6%
XM_004403740 104,267 XM_012169741 103,004 509.66 511.32 431.59 15.3% 15.6%
AC006294 200,000 NW_009147196 200,000 1873.99 1911.35 1600.77 14.6% 16.2%
AC006294 200,000 NW_004451499 398,273 3707.55 3772.38 3189.38 14.0% 15.5%
KQ079741 392,981 NW_004451499 398,273 7313.49 7512.26 6278.63 14.2% 16.4%
KQ079794 1,083,068 NW_004450885 1,098,196 56478.59 57339.29 46589.55 17.5% 18.7%

parts. PP_MMStrip achieves a speedup of up to
5.78, which is very close to the number of cores.
The maximum speedup achieved by PP_MM and
PP_MMDiagonal was 3.98 and 3.80, respectively.

4.4 Xeon E5-2695 (Xeon24)

4.4.1 Scoring Algorithms

Figure 23 and Table 19 give the running times of our
single-core scoring algorithms on our Xeon24 platform.
As was the case on our other test platforms, Strip is the
fastest followed by Score and Diagonal (in this order).
Strip reduces running time by up to 19.7% relative to
Score and by up to 35.1% relative to Diagonal.

Figure 23: Run time of scoring algorithms, in seconds,
on Xeon24.

4.4.2 Parallel Scoring Algorithms

Figure 24 and Table 22 give the running times for
our parallel scoring algorithms on our Xeon24 plat-
form. PP_Strip is faster than PP_Score and
PP_Diagonal and reduces the running time by up
to 61.4% and 76.2%, respectively.

Figure 24: Run time of parallel scoring algorithms, in
seconds, on Xeon24.

Table 23 gives the achieved speedup. PP_Strip
scales quite well and results in a speedup of up to 22.22.
The maximum speedups provided by PP_Score and
PP_Diagonal are 11.36 and 9.56, respectively.

4.4.3 Alignment Algorithms

Figure 25: Run time of alignment algorithms, in sec-
onds, on Xeon24.

Figure 25 and Table 24 give the running times of our
single-core alignment algorithms on our Xeon24 plat-

www.astesj.com 341

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 11: Cache misses for parallel alignment algorithms, in millions, on Xeon4.
A |A| B |B| PP_MM PP_MMDiagonal PP_MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 64 137 9 85.3% 93.1%
XM_004403740 104,267 XM_012169741 103,004 71 161 17 75.8% 89.4%
AC006294 200,000 NW_009147196 200,000 251 625 23 91.0% 96.4%
AC006294 200,000 NW_004451499 398,273 495 1,296 39 92.2% 97.0%
KQ079741 392,981 NW_004451499 398,273 975 2,558 52 94.6% 98.0%
KQ079794 1,083,068 NW_004450885 1,098,196 7,001 17,721 314 95.5% 98.2%

Table 12: Run time of parallel alignment algorithms on Xeon4.
A |A| B |B| PP_MM PP_MMDiagonal PP_MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:26 0:00:29 0:00:17 34.5% 40.3%
XM_004403740 104,267 XM_012169741 103,004 0:00:30 0:00:33 0:00:21 31.6% 37.3%
AC006294 200,000 NW_009147196 200,000 0:01:52 0:01:56 0:01:12 36.1% 38.5%
AC006294 200,000 NW_004451499 398,273 0:03:43 0:03:50 0:02:20 37.4% 39.1%
KQ079741 392,981 NW_004451499 398,273 0:07:12 0:07:23 0:04:31 37.2% 38.8%
KQ079794 1,083,068 NW_004450885 1,098,196 0:54:03 0:55:33 0:34:20 36.5% 38.2%

form. MMStrip is the fastest followed by MM and
MMDiagonal (in this order). MMStrip reduces run-
ning time by up to 17.1% relative to MM and by up
to 16.8% relative to MMDiagonal.

4.4.4 Parallel Alignment Algorithms

Figure 26 and Table 25 give the running times of
our parallel alignment algorithms on Xeon24. As can
be seen, PP_MMStrip is faster than PP_MM and
PP_MMDiagonal. It reduces the running time by up
to 47.3% and 84.6%, respectively.

Figure 26: Run time of parallel alignment algorithms,
in seconds, on Xeon24.

Table 26 gives the speedup of our parallel algo-
rithms. PP_MMStrip achieves a speedup of up
to 16.2 while PP_MM and PP_MMDiagonal have
maximum speedups of 9.79 and 6.58.

5 Discussion
By accounting for the presence of caches in modern
computers, we are able to arrive at sequence align-
ment algorithms that are considerably faster than those
that do not take advantage of computer caches. Our
benchmarking demonstrates the value of optimizing
cache usage. Our cache-efficient algorithms Strip and

MMStrip were the best-performing single-core algo-
rithms and their parallel counterparts were the best-
performing parallel algorithms. Strip reduced running
time by as much as 19.7% relative to the classical scor-
ing algorithm Score due to Smith and Waterman and
MM_Strip reduced running time by as much as 17.1%
relative to the alignment algorithm of Myers and Miller.
Neither the algorithm of Smith and Waterman nor that
of Myers and Miller optimize cache utilization. The
parallel versions of Strip and MM_Strip were up to
61.4% and 47.3% faster than the parallel versions of
the Smith and Waterman and the Myers and Miller
algorithms, respectively.

6 Limitations
Our cache miss analyses assume a simple cache model
in which there is a single LRU cache. In practice, com-
puters have multiple levels of cache and employ sophis-
ticated and proprietary cache replacement strategies.
Despite the use of a simplified cache model for analysis,
the developed cache-efficient algorithms perform very
well in practice.

7 Conclusion
The main contributions of this papers are

1. cache efficient single-core and multi-core algo-
rithms to determine the score of the best align-
ment;

2. cache efficient single-core and multi-core algo-
rithms to determine the best alignment.

The effectiveness of our cache-efficient algorithms has
been demonstrated experimentally using three compu-
tational platforms. Future work includes developing the
cache-efficient algorithms for other problems in compu-
tational biology.

Conflict of Interest The authors declare no conflict of
interest.

www.astesj.com 342

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 13: Speedup of parallel alignment algorithms on Xeon4.
A |A| B |B| MM/PP MMDiagonal/PP MMStrip/PP
human4 97,634 mouse4 94,647 2.77 2.53 3.70
XM_004403740 104,267 XM_012169741 103,004 2.78 2.56 3.56
AC006294 200,000 NW_009147196 200,000 2.80 2.70 3.81
AC006294 200,000 NW_004451499 398,273 2.84 2.69 3.89
KQ079741 392,981 NW_004451499 398,273 2.84 2.78 3.94
KQ079794 1,083,068 NW_004450885 1,098,196 2.88 2.81 3.93

Table 14: CPU and cache energy consumption of parallel alignment algorithms on Xeon4.
A |A| B |B| PP_MM PP_MMDiagonal PP_MMStrip Imp1 Imp2
human4 97634 mouse4 94647 236.98 305.14 181.6 23.4% 40.5%
XM_004403740 104267 XM_012169741 103004 272.26 352.56 216.83 20.4% 38.5%
AC006294 200000 NW_009147196 200000 1044.86 1279.77 747.86 28.4% 41.6%
AC006294 200000 NW_004451499 398273 2039.55 2540.52 1483.8 27.2% 41.6%
KQ079741 392981 NW_004451499 398273 4020.48 4979.17 2905.32 27.7% 41.7%
KQ079794 1083068 NW_004450885 1098196 30964.02 37461.35 21703.65 29.9% 42.1%

Acknowledgment This work was supported, in part,
by the National Science Foundation under award NSF
1447711.

References
[1] S. Henikoff and J. G. Henikoff, “Amino acid substitution

matrices from protein blocks,” Proc Natl Acad Sci U S A,
vol. 89, pp. 10 915–10 919, 1992.

[2] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology,
vol. 48, pp. 443–453, 1970.

[3] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, pp. 195–197, 1981.

[4] O. Gotoh, “An improved algorithm for matching biologi-
cal sequences,” Journal of Molecular Biology, vol. 162, pp.
705–708, 1982.

[5] D. S. Hirschberg, “A linear space algorithm for comput-
ing longest common subsequences,” Communications of the
ACM, vol. 18, pp. 341–343, 1975.

[6] E. Myers and W. Miller, “Optimal alignments in linear
space,” Computer Applications in the Biosciences(CABIOS),
vol. 4, pp. 11–17, 1988.

[7] X. Huang, R. Hardison, and W. Miller, “A space-efficient
algorithm for local similarities,” Comput Appl Biosci, vol. 6,
p. 373âĂŞ381, 1990.

[8] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal of Molecular
Biology, vol. 215, pp. 403–410, 1990.

[9] W. Pearson and D. Lipman, “Improved tools for biological
sequence comparison,” Proceedings of the National Academy
of Sciences USA, vol. 85, pp. 2444–2448, 1988.

[10] K. Chao, J. Zhang, J. Ostell, and W. Miller, “A local align-
ment tool for very long dna sequences,” Comput Appl Biosci,
vol. 11, pp. 147–153, 1995.

[11] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, and
I. Parsons, “Fastlsa: a fast, linear-space, parallel and se-
quential algorithm for sequence alignment,” Algorithmica,
vol. 45, p. 337âĂŞ375, 2006.

[12] J. Li, S. Ranka, and S. Sahni, “Pairwise sequence alignment
for very long sequences on gpus,” IEEE 2nd International
Conference on Computational Advances in Bio and Medical
Sciences (ICCABS), 2012.

[13] E. O. Sandes and A. C. M. A. Melo, “Smith-waterman align-
ment of huge sequences with gpu in linear space,” IEEE
International Symposium on Parallel and Distributed Pro-
cessing (IPDPS), pp. 1199–1211, 2011.

[14] S. Aluru and N. Jammula, “A review of hardware accelera-
tion for computational genomics,” IEEE Design and Test,
vol. 31, pp. 19–30, 2014.

[15] S. Rajko and S. Aluru, “Space and time optimal parallel
sequence alignments,” IEEETPDS:IEEE Transactions on
Parallel and Distributed Systems, vol. 15, 2004.

[16] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of
the smithâĂŞwaterman algorithm using single and multiple
graphics processors,” Journal of Computational Physics, p.
4247âĂŞ4258, 2010.

[17] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot,
M. Shumway, C. Antonescu, and S. L. Salzberg, “Versatile
and open software for comparing large genomes,” Genome
Biol, vol. 5, 2004.

[18] T. Almeida and N. Roma, “A parallel programming frame-
work for multi-core dna sequence alignment,” Complex, In-
telligent and Software Intensive Systems (CISIS), 2010
International Conference on, pp. 907 – 912, 2010.

[19] K. Hamidouche, F. M. Mendonca, J. Falcou, A. C. M. A.
Melo, and D. Etiemble, “Parallel smith-waterman compari-
son on multicore and manycore computing platforms with
bsp++,” International Journal of Parallel Programming,
vol. 41, pp. 1110–136, 2013.

[20] C. Zhao and S. Sahni, “Cache and energy efficient align-
ment of very long sequences,” 2015 IEEE 5th international
conference on Computational Advances in Bio and Medical
Sciences (ICCABS), 2015.

[21] “Perf tool,” https://perf.wiki.kernel.org/index.php/
Main_Page.

[22] “Globin gene server,” http://globin.cse.psu.edu/globin/
html/pip/examples.html.

[23] “Ncbi database,” http://www.ncbi.nlm.nih.gov/gquery.

www.astesj.com 343

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://globin.cse.psu.edu/globin/html/pip/examples.html
http://globin.cse.psu.edu/globin/html/pip/examples.html
http://www.ncbi.nlm.nih.gov/gquery
http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 15: Run time of scoring algorithms, in hh:mm:ss, on Xeon6.
A |A| B |B| Score Diagonal Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:21 0:00:24 0:00:19 13.2% 21.1%
XM_004403740 104,267 XM_012169741 103,004 0:00:25 0:00:27 0:00:22 13.2% 20.2%
AC006294 200,000 NW_009147196 200,000 0:01:33 0:01:43 0:01:21 13.2% 21.7%
AC006294 200,000 NW_004451499 398,273 0:03:08 0:03:25 0:02:41 14.3% 21.4%
KQ079741 392,981 NW_004451499 398,273 0:06:13 0:06:43 0:05:19 14.3% 20.8%
KQ079794 1,083,068 NW_004450885 1,098,196 0:46:27 0:51:51 0:40:16 13.3% 22.4%

Table 16: Run time of parallel scoring algorithms, in hh:mm:ss, on Xeon6.
A |A| B |B| PP_Score PP_Diagonal PP_Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:06 0:00:06 0:00:04 27.9% 30.4%
XM_004403740 104,267 XM_012169741 103,004 0:00:06 0:00:07 0:00:04 37.4% 40.6%
AC006294 200,000 NW_009147196 200,000 0:00:23 0:00:24 0:00:14 38.8% 41.2%
AC006294 200,000 NW_004451499 398,273 0:00:47 0:00:49 0:00:28 40.6% 43.0%
KQ079741 392,981 NW_004451499 398,273 0:01:31 0:01:38 0:00:55 39.0% 43.4%
KQ079794 1,083,068 NW_004450885 1,098,196 0:11:53 0:15:23 0:06:50 42.5% 55.6%

Table 17: Run time of alignment algorithms, in hh:mm:ss, on Xeon6.
A |A| B |B| MM MMDiagonal MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:41 0:00:42 0:00:37 11.2% 12.7%
XM_004403740 104,267 XM_012169741 103,004 0:00:48 0:00:49 0:00:43 11.3% 12.8%
AC006294 200,000 NW_009147196 200,000 0:03:00 0:03:05 0:02:39 11.7% 14.0%
AC006294 200,000 NW_004451499 398,273 0:05:59 0:06:06 0:05:16 11.8% 13.7%
KQ079741 392,981 NW_004451499 398,273 0:11:45 0:12:01 0:10:22 11.8% 13.7%
KQ079794 1,083,068 NW_004450885 1,098,196 1:29:59 1:31:40 1:18:37 12.6% 14.2%

Table 18: Speedup of parallel scoring algorithms on Xeon6.
A |A| B |B| Score/PP Diagonal/PP Strip/PP
human4 97,634 mouse4 94,647 3.91 4.15 4.70
XM_004403740 104,267 XM_012169741 103,004 3.99 4.12 5.54
AC006294 200,000 NW_009147196 200,000 3.99 4.25 5.66
AC006294 200,000 NW_004451499 398,273 3.98 4.17 5.74
KQ079741 392,981 NW_004451499 398,273 4.09 4.11 5.76
KQ079794 1,083,068 NW_004450885 1,098,196 3.91 3.37 5.89

Table 19: Run time of scoring algorithms, in hh:mm:ss, on Xeon24.
A |A| B |B| Score Diagonal Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:23 0:00:26 0:00:20 12.1% 20.9%
XM_004403740 104,267 XM_012169741 103,004 0:00:26 0:00:35 0:00:24 8.9% 32.9%
AC006294 200,000 NW_009147196 200,000 0:01:41 0:01:51 0:01:28 13.5% 21.2%
AC006294 200,000 NW_004451499 398,273 0:03:18 0:04:05 0:02:39 19.7% 35.1%
KQ079741 392,981 NW_004451499 398,273 0:06:23 0:07:14 0:05:44 10.2% 20.7%
KQ079794 1,083,068 NW_004450885 1,098,196 0:51:48 0:53:34 0:43:19 16.4% 19.1%

Table 20: Run time of parallel alignment algorithms on Xeon6.
A |A| B |B| PP_MM PP_MMDiagonal PP_MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:11 0:00:13 0:00:07 33.6% 44.8%
XM_004403740 104,267 XM_012169741 103,004 0:00:12 0:00:15 0:00:08 33.4% 44.2%
AC006294 200,000 NW_009147196 200,000 0:00:48 0:00:51 0:00:29 39.2% 42.9%
AC006294 200,000 NW_004451499 398,273 0:01:32 0:01:42 0:00:58 37.5% 43.7%
KQ079741 392,981 NW_004451499 398,273 0:03:01 0:03:14 0:01:49 39.7% 43.8%
KQ079794 1,083,068 NW_004450885 1,098,196 0:22:37 0:24:06 0:13:36 39.9% 43.6%

www.astesj.com 344

http://www.astesj.com

C. Zhao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 329-345
(2018)

Table 21: Speedup of parallel alignment algorithms on Xeon6.
A |A| B |B| MM/PP MMDiagonal/PP MMStrip/PP
human4 97,634 mouse4 94,647 3.81 3.22 5.10
XM_004403740 104,267 XM_012169741 103,004 3.88 3.31 5.17
AC006294 200,000 NW_009147196 200,000 3.72 3.59 5.41
AC006294 200,000 NW_004451499 398,273 3.88 3.58 5.48
KQ079741 392,981 NW_004451499 398,273 3.90 3.71 5.70
KQ079794 1,083,068 NW_004450885 1,098,196 3.98 3.80 5.78

Table 22: Run time of parallel scoring algorithms on Xeon24.
A |A| B |B| PP_Score PP_Diagonal PP_Strip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:02 0:00:04 0:00:01 52.7% 72.8%
XM_004403740 104,267 XM_012169741 103,004 0:00:02 0:00:04 0:00:01 46.3% 68.6%
AC006294 200,000 NW_009147196 200,000 0:00:10 0:00:18 0:00:04 56.5% 76.2%
AC006294 200,000 NW_004451499 398,273 0:00:20 0:00:31 0:00:09 56.2% 72.0%
KQ079741 392,981 NW_004451499 398,273 0:00:42 0:00:54 0:00:16 61.4% 69.8%
KQ079794 1,083,068 NW_004450885 1,098,196 0:04:33 0:05:36 0:01:57 57.2% 65.2%

Table 23: Speedup of parallel alignment algorithms on Xeon24.
A |A| B |B| Score/PP Diagonal/PP Strip/PP
human4 97,634 mouse4 94,647 10.17 6.50 18.90
XM_004403740 104,267 XM_012169741 103,004 10.63 8.45 18.05
AC006294 200,000 NW_009147196 200,000 10.03 6.03 19.94
AC006294 200,000 NW_004451499 398,273 9.98 7.90 18.32
KQ079741 392,981 NW_004451499 398,273 9.07 8.04 21.10
KQ079794 1,083,068 NW_004450885 1,098,196 11.36 9.56 22.22

Table 24: Run time of alignment algorithms, in hh:mm:ss, on Xeon24.
A |A| B |B| MM MMDiagonal MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:46 0:00:44 0:00:40 11.9% 7.6%
XM_004403740 104,267 XM_012169741 103,004 0:00:50 0:00:56 0:00:46 7.4% 16.7%
AC006294 200,000 NW_009147196 200,000 0:03:19 0:03:09 0:02:45 17.1% 12.5%
AC006294 200,000 NW_004451499 398,273 0:06:01 0:06:46 0:05:41 5.8% 16.2%
KQ079741 392,981 NW_004451499 398,273 0:12:56 0:13:30 0:11:09 13.8% 17.4%
KQ079794 1,083,068 NW_004450885 1,098,196 1:30:06 1:40:36 1:23:45 7.1% 16.8%

Table 25: Run time of parallel alignment algorithms on Xeon24.
A |A| B |B| PP_MM PP_MMDiagonal PP_MMStrip Imp1 Imp2
human4 97,634 mouse4 94,647 0:00:05 0:00:22 0:00:03 28.9% 84.6%
XM_004403740 104,267 XM_012169741 103,004 0:00:06 0:00:25 0:00:05 29.4% 81.9%
AC006294 200,000 NW_009147196 200,000 0:00:23 0:00:58 0:00:14 41.3% 76.3%
AC006294 200,000 NW_004451499 398,273 0:00:43 0:01:48 0:00:24 43.6% 77.6%
KQ079741 392,981 NW_004451499 398,273 0:01:19 0:02:22 0:00:44 44.4% 69.0%
KQ079794 1,083,068 NW_004450885 1,098,196 0:09:49 0:15:04 0:05:10 47.3% 65.7%

Table 26: Speedup of alignment algorithms on Xeon24.
A |A| B |B| MM/PP MMDiagonal/PP MMStrip/PP
human4 97,634 mouse4 94,647 9.68 1.99 12.00
XM_004403740 104,267 XM_012169741 103,004 7.81 2.23 10.24
AC006294 200,000 NW_009147196 200,000 8.56 3.27 12.08
AC006294 200,000 NW_004451499 398,273 8.39 3.75 14.02
KQ079741 392,981 NW_004451499 398,273 9.79 5.70 15.17
KQ079794 1,083,068 NW_004450885 1,098,196 9.18 6.68 16.20

www.astesj.com 345

http://www.astesj.com

	Introduction
	Cache Model
	Cache Efficient Algorithms
	Scoring Algorithms
	Needleman-Wunsch and Smith-Waterman algorithm
	Diagonal Algorithm
	Strip Algorithm

	Alignment Algorithms
	Myers and Miller's Algorithm
	Diagonal Myers and Miller Algorithm
	Striped Myers and Miller Algorithm

	Parallel Scoring Algorithms
	Parallel Score Algorithm
	Parallel Diagonal Algorithm
	Parallel Strip Algorithm

	Parallel Alignment Algorithms

	Results
	Experimental Settings and Test Data
	Xeon E5-2603 (Xeon4)
	Score Algorithms
	Parallel Scoring Algorithms
	Alignment Algorithms
	Parallel Alignment Algorithms

	I7-x980 (Xeon6)
	Scoring Algorithms
	Parallel Scoring Algorithms
	Alignment Algorithms
	Parallel Alignment Algorithms

	Xeon E5-2695 (Xeon24)
	Scoring Algorithms
	Parallel Scoring Algorithms
	Alignment Algorithms
	Parallel Alignment Algorithms

	Discussion
	Limitations
	Conclusion

