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 Multiprocessing can be considered the most characteristic common property of complex 
digital systems. Due to the more and more complex tasks to be solved for fulfilling often 
conflicting requirements (cost, speed, energy and communication efficiency, pipelining, 
parallelism, the number of component processors, etc.), different types of component 
processors may be required by forming a so called Heterogeneous Multiprocessing 
Architecture (HMPA). The component processors of such systems may be not only general 
purpose CPUs or cores, but also DSPs, GPUs, FPGAs and other custom hardware 
components as well. Nevertheless, the system-level design process should be capable to 
handle the different types of component processors the same generic way. The hierarchy of 
the component processors and the data transfer organization between them are strongly 
determined by the task to be solved and by the priority order of the requirements to be 
fulfilled. For each component processor, a subtask must be defined based on the 
requirements and their desired priority orders. The definition of the subtasks, i.e. the 
decomposition of the task influences strongly the cost and performance of the whole system. 
Therefore, systematically comparing and evaluating the effects of different decompositions 
into subtasks may help the designer to approach optimal decisions in the system-level 
synthesis phase. For this purpose, the paper presents a novel method called DECHLS based 
on combining the decomposition and the modified high level synthesis algorithms. The 
application of the method is illustrated by redesigning and evaluating in some versions of 
two existing high performance practical embedded multiprocessing systems. 
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1. Introduction and Related works 

This paper is an extension of the work originally presented in 
IEEE System on Chip Conference 2017 [1]. This extension 
contains a more detailed explanation of the applied system level 
synthesis method. An additional practical benchmark is also solved 
and evaluated. 

The system-level synthesis procedure of high-performance 
multiprocessor systems usually starts by some kind of a task 
description regarding the requirements and their desired priorities. 
The task description is usually formalized by a dataflow-like graph 
or by a high level programming language [2] [3]. To each 
component processor of the multiprocessor system, a subtask is 
assigned basically by intuition considering various special 

requirements (communication cost, speed, pipelining, etc.). The 
definition of the subtasks, i.e. the decomposition of the task 
strongly influences the cost and performance of the whole 
multiprocessing system. Therefore, comparing and evaluating the 
effects of different task decompositions performed by applying 
systematic algorithms may help the designer to approach the 
optimal decisions in the system-level synthesis phase [4]. Our 
proposed method can also be considered a design space 
exploration as shown in [3-5]. In [5] the hardware-software 
partitioning problem is analyzed and various solutions are 
compared and evaluated. This approach refers formally only to 
special two-segment decompositions. These can be extended for 
multi-segment cases by utilizing several high performance 
heuristic algorithms [6], [7]. However, in case of such extensions 
for multiprocessing architectures [8], the decomposition algorithm 
and the calculation to find beneficial communication cost and time 
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become rather complex and cumbersome. Other special aspects of 
multi-segment partitioning problems can be found in [9] at the 
synthesis of low-cost system-on-chip microcontrollers consisting 
of many integrated hardware modules. For avoiding to the 
aforementioned difficulties, the paper presents a novel method 
called DECHLS based on combining decomposition and modified 
high level synthesis algorithms. 

This paper is organized as follows. Section 2 contains the 
overview of the proposed novel system-level synthesis method 
(DECHLS). The decomposition algorithms applied in the 
experimental DECHLS tool and the applied performance metrics 
are presented in Section 3. The embedded multiprocessing systems 
to be redesigned by the experimental DECHLS tool, the 
redesigned variations obtained by DECHLS and the evaluation of 
the results are presented in Section 4. The conclusion is 
summarized in Section 5. 

2. Overview of the System-Level Synthesis method 
DECHLS 

Our method (DECHLS [1]) is based on combining 
decomposition (DEC) with high level synthesis (HLS) algorithms. 
One of the main steps in HLS tools [10], [11] is the allocation 
executed after scheduling the elementary operations. The aim of 
scheduling is to determine a beneficial start time for each 
elementary operation to attempt allocating them optimally into 
processing units [12]. Usual optimality criterions in HLS tools are 
the minimal number of processing units, the lowest cost and the 
highest speed in pipelining [10], [11], or the lowest power 
consumption [12]. The elementary operations allocated into the 
same processing units compose the subtasks. However, such 
subtasks provided by the HLS tools are strongly determined by the 
usual scheduling algorithms and so, not enough freedom is left for 
satisfying special multiprocessing requirements in further 
synthesis steps. Instead of modifying and extending the usual HLS 
scheduling algorithms [13-16] for fulfilling these special 
requirements, our DECHLS method attempts to satisfy these on a 
higher priority level by executing the decomposition into subtasks 
already before the HLS phase. A similar approach is presented in 
[17] called clustering. In [17] the power efficiency is attempted to 
be optimized by clustering in pipeline systems at a given 
throughput. The resulting structure can be considered a special 
decomposition that may decrease communication and hardware 
costs as well, but these benefits are not analyzed directly. Our 
preliminary decomposition can be considered a kind of a 
preallocation providing more freedom to fulfill special 
multiprocessing requirements. Based on the subtasks (called 
segments hereinafter) obtained by decomposition, a segment graph 
(SG) can be constructed. The SG can serve as an elementary 
operation graph (EOG) of the modified HLS tool. Thus, the 
scheduling and allocation algorithms in the modified HLS tool 
refer to the component processors in further steps. In this way, the 
decomposition executed before the HLS steps can influence the 
result on a higher priority level. Thus, DECHLS is based on 
combining the decomposition (DEC) and modified high level 
synthesis (HLS) algorithms. The main contribution of the 
DECHLS is that these two steps are integrated into the same design 
tool enabling the designer to generate, evaluate and compare 
various alternative results. The list of user-defined requirements, 

required inputs and outputs of the DECHLS process is outlined in 
Fig.1. The workflow of the DECHLS method is shown in Fig 2. 
 Description of the task to be solved by the 

whole system (e.g. in C) 

Requirements to be defined by the user: 
• For the component processors 

- numbers 
- kinds 
- capacities 
- filling ratio (power consumption) 
- prices 
- suitabilities for parallel processing 
- instruction executing times 

• Necessity for pipeline mode 
- desired restart time (throughput) 

• Desired priority order of communication burden, speed, price  

DECHLS design flow 

Results (e.g. in XML file format): 
• Component processors to be applied from the set defined by the 

user. Specification of the communication. 
• Task assignment for the applied component processors.  
• Time scheduling for the applied component processors and 

communication. 
• Cost estimation 
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Fig. 1. Inputs and outputs of the DECHLS method 

There is also a possibility in DECHLS method to generate the 
EOG for the HLS tool immediately from the task description 
without preliminary decomposition. If decomposition is intended 
to be made, then the desired number of segments can either be 
prescribed or calculated by the decomposition algorithm. In both 
cases, the modified HLS tool receives the segment graph (SG) as 
EOG. If the user decision is that pipeline mode is not required, then 
the process of DECHLS is finished and the allocated nodes formed 
from the segment graph (SG) define the tasks for the component 
processors. If however, the pipeline mode is desired, then the 
applicable value of the pipeline initialization interval called further 
on restart time (R) is calculated. Most of the HLS tools [10], [11] 
can attempt to ensure a user-defined desired restart time (Rd.). If 
R≤Rd, is not the case, then the HLS tool [10] applied in the 
experimental DECHLS version reduces R by buffer insertion 
and/or by applying multiple copies of nodes. If the cost of the 
resulting multiprocessing system is not acceptable, then allowing 
a longer latency time L (the longest time of processing an input 
data in the allocated segment graph) in pipeline mode may reduce 
the cost by calculating a new schedule [18]. The user can increase 
L in more iteration steps and the value of dL is also definable by 
the user. If the cost is acceptable, then the process of DECHLS is 
finished. 

The scheduler applied in the experimental DECHLS version is 
a modified force-directed one [19]. Results of the usual force-
directed schedulers strongly depend on the order of fixing the 
operations within their mobility domain (i.e. between the earliest 
and latest possible start time) [20]. In contrary, our modified 
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scheduler generates a list of all operations according to the length 
of their mobility and the operations having the shortest mobility 
are fixed first (i.e. the top of the mobility list). After fixing an 
operation, the mobility list is recalculated and a next operation is 
chosen, and so on until each operation has been fixed. 
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Fig. 2. Design flow of the DECHLS method 

Increasing the latency (L) can be simply implemented in any 
HLS tool. The simplest way is to introduce an extra fictive 
operation parallel with the original operation graph. The execution 
time of this extra operation is assumed to be equal to the desired 
latency value. This extra operation receives all inputs of the 
original operation graph, and its output enables all outputs of the 
original graph. This extra operation could be added only before 
scheduling, and it must be removed before allocation, since it is 
not an operation to be executed by the resulting system. 

3. Decomposition of the Task Description 
The decomposition step of the DECHLS method starts from a 

dataflow-like task description (DFG). The nodes of this graph 

represent inseparable operations, and the edges symbolize data 
dependencies between the operations. The decomposition 
algorithm should define disjoint segments containing each of them 
several (at least one) operations. The segments represent subtasks 
of the task description and form a segment graph (SG) that may be 
the input of the HLS part in the DECHLS system. The edges in SG 
represent data communication between segments, edges are 
weighted by the communication burden. The nodes in SG 
representing the subtasks are also weighted by the longest 
execution time of the subtask. The execution time of a segment is 
the sum of execution times of the elementary operations assigned 
into this segment. The reason of this is that the processors are 
assumed to execute serially all elementary operations to be 
assigned to them. For comparing and evaluating the effect of 
different task decompositions, the desired number of segments is 
user-definable. The distribution of workload between segments is 
arranged beneficially for pipeline implementation (i.e. as far as 
possible equally) and at the same time, the communication load 
(edge weights) between the segments should also be kept possibly 
low. Beside these aims, the decomposition algorithm must not 
produce segment cycles as shown in Fig. 3 and [21]. Such cycles 
may cause deadlocks and it is difficult to handle them in pipeline 
mode. Handling or eliminating the cycles depends on the HLS tool 
applied in DECHLS system [10] [11]. The decomposition 
algorithms may produce cycles in the SG, even if the task 
description (EOG) is acyclic. Therefore, only such decomposition 
algorithms are allowed in DECHLS system, which guarantee 
cycle-free SG-s [21]. In our experimental DECHLS tool, this 
difficulty is avoided by generating the allowable edge cutting 
places before starting the decomposition algorithm [21]. 

The decomposition algorithms may yield segments consisting 
of extremely different number of elementary operations. In the 
further steps, the allocation algorithm in DECHLS may provide 
processors with extremely different workload.  

Therefore, the user has to decide, whether applying always the 
just fitting processors or choosing equally suitable identical 
processors. A very simple cost calculation and comparison (i.e. the 
number of processors) can be applied in the latter case. Therefore, 
identical processors are assumed in the further discussions and in 
the solutions of the practical examples. 

A set of decomposition algorithms is available in [21-23]. Two 
of them seemed to be the most suitable for DECHLS: the spectral 
clustering (SC) and the multilevel Kernighan–Lin (KL) method. 
The spectral clustering is applied for the illustrative redesigning 
examples in two versions: the number of segments is prescribed or 
it is calculated by the algorithm. These decomposition algorithms 
are suitable to illustrate the DECHLS method and yield acceptable 
results. However, other more advanced or flexible decomposition 
methods like [25] or [26] could also be applied in DECHLS. 

For comparing and evaluating the solutions obtained by 
DECHLS, some performance metrics could be assumed. These 
metrics are flexibly definable and extendable by the user. The 
experimental metric criteria applied in Section 4 for comparing the 
results are as follows. The hardware cost is calculated simply as 
the number of processors, assuming that each processor has the 
same performance specification. 
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- The pipeline restart time versus the hardware cost is plotted 
for helping the beneficial and economical choices and forecasting 
the consequences.  

- The longer latency in pipeline mode [18] [29] may reduce the 
hardware cost without significant effects on the restart time. 
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Fig. 3. Allowable (b) and not allowable (a) decomposition [19] 

4. Benchmark Solutions and Evaluations 

4.1. A sound source localization system 

A sound source localization system is presented in [27] as a 
relatively simple multiprocessing system. The segment graph (SG) 
constructed probably by intuition is shown in Fig. 4. 
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Fig. 4. Intuitively decomposed and allocated segment graph (SG)  

(sound source localisation) [27] 

The task to be solved is decomposed into 10 subtasks (each of 
them is a separate segment) FFT1, … FFT4, SC1, … SC4, VOTE, 
HT as shown in Fig. 4. The segment functions are as follows. FFTs 
execute a 512 point real fast Fourier-transformation. SCs perform 
noise power estimation for each channel of input data. VOTE 

detects whether a detectable sound was present on at least two 
channels in the current sample, and the noise is sufficiently low at 
the same time. The longest segment is HT that performs the 
hypothesis testing method [27] for determining the source 
coordinates of the sound. 

The implementation in [27] is based on five processors (P1, ... 
P5) as shown in Fig. 4. One of the consequences of this intuitive 
solution is that P5 has the computationally most expensive subtask 
requiring approximately 5 times faster processor than the other 
ones. Therefore, the speed of the whole system strongly depends 
on the implementation of P5.  

In order to evaluate new decompositions, the given segment 
graph has to be expanded into an elementary operation graph 
(EOG), the nodes of which are considered atomic inseparable 
elementary operations. A possible method may start with a high 
level language description of the segments in SG. Each segment 
may correspond to a function in the high level language description. 
This function may call other functions and so on until getting 
functions considered inseparable. 

For the sake of simplicity, software loops in the task 
description can also be considered single inseparable nodes, 
because the complex loop handling would be an additional 
difficulty (e.g. in pipeline systems [28]). This simplification does 
not affect the essence of the further steps.  

The transformation process from SG to EOG is illustrated by a 
simple example in Fig. 5. 

 

int S1( int input1, input2, input3) 
{ 

int local1, local2 
local1=input1*input2; 
local2=lib_function(input2,input3); 
return local1+local2; 

} 

S1 

int S2 ( int input1) 
{ 

for (i=1; i<5; i++) 
{ 
 …… 

 

S2 

multiplication 

library 
function call 

addition 

for loop 

 
Fig. 5. Expanding a SG into an EOG 

(the small program fragments in segments are only to illustrate the process) 

From the SG in Fig. 4, this transformation yields an EOG with 
over 160 nodes.  

For further handling of the EOG, execution times should be 
assigned to each elementary operation. For these assignments, the 
specifications of processors to be applied should be known. In the 
original implementation [27], two different processor types have 
been used: the slower MSP430 and the faster ARM7. The faster 
ARM7 processor has been chosen probably because of the large 
memory demand of HT. The slower and cheaper processors, (16 
bit MSP430 microcontrollers) have been found suitable for the 
remaining tasks.  

http://www.astesj.com/


P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018) 

www.astesj.com                   133 
 

Further on, the execution times will be expressed by the 
number of time steps as used in our modified HLS tool [10]. In this 
way, the calculation becomes independent from the clock speed. 
All time data, including data of the existing systems will also be 
expressed in time steps for comparison.  

HT segment 

All other segments 

 
Fig. 6. The relative execution time proportions  

of the segments in Fig. 4. 

Fig. 6 shows the relative execution time values of the segments 
determined according to the intuitive decomposition shown in Fig. 
4. Note, that this solution yielded great differences in the execution 
times of the processors that may cause unnecessary constraints in 
case of pipelining. 

The comparative solutions obtained by applying DECHLS 
approach to a uniform workload distribution between the 
processors. 

4.2. Evaluation of the existing decomposition for the sound 
source localization  

As it has been mentioned earlier, only identical processors are 
assumed in both redesign examples. In order to achieve the best 
results with identical processors, all the segments require 
approximately identical execution times. To illustrate the problem, 
our modified HLS tool provides the plot in Fig. 7. calculated from 
the intuitive SG in Fig. 4. The execution times are calculated 
assuming that only MSP430 microprocessors are applied in the 
implementation. Such an implementation will be considered as 
comparison in the further solutions. This assumption helps to 
illustrate the effect of different preliminary decompositions 
without complicating the comparison of different results. 

Fig. 7 does not show a decrease after time step 2300, thus at 
least 11 identical processors would be required for this solution. 
The reason of this is that the processor executing the HT needs to 
be replicated at least in two copies in order to meet the timing 
constraints. 

4.1. Results provided by DECHLS without decomposition for the 
sound source localization 

In this mode of DECHLS, the HLS tool (Fig. 2) receives 
directly the EOG without preliminary decomposition, i.e. the 
decomposition is left completely for the allocation algorithm of the 
HLS tool. It can be observed in Fig. 8 that after the restart time 
R=3000 no further cost decrease occurs in this mode of DECHLS. 

The cost minimum is here 14 processors instead of 11 obtained by 
the intuitive decomposition (Fig. 7). In this calculation, the HLS 
part of DECHLS has been finished as if the cost would be 
acceptable (Fig. 2). Therefore, the latency has not been increased. 
In this case, the latency determined by the EOG is 4217 time steps. 
To the solution in Fig. 8 belongs a latency value of 5025 time steps. 

 
Fig. 7. Number of processors versus restart time by intuitive decomposition 

(sound source localisation) 

The cost could be attempted to be reduced both by increasing 
the latency and by applying suitable decompositions. Some 
characteristic cases will be shown later. 

The runtime of the HLS tool was extremely long in this mode 
(requiring about 18 hours on a contemporary PC), mostly because 
of the high number of elementary operations. The longest time has 
been taken by the force directed scheduling algorithm. 

 
Fig. 8. Number of processors versus restart time without decomposition (sound 

source localisation) 

4.2. Results provided by DECHLS with preliminary 
decomposition for the sound source localization 

In this experiment, DECHLS is applied using both task 
decompositions [21] based on the multilevel Kerrigan-Lin (KL) 
[23] algorithm and the spectral clustering (SC) [24]. The results are 
nearly the same. In both calculations, the desired number of 
segments has been prescribed as 5 and 7 respectively. Both results 
are illustrated in Fig. 9 and Fig. 10. In these figures and in the 
following ones, the relative segment execution times are also 
shown in small circle diagrams. 
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Fig. 9. Segment graphs resulted from KL decomposition (5 segments left, 7 segments right)

It is notable, that the results of different decomposition methods 
are almost the same. There are only minor differences in the 
segment contents and the execution times. 

The third experiment on this benchmark is the application of 
DECHLS using the SC decomposition [24] algorithm without 
prescribing the number of segments. The SC algorithm is based 
on the lowest nonzero eigenvalues of the Laplacian matrix 
constructed from the graph [22], [30]. The lower eigenvalues we 
choose for the clustering, the smaller weight-sum will be caused 
by cut edges. Our applied version [22] does not make accessible  

neither the Laplacian matrix, nor its eigenvalues. Therfore, we had 
to calculate them by applying a separate Matlab program. Since 
the Laplacian matrix is a square matrix with as many rows and 
columns as the number of nodes in the graph, the number of 
eigenvalues is also the same. Depending on the complexity of the 
graph to be decomposed, the larger eigenvalues may be extra 
large. Therefore, only the smallest 25 eigenvalues of the graph 
representing this example are shown in Fig. 11. Since the smallest 
4 nonzero eigenvalues are identical, the most beneficial 
decomposition could result 4 segments. 
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Fig. 10. Segment graphs resulted from spectral clustering decomposition (SC) (5 segments left, 7 segments right) 
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Fig. 11. Illustrating the smallest 25 eigenvalues of the Laplacian matrix used for 

decomposition 

The result of this decomposition is shown in Fig. 12. It can be 
observed, that the sizes of the segments are not as uniform as in the 
previous cases. The reason of this is that the spectral clustering 
without local refinement cannot guarantee the approximately 
uniform segment sizes [21]. However, it is also notable, that the 
communication costs between the segments are now significantly 
lower. 

Each of the resulting SGs (Figure 9, 10, 12) has been fed to our 
modified HLS tool in order to compute the cost versus restart time 
plots. Since the chosen decomposition method has a very small 
effect on the results, Fig. 9. a. is almost the same as Fig. 10. a. and 
Fig. 9. b. is almost the same as Fig. 10. b. Therefore, only three 
different diagrams are shown in Fig. 13. 
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Fig. 12. Segment graph resulting from a spectral decomposition to 4 segments 

4.3. The effect of increasing the latency by DECHLS for the 
sound source localization 

Figures 8 and 13 illustrate that DECHLS yields significantly 
less processors if preliminary decomposition is included. However 
it can be observed on this example (Fig. 9, 10, 12) that the latency 
became much longer (5178) by executing DECHLS with 
preliminary decomposition. The latency-increasing effect of the 
decomposition can be observed also even in the intuitively 
decomposed case (Fig. 4). Usually, the decomposition may have a 
latency- increasing effect. One of the reasons of this could be that 
operations assigned to the same segment can be executed only 

serially. If however, the modified HLS part is executed without 
preliminary decomposition, then much less serial constraints arise.  

 

Fig. 13. Number of processors versus restart time plot after decomposition 
(sound source localisation) 

On the other hand, a longer latency may influence 
advantageously the allocation and the restart time [18]. To 
illustrate this effect, the result of DECHLS without preliminary 
decomposition (Fig. 8) is recalculated (Fig. 14) at the increased 
latency value resulted with decomposition (Figures 9, 10, 12). In 
this example, further latency increasing would not have any 
remarkable effect, if the DECHLS is executed with preliminary 
decomposition as shown in Fig. 9, 10 and 12. Therefore such 
results are not shown in Fig. 14. 

It can be observed in Fig. 14, that increasing the latency alone 
can provide acceptable costs, even assuming only identical 
processors, especially at restart time values greater than ca. 2000. 
The evaluation of the results in Fig. 14 would provide the most 
favourable solution achieved by the decomposition into 5 
segments with the restart time 1100 (and the same number of 
processors as the number of segments in this case). However, if the 
restart time is less important than the cost, then the solution with 4 
processors (decomposition into 4 segments by spectral clustering 
in this case) would be more beneficial. 

 
Fig. 14. Number of processors vs. restart time for comparison (sound source localisation) 
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4.4. A high speed industrial data logger 

The second benchmark for illustration is the redesign and 
evaluation of a high speed data logger [31] system (Fig. 15) that 
performs the measurement, pre-processing and storing of several 
different types of input data (i.e. temperature, pressure, humidity, 
and some other data measured by analogue sensors). The data are 
to be compressed before storing them in a serial memory. The 
frequency of sampling and storing is the same and constant for all 
kinds of data. In the existing system, this task is solved by low 
power 8 bit microcontrollers of the PIC18FxxKxx series. The data 
is stored in a relatively slow, but power efficient serial storage 
device accessible via the I2C bus. In each input, 4 channels for 
pressure, temperature and humidity sensing, and 8 channels for 
sensing other analogue signals are assumed. A possible dataflow 
graph of the system is shown in Fig. 15. The required sampling 
data rate is at least 10 samples per second that equals to 100ms 
pipeline restart time (initialization interval). The design goal is to 
find a cost-effective solution that complies with the data rate 
constraint. It will be assumed that the redesigned system also 
applies the same types of processors and storage device. 

The pre-processing subtasks of the analogue input channels are 
supposed to be simple moving average filters. The pressure 
sensing and humidity sensing subtasks are more complex. 
Therefore their execution times are supposed to be much longer 
(Table 1). The reason of this is that these values need to be 
temperature compensated as a part of their pre-processing. 

The existing solution applies three microcontrollers as 
component processors. The properties of the dataflow graph allow 
assigning identical subtasks per microcontrollers. The main 
advantage of this solution is to reuse the subroutines multiple times. 
However, it may make the system somewhat less efficient in speed 
and cost. The tasks of the processors are the following. P1 
performs the measurement and pre-processing the data from 3 
pressure sensors and from 2 humidity sensors. P2 measures and 
filters the data from 8 analogue sensors and from 4 temperature 
sensors, because both require the same filtering. P2 also measures 
the data from the remaining 2 humidity sensors and from one 
pressure sensor. A third microcontroller (P3) is used for 
temperature compensation of the pressure and humidity data and 
also for data compression and storing tasks. The whole system is 
pipelined so that P1 and P2 operate in parallel forming the first 
pipeline stage, while P3 works on the previous set of data as the 
next pipeline stage. The runtimes of subtasks assigned to P1 and 
P2 are critical; therefore a careful adjustment should be made in 
order to make these runtimes as close as possible to each other. 
This is shown in Table 1. The microcontrollers are supposed to 
communicate via their SPI serial interface at the maximal available 
speed (4MHz). So, the data communication time-step is 0.1 ms. In 
order to maximize the power efficiency, the clock speed of the 
microcontrollers is supposed to be fixed at 4MHz, i.e. 1 ms is 10 
scheduling time steps. The above assumptions (summarized in 
Table 1.) may yield an intuitively designable pipeline system with 
a restart time (initialization interval) 69 ms (690 time steps), which 
meets the design criteria with about 14 samples per second. The 
latency is 108 ms (1080 time steps) in this case. 

 

 
Fig. 15. Dataflow graph with execution times (time step is 0.1 ms)  

(high speed data logger) 
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Table 1. Runtime calculation for an intuitive design 

Name of task Execution 
time steps Total number Allocated to P1 Allocated to P2 Allocated to P3 

AN_sample 1 8 0 8 0 

AN_filter 4 8 0 8 0 

P_measurement 25 4 3 1 0 

H_measurement 300 4 2 2 0 

T_measurement 1 4 0 4 0 

P_comp 14 4 0 0 4 

H_comp 17 4 0 0 4 

P_preproc 4 4 3 1 0 

T_preproc 4 4 0 4 0 

Compress_PTH 10 1 0 0 1 

Storage 248 1 0 0 1 

Compress_AN 8 1 0 0 1 

Total execution time (in time steps) 1766 687 689 390 

 

4.5. Evaluation of the existing decomposition for the high 
speed data logger 

A carefully designed intuitive solution that complies with all 
the constraints was presented in Subsection 4.6. The intuitive 
decomposition is done firstly based on the parameter values in 
Table 1. The resulting segment graph is shown in Fig. 16. 

 

 

S1

S2

S3

 
Fig. 16.  Segment graph of the existing solution 

(high speed data logger) 

In this implementation, the required number of processors is 3, 
the restart time is 690 time steps, and the latency is 1080 time steps. 
This intuitively designed system will be the basis for comparison. 

4.6. Results provided by DECHLS without decomposition for the 
high-speed data logger 

Fig. 15 shows that the dataflow graph has such a special 
structure in this case, which causes less than 4 processors, only if 
the latency is increased from 570 to above 1400 time steps. This 

was calculated by the modified HLS tool. If the latency is 
increased to 1400 time steps (140 ms), then the solution is possible 
by applying 3 processors. However, this case requires a longer 
restart time, 1050 time steps (105 ms) than the prescribed value of 
1000 (100 ms) given in Subsection 4.6. 

4.7. Results provided by DECHLS with preliminary 
decomposition for the high-speed data logger 

Without prescribing the number of segments, the DECHLS 
yields 4 segments (Fig. 17 a). For comparison, 3, 4, 5 and 6 
segments were prescribed by applying both KL and spectral 
clustering (SC) methods. For the sake of simplicity, only the 
following three cases from these are illustrated: 

• 3 segments, KL method (Fig. 17. b) 

• 3 segments, spectral clustering method, shortest restart 
time with 3 processors (Fig. 17. c) 

• 5 segments, KL method, longest restart time with 3 
processors (Fig. 17. d) 

In this example, the number of segments and the selected 
decomposition method had greater influence on the results than in 
the sound source localisation example. 

It is also notable, that the solution with 4 segments has the 
shortest latency, but not the longest restart time. However, the 
solution yielding the shortest restart time does not result in the 
longest latency. All of the above-mentioned cases are illustrated in 
Fig. 18. 
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Fig. 17. Segment graphs and relative execution times obtained by some different decompositions (high speed data logger) 

 
Fig. 18. Number of processors vs. restart time for comparison  

(high speed data logger) 
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Fig. 19.  Number of processors versus restart time with increased latency (high speed data logger) 

 

 

4.8. The effect of increasing the latency by DECHLS for the 
high speed data logger 

In this example, the segment graphs yield significantly 
different latency values. Since increasing the latency may cause a 
not neglectable decrease in cost, it is worthy to analyze this effect. 
In the above presented cases, the longest latency time obtained is 
L=1768. For illustration, all other cases have been recalculated 
after increasing the latency to this value. The results are shown in 
Fig. 19. 

It can be observed that the increased latency provides a more 
cost-efficient solution by applying the spectral clustering method 
producing 4 segments. This result can be considered the best one 
with only 2 processors with pipeline restart time 920, and with the 
latency value 1768. Note, that the cost became lower, but the 
restart time and the latency time values are worse than in the 
intuitive implementation. However, the design constraints set in 
Subsection 4.6 remained still fulfilled. 

5. Conclusion 

The system-level synthesis phase in designing multiprocessing 
systems can be supported by evaluating and comparing the 
solutions based on various numbers of processors in respect to 
desired properties of the system. In this paper, a method and an 
experimental tool (DECHLS) have been presented for generating 
various system-level structures. The method and the tool DECHLS 
are based on the combination of preliminary task decomposition 
and a modified high-level synthesis tool. In its present form, this 
combined method applies specific decomposition algorithms and 

a suitably modified high-level synthesis tool as components. These 
components can be modified or substituted by other ones 
according to the purpose of the designer or to the specific 
properties of the target system. The application of the tool 
DECHLS is illustrated on redesigning two existing 
multiprocessing systems by analyzing and evaluating the effects 
on various special requirements. For both examples, several 
alternative solutions were obtained by DECHLS, and the most 
characteristic results have been plotted as the cost (number of 
processors) against the pipeline throughput (as restarting period or 
initialization interval). Based on such considerations, the designer 
can select the most advantageous solutions regarding the priority 
order of cost, pipeline throughput and latency. For the presented 
specific constraints, some of the obtained solutions can be 
considered better than the existing system. The definition and 
calculation of the considered parameters can be modified by the 
user in DECHLS. 
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