
www.astesj.com 129

A Method for Generating, Evaluating and Comparing Various System-level Synthesis Results in
Designing Multiprocessor Architectures

Peter Arato*, Gyorgy Racz

Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, 1117, Hungary

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 08 May, 2018
Accepted: 02 June, 2018
Online: 15 June, 2018

 Multiprocessing can be considered the most characteristic common property of complex
digital systems. Due to the more and more complex tasks to be solved for fulfilling often
conflicting requirements (cost, speed, energy and communication efficiency, pipelining,
parallelism, the number of component processors, etc.), different types of component
processors may be required by forming a so called Heterogeneous Multiprocessing
Architecture (HMPA). The component processors of such systems may be not only general
purpose CPUs or cores, but also DSPs, GPUs, FPGAs and other custom hardware
components as well. Nevertheless, the system-level design process should be capable to
handle the different types of component processors the same generic way. The hierarchy of
the component processors and the data transfer organization between them are strongly
determined by the task to be solved and by the priority order of the requirements to be
fulfilled. For each component processor, a subtask must be defined based on the
requirements and their desired priority orders. The definition of the subtasks, i.e. the
decomposition of the task influences strongly the cost and performance of the whole system.
Therefore, systematically comparing and evaluating the effects of different decompositions
into subtasks may help the designer to approach optimal decisions in the system-level
synthesis phase. For this purpose, the paper presents a novel method called DECHLS based
on combining the decomposition and the modified high level synthesis algorithms. The
application of the method is illustrated by redesigning and evaluating in some versions of
two existing high performance practical embedded multiprocessing systems.

Keywords:
system level synthesis,
multiprocessor system,
heterogeneous architectures,
decomposition,
high level synthesis,
pipelining

1. Introduction and Related works

This paper is an extension of the work originally presented in
IEEE System on Chip Conference 2017 [1]. This extension
contains a more detailed explanation of the applied system level
synthesis method. An additional practical benchmark is also solved
and evaluated.

The system-level synthesis procedure of high-performance
multiprocessor systems usually starts by some kind of a task
description regarding the requirements and their desired priorities.
The task description is usually formalized by a dataflow-like graph
or by a high level programming language [2] [3]. To each
component processor of the multiprocessor system, a subtask is
assigned basically by intuition considering various special

requirements (communication cost, speed, pipelining, etc.). The
definition of the subtasks, i.e. the decomposition of the task
strongly influences the cost and performance of the whole
multiprocessing system. Therefore, comparing and evaluating the
effects of different task decompositions performed by applying
systematic algorithms may help the designer to approach the
optimal decisions in the system-level synthesis phase [4]. Our
proposed method can also be considered a design space
exploration as shown in [3-5]. In [5] the hardware-software
partitioning problem is analyzed and various solutions are
compared and evaluated. This approach refers formally only to
special two-segment decompositions. These can be extended for
multi-segment cases by utilizing several high performance
heuristic algorithms [6], [7]. However, in case of such extensions
for multiprocessing architectures [8], the decomposition algorithm
and the calculation to find beneficial communication cost and time

ASTESJ

ISSN: 2415-6698

* Corresponding Author: Peter Arato, Email: arato@iit.bme.hu

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030318

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030318

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 130

become rather complex and cumbersome. Other special aspects of
multi-segment partitioning problems can be found in [9] at the
synthesis of low-cost system-on-chip microcontrollers consisting
of many integrated hardware modules. For avoiding to the
aforementioned difficulties, the paper presents a novel method
called DECHLS based on combining decomposition and modified
high level synthesis algorithms.

This paper is organized as follows. Section 2 contains the
overview of the proposed novel system-level synthesis method
(DECHLS). The decomposition algorithms applied in the
experimental DECHLS tool and the applied performance metrics
are presented in Section 3. The embedded multiprocessing systems
to be redesigned by the experimental DECHLS tool, the
redesigned variations obtained by DECHLS and the evaluation of
the results are presented in Section 4. The conclusion is
summarized in Section 5.

2. Overview of the System-Level Synthesis method
DECHLS

Our method (DECHLS [1]) is based on combining
decomposition (DEC) with high level synthesis (HLS) algorithms.
One of the main steps in HLS tools [10], [11] is the allocation
executed after scheduling the elementary operations. The aim of
scheduling is to determine a beneficial start time for each
elementary operation to attempt allocating them optimally into
processing units [12]. Usual optimality criterions in HLS tools are
the minimal number of processing units, the lowest cost and the
highest speed in pipelining [10], [11], or the lowest power
consumption [12]. The elementary operations allocated into the
same processing units compose the subtasks. However, such
subtasks provided by the HLS tools are strongly determined by the
usual scheduling algorithms and so, not enough freedom is left for
satisfying special multiprocessing requirements in further
synthesis steps. Instead of modifying and extending the usual HLS
scheduling algorithms [13-16] for fulfilling these special
requirements, our DECHLS method attempts to satisfy these on a
higher priority level by executing the decomposition into subtasks
already before the HLS phase. A similar approach is presented in
[17] called clustering. In [17] the power efficiency is attempted to
be optimized by clustering in pipeline systems at a given
throughput. The resulting structure can be considered a special
decomposition that may decrease communication and hardware
costs as well, but these benefits are not analyzed directly. Our
preliminary decomposition can be considered a kind of a
preallocation providing more freedom to fulfill special
multiprocessing requirements. Based on the subtasks (called
segments hereinafter) obtained by decomposition, a segment graph
(SG) can be constructed. The SG can serve as an elementary
operation graph (EOG) of the modified HLS tool. Thus, the
scheduling and allocation algorithms in the modified HLS tool
refer to the component processors in further steps. In this way, the
decomposition executed before the HLS steps can influence the
result on a higher priority level. Thus, DECHLS is based on
combining the decomposition (DEC) and modified high level
synthesis (HLS) algorithms. The main contribution of the
DECHLS is that these two steps are integrated into the same design
tool enabling the designer to generate, evaluate and compare
various alternative results. The list of user-defined requirements,

required inputs and outputs of the DECHLS process is outlined in
Fig.1. The workflow of the DECHLS method is shown in Fig 2.
 Description of the task to be solved by the

whole system (e.g. in C)

Requirements to be defined by the user:
• For the component processors

- numbers
- kinds
- capacities
- filling ratio (power consumption)
- prices
- suitabilities for parallel processing
- instruction executing times

• Necessity for pipeline mode
- desired restart time (throughput)

• Desired priority order of communication burden, speed, price

DECHLS design flow

Results (e.g. in XML file format):
• Component processors to be applied from the set defined by the

user. Specification of the communication.
• Task assignment for the applied component processors.
• Time scheduling for the applied component processors and

communication.
• Cost estimation

In
p

u
ts

 o
f

D
E

C
H

L
S

O

u
tp

u
ts

 o
f

D
E

C
H

L
S

Fig. 1. Inputs and outputs of the DECHLS method

There is also a possibility in DECHLS method to generate the
EOG for the HLS tool immediately from the task description
without preliminary decomposition. If decomposition is intended
to be made, then the desired number of segments can either be
prescribed or calculated by the decomposition algorithm. In both
cases, the modified HLS tool receives the segment graph (SG) as
EOG. If the user decision is that pipeline mode is not required, then
the process of DECHLS is finished and the allocated nodes formed
from the segment graph (SG) define the tasks for the component
processors. If however, the pipeline mode is desired, then the
applicable value of the pipeline initialization interval called further
on restart time (R) is calculated. Most of the HLS tools [10], [11]
can attempt to ensure a user-defined desired restart time (Rd.). If
R≤Rd, is not the case, then the HLS tool [10] applied in the
experimental DECHLS version reduces R by buffer insertion
and/or by applying multiple copies of nodes. If the cost of the
resulting multiprocessing system is not acceptable, then allowing
a longer latency time L (the longest time of processing an input
data in the allocated segment graph) in pipeline mode may reduce
the cost by calculating a new schedule [18]. The user can increase
L in more iteration steps and the value of dL is also definable by
the user. If the cost is acceptable, then the process of DECHLS is
finished.

The scheduler applied in the experimental DECHLS version is
a modified force-directed one [19]. Results of the usual force-
directed schedulers strongly depend on the order of fixing the
operations within their mobility domain (i.e. between the earliest
and latest possible start time) [20]. In contrary, our modified

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 131

scheduler generates a list of all operations according to the length
of their mobility and the operations having the shortest mobility
are fixed first (i.e. the top of the mobility list). After fixing an
operation, the mobility list is recalculated and a next operation is
chosen, and so on until each operation has been fixed.

Decomposition is
intended?

y

Number of segments is
prescribed?

Forming the
segments

Calculate a beneficial
number of segments

Generating the HLS input
directly

Generating the HLS input from
the segments

Pipeline mode
desired?

Calculate the
restart time (R)

Scheduling

Allocation

R≤Rd

Result

n

n

y n

y

y n

A desired value of
R (Rd) is given?

Result

Cost is acceptable?
n y

y n

Reduce R by insertion of
buffers and/or multiple copies
of nodes for satisfying R<Rd

L:=L+dL

Decomposition
tool

Modified HLS tool

Dataflow graph transformation

DFG

SG

EOG

Description of the task for the
whole system

Fig. 2. Design flow of the DECHLS method

Increasing the latency (L) can be simply implemented in any
HLS tool. The simplest way is to introduce an extra fictive
operation parallel with the original operation graph. The execution
time of this extra operation is assumed to be equal to the desired
latency value. This extra operation receives all inputs of the
original operation graph, and its output enables all outputs of the
original graph. This extra operation could be added only before
scheduling, and it must be removed before allocation, since it is
not an operation to be executed by the resulting system.

3. Decomposition of the Task Description
The decomposition step of the DECHLS method starts from a

dataflow-like task description (DFG). The nodes of this graph

represent inseparable operations, and the edges symbolize data
dependencies between the operations. The decomposition
algorithm should define disjoint segments containing each of them
several (at least one) operations. The segments represent subtasks
of the task description and form a segment graph (SG) that may be
the input of the HLS part in the DECHLS system. The edges in SG
represent data communication between segments, edges are
weighted by the communication burden. The nodes in SG
representing the subtasks are also weighted by the longest
execution time of the subtask. The execution time of a segment is
the sum of execution times of the elementary operations assigned
into this segment. The reason of this is that the processors are
assumed to execute serially all elementary operations to be
assigned to them. For comparing and evaluating the effect of
different task decompositions, the desired number of segments is
user-definable. The distribution of workload between segments is
arranged beneficially for pipeline implementation (i.e. as far as
possible equally) and at the same time, the communication load
(edge weights) between the segments should also be kept possibly
low. Beside these aims, the decomposition algorithm must not
produce segment cycles as shown in Fig. 3 and [21]. Such cycles
may cause deadlocks and it is difficult to handle them in pipeline
mode. Handling or eliminating the cycles depends on the HLS tool
applied in DECHLS system [10] [11]. The decomposition
algorithms may produce cycles in the SG, even if the task
description (EOG) is acyclic. Therefore, only such decomposition
algorithms are allowed in DECHLS system, which guarantee
cycle-free SG-s [21]. In our experimental DECHLS tool, this
difficulty is avoided by generating the allowable edge cutting
places before starting the decomposition algorithm [21].

The decomposition algorithms may yield segments consisting
of extremely different number of elementary operations. In the
further steps, the allocation algorithm in DECHLS may provide
processors with extremely different workload.

Therefore, the user has to decide, whether applying always the
just fitting processors or choosing equally suitable identical
processors. A very simple cost calculation and comparison (i.e. the
number of processors) can be applied in the latter case. Therefore,
identical processors are assumed in the further discussions and in
the solutions of the practical examples.

A set of decomposition algorithms is available in [21-23]. Two
of them seemed to be the most suitable for DECHLS: the spectral
clustering (SC) and the multilevel Kernighan–Lin (KL) method.
The spectral clustering is applied for the illustrative redesigning
examples in two versions: the number of segments is prescribed or
it is calculated by the algorithm. These decomposition algorithms
are suitable to illustrate the DECHLS method and yield acceptable
results. However, other more advanced or flexible decomposition
methods like [25] or [26] could also be applied in DECHLS.

For comparing and evaluating the solutions obtained by
DECHLS, some performance metrics could be assumed. These
metrics are flexibly definable and extendable by the user. The
experimental metric criteria applied in Section 4 for comparing the
results are as follows. The hardware cost is calculated simply as
the number of processors, assuming that each processor has the
same performance specification.

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 132

- The pipeline restart time versus the hardware cost is plotted
for helping the beneficial and economical choices and forecasting
the consequences.

- The longer latency in pipeline mode [18] [29] may reduce the
hardware cost without significant effects on the restart time.

e1

e2 e3 e4

e5

e6

e1

e2 e3 e4

e5

e6 S1

S2

S1

S2

S2
S1

S1

S2

a b
Fig. 3. Allowable (b) and not allowable (a) decomposition [19]

4. Benchmark Solutions and Evaluations

4.1. A sound source localization system

A sound source localization system is presented in [27] as a
relatively simple multiprocessing system. The segment graph (SG)
constructed probably by intuition is shown in Fig. 4.

FFT1

SC1

FFT2

SC2

VOTE

HT

Input 1 Input 2

Output

FFT3

SC3

Input 3

FFT4

SC4

Input 4

P1 P2 P3

P5

P4

Fig. 4. Intuitively decomposed and allocated segment graph (SG)

(sound source localisation) [27]

The task to be solved is decomposed into 10 subtasks (each of
them is a separate segment) FFT1, … FFT4, SC1, … SC4, VOTE,
HT as shown in Fig. 4. The segment functions are as follows. FFTs
execute a 512 point real fast Fourier-transformation. SCs perform
noise power estimation for each channel of input data. VOTE

detects whether a detectable sound was present on at least two
channels in the current sample, and the noise is sufficiently low at
the same time. The longest segment is HT that performs the
hypothesis testing method [27] for determining the source
coordinates of the sound.

The implementation in [27] is based on five processors (P1, ...
P5) as shown in Fig. 4. One of the consequences of this intuitive
solution is that P5 has the computationally most expensive subtask
requiring approximately 5 times faster processor than the other
ones. Therefore, the speed of the whole system strongly depends
on the implementation of P5.

In order to evaluate new decompositions, the given segment
graph has to be expanded into an elementary operation graph
(EOG), the nodes of which are considered atomic inseparable
elementary operations. A possible method may start with a high
level language description of the segments in SG. Each segment
may correspond to a function in the high level language description.
This function may call other functions and so on until getting
functions considered inseparable.

For the sake of simplicity, software loops in the task
description can also be considered single inseparable nodes,
because the complex loop handling would be an additional
difficulty (e.g. in pipeline systems [28]). This simplification does
not affect the essence of the further steps.

The transformation process from SG to EOG is illustrated by a
simple example in Fig. 5.

int S1(int input1, input2, input3)
{

int local1, local2
local1=input1*input2;
local2=lib_function(input2,input3);
return local1+local2;

}

S1

int S2 (int input1)
{

for (i=1; i<5; i++)
{
 ……

S2

multiplication

library
function call

addition

for loop

Fig. 5. Expanding a SG into an EOG

(the small program fragments in segments are only to illustrate the process)

From the SG in Fig. 4, this transformation yields an EOG with
over 160 nodes.

For further handling of the EOG, execution times should be
assigned to each elementary operation. For these assignments, the
specifications of processors to be applied should be known. In the
original implementation [27], two different processor types have
been used: the slower MSP430 and the faster ARM7. The faster
ARM7 processor has been chosen probably because of the large
memory demand of HT. The slower and cheaper processors, (16
bit MSP430 microcontrollers) have been found suitable for the
remaining tasks.

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 133

Further on, the execution times will be expressed by the
number of time steps as used in our modified HLS tool [10]. In this
way, the calculation becomes independent from the clock speed.
All time data, including data of the existing systems will also be
expressed in time steps for comparison.

HT segment

All other segments

Fig. 6. The relative execution time proportions

of the segments in Fig. 4.

Fig. 6 shows the relative execution time values of the segments
determined according to the intuitive decomposition shown in Fig.
4. Note, that this solution yielded great differences in the execution
times of the processors that may cause unnecessary constraints in
case of pipelining.

The comparative solutions obtained by applying DECHLS
approach to a uniform workload distribution between the
processors.

4.2. Evaluation of the existing decomposition for the sound
source localization

As it has been mentioned earlier, only identical processors are
assumed in both redesign examples. In order to achieve the best
results with identical processors, all the segments require
approximately identical execution times. To illustrate the problem,
our modified HLS tool provides the plot in Fig. 7. calculated from
the intuitive SG in Fig. 4. The execution times are calculated
assuming that only MSP430 microprocessors are applied in the
implementation. Such an implementation will be considered as
comparison in the further solutions. This assumption helps to
illustrate the effect of different preliminary decompositions
without complicating the comparison of different results.

Fig. 7 does not show a decrease after time step 2300, thus at
least 11 identical processors would be required for this solution.
The reason of this is that the processor executing the HT needs to
be replicated at least in two copies in order to meet the timing
constraints.

4.1. Results provided by DECHLS without decomposition for the
sound source localization

In this mode of DECHLS, the HLS tool (Fig. 2) receives
directly the EOG without preliminary decomposition, i.e. the
decomposition is left completely for the allocation algorithm of the
HLS tool. It can be observed in Fig. 8 that after the restart time
R=3000 no further cost decrease occurs in this mode of DECHLS.

The cost minimum is here 14 processors instead of 11 obtained by
the intuitive decomposition (Fig. 7). In this calculation, the HLS
part of DECHLS has been finished as if the cost would be
acceptable (Fig. 2). Therefore, the latency has not been increased.
In this case, the latency determined by the EOG is 4217 time steps.
To the solution in Fig. 8 belongs a latency value of 5025 time steps.

Fig. 7. Number of processors versus restart time by intuitive decomposition

(sound source localisation)

The cost could be attempted to be reduced both by increasing
the latency and by applying suitable decompositions. Some
characteristic cases will be shown later.

The runtime of the HLS tool was extremely long in this mode
(requiring about 18 hours on a contemporary PC), mostly because
of the high number of elementary operations. The longest time has
been taken by the force directed scheduling algorithm.

Fig. 8. Number of processors versus restart time without decomposition (sound

source localisation)

4.2. Results provided by DECHLS with preliminary
decomposition for the sound source localization

In this experiment, DECHLS is applied using both task
decompositions [21] based on the multilevel Kerrigan-Lin (KL)
[23] algorithm and the spectral clustering (SC) [24]. The results are
nearly the same. In both calculations, the desired number of
segments has been prescribed as 5 and 7 respectively. Both results
are illustrated in Fig. 9 and Fig. 10. In these figures and in the
following ones, the relative segment execution times are also
shown in small circle diagrams.

Number of processors versus restart time plot
(intuitive decomposition)

10

11

12

13

14

15

1000 1500 2000 2500 3000 3500 4000
Restart time [time steps]

Co
st

 [n
um

be
r o

f p
ro

ce
ss

or
s]

Number of processors versus restart time plot
(without decomposition)

13

14

15

16

17

18

19

20

1000 1500 2000 2500 3000 3500 4000
Restart time [time steps]

Co
st

 [n
um

be
r o

f p
ro

ce
ss

or
s]

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 134

S1

S2

S2

S4

S5

S4

S3

S2

S1S5

a.)

S5

S6

S7

S4

S3

S2

S1
S7

S6

S4

S3

S2

S1

S5

b.)

Fig. 9. Segment graphs resulted from KL decomposition (5 segments left, 7 segments right)

It is notable, that the results of different decomposition methods
are almost the same. There are only minor differences in the
segment contents and the execution times.

The third experiment on this benchmark is the application of
DECHLS using the SC decomposition [24] algorithm without
prescribing the number of segments. The SC algorithm is based
on the lowest nonzero eigenvalues of the Laplacian matrix
constructed from the graph [22], [30]. The lower eigenvalues we
choose for the clustering, the smaller weight-sum will be caused
by cut edges. Our applied version [22] does not make accessible

neither the Laplacian matrix, nor its eigenvalues. Therfore, we had
to calculate them by applying a separate Matlab program. Since
the Laplacian matrix is a square matrix with as many rows and
columns as the number of nodes in the graph, the number of
eigenvalues is also the same. Depending on the complexity of the
graph to be decomposed, the larger eigenvalues may be extra
large. Therefore, only the smallest 25 eigenvalues of the graph
representing this example are shown in Fig. 11. Since the smallest
4 nonzero eigenvalues are identical, the most beneficial
decomposition could result 4 segments.

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 135

S1

S2

S3

S4

S5

S5 S1

S2

S3

S4

a.)

S1

S2

S3

S4

S5

S6

S7

S5

S1

S2

S3

S4

S6

S7

b.)

Fig. 10. Segment graphs resulted from spectral clustering decomposition (SC) (5 segments left, 7 segments right)

5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

 Eigenvalues

M
agnitude

Fig. 11. Illustrating the smallest 25 eigenvalues of the Laplacian matrix used for

decomposition

The result of this decomposition is shown in Fig. 12. It can be
observed, that the sizes of the segments are not as uniform as in the
previous cases. The reason of this is that the spectral clustering
without local refinement cannot guarantee the approximately
uniform segment sizes [21]. However, it is also notable, that the
communication costs between the segments are now significantly
lower.

Each of the resulting SGs (Figure 9, 10, 12) has been fed to our
modified HLS tool in order to compute the cost versus restart time
plots. Since the chosen decomposition method has a very small
effect on the results, Fig. 9. a. is almost the same as Fig. 10. a. and
Fig. 9. b. is almost the same as Fig. 10. b. Therefore, only three
different diagrams are shown in Fig. 13.

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 136

S1

S2

S3

S4

S1

S2

S3

S4

Fig. 12. Segment graph resulting from a spectral decomposition to 4 segments

4.3. The effect of increasing the latency by DECHLS for the
sound source localization

Figures 8 and 13 illustrate that DECHLS yields significantly
less processors if preliminary decomposition is included. However
it can be observed on this example (Fig. 9, 10, 12) that the latency
became much longer (5178) by executing DECHLS with
preliminary decomposition. The latency-increasing effect of the
decomposition can be observed also even in the intuitively
decomposed case (Fig. 4). Usually, the decomposition may have a
latency- increasing effect. One of the reasons of this could be that
operations assigned to the same segment can be executed only

serially. If however, the modified HLS part is executed without
preliminary decomposition, then much less serial constraints arise.

Fig. 13. Number of processors versus restart time plot after decomposition
(sound source localisation)

On the other hand, a longer latency may influence
advantageously the allocation and the restart time [18]. To
illustrate this effect, the result of DECHLS without preliminary
decomposition (Fig. 8) is recalculated (Fig. 14) at the increased
latency value resulted with decomposition (Figures 9, 10, 12). In
this example, further latency increasing would not have any
remarkable effect, if the DECHLS is executed with preliminary
decomposition as shown in Fig. 9, 10 and 12. Therefore such
results are not shown in Fig. 14.

It can be observed in Fig. 14, that increasing the latency alone
can provide acceptable costs, even assuming only identical
processors, especially at restart time values greater than ca. 2000.
The evaluation of the results in Fig. 14 would provide the most
favourable solution achieved by the decomposition into 5
segments with the restart time 1100 (and the same number of
processors as the number of segments in this case). However, if the
restart time is less important than the cost, then the solution with 4
processors (decomposition into 4 segments by spectral clustering
in this case) would be more beneficial.

Fig. 14. Number of processors vs. restart time for comparison (sound source localisation)

3

5

7

9

11

13

15

1000 1500 2000 2500 3000 3500 4000
Restart time [time steps]

Co
st

 [n
um

be
r o

f p
ro

ce
ss

or
s]

Decomposed to 5 segments (Fig. 9.a and 10.a; Latency=5178)
Decomposed to 7 segments (Fig. 9.a and 10.a; Latency=5178)
Spectral clustering 4 segments (Fig. 12; Latency=5178)

3
5
7
9

11

13
15
17
19

1000 1500 2000 2500 3000 3500 4000
Restart time [time steps]

Co
st

 [n
um

be
r o

f p
ro

ce
ss

or
s]

Without decomposition (Latency=4217)
Decomposed to 5 segments (Latency=5178)
Decomposed to 7 segments (Latency=5178)
Increased latency, no decomposition (Latency=5178)
Spectral clustering 4 segments (Latency=5178)
Intuitive decomposition (Latency=5025)

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 137

4.4. A high speed industrial data logger

The second benchmark for illustration is the redesign and
evaluation of a high speed data logger [31] system (Fig. 15) that
performs the measurement, pre-processing and storing of several
different types of input data (i.e. temperature, pressure, humidity,
and some other data measured by analogue sensors). The data are
to be compressed before storing them in a serial memory. The
frequency of sampling and storing is the same and constant for all
kinds of data. In the existing system, this task is solved by low
power 8 bit microcontrollers of the PIC18FxxKxx series. The data
is stored in a relatively slow, but power efficient serial storage
device accessible via the I2C bus. In each input, 4 channels for
pressure, temperature and humidity sensing, and 8 channels for
sensing other analogue signals are assumed. A possible dataflow
graph of the system is shown in Fig. 15. The required sampling
data rate is at least 10 samples per second that equals to 100ms
pipeline restart time (initialization interval). The design goal is to
find a cost-effective solution that complies with the data rate
constraint. It will be assumed that the redesigned system also
applies the same types of processors and storage device.

The pre-processing subtasks of the analogue input channels are
supposed to be simple moving average filters. The pressure
sensing and humidity sensing subtasks are more complex.
Therefore their execution times are supposed to be much longer
(Table 1). The reason of this is that these values need to be
temperature compensated as a part of their pre-processing.

The existing solution applies three microcontrollers as
component processors. The properties of the dataflow graph allow
assigning identical subtasks per microcontrollers. The main
advantage of this solution is to reuse the subroutines multiple times.
However, it may make the system somewhat less efficient in speed
and cost. The tasks of the processors are the following. P1
performs the measurement and pre-processing the data from 3
pressure sensors and from 2 humidity sensors. P2 measures and
filters the data from 8 analogue sensors and from 4 temperature
sensors, because both require the same filtering. P2 also measures
the data from the remaining 2 humidity sensors and from one
pressure sensor. A third microcontroller (P3) is used for
temperature compensation of the pressure and humidity data and
also for data compression and storing tasks. The whole system is
pipelined so that P1 and P2 operate in parallel forming the first
pipeline stage, while P3 works on the previous set of data as the
next pipeline stage. The runtimes of subtasks assigned to P1 and
P2 are critical; therefore a careful adjustment should be made in
order to make these runtimes as close as possible to each other.
This is shown in Table 1. The microcontrollers are supposed to
communicate via their SPI serial interface at the maximal available
speed (4MHz). So, the data communication time-step is 0.1 ms. In
order to maximize the power efficiency, the clock speed of the
microcontrollers is supposed to be fixed at 4MHz, i.e. 1 ms is 10
scheduling time steps. The above assumptions (summarized in
Table 1.) may yield an intuitively designable pipeline system with
a restart time (initialization interval) 69 ms (690 time steps), which
meets the design criteria with about 14 samples per second. The
latency is 108 ms (1080 time steps) in this case.

Fig. 15. Dataflow graph with execution times (time step is 0.1 ms)

(high speed data logger)

P_measure_1
 ET=25

P_preproc_1
 ET=4

24

H_measure_1
 ET=300

H_comp_1
 ET=17

12

T_measure_1
 ET=1

T_preproc_1
 ET=4

14

P_comp_1
 ET=14

Compress PTH
 ET=10

16 16

24 10 10

P_measure_2
 ET=25

P_preproc_2
 ET=4

24

H_measure_2
 ET=300

H_comp_2
 ET=17

12

T_measure_2
 ET=1

T_preproc_2
 ET=4

14

P_comp_2
 ET=14

16 16

24 10 10

P_measure_3
 ET=25

P_preproc_3
 ET=4

24

H_measure_3
 ET=300

H_comp_3
 ET=17

12

T_measure_3
 ET=1

T_preproc_3
 ET=4

14

P_comp_3
 ET=14

16 16

24 10 10

P_measure_4
 ET=25

P_preproc_4
 ET=4

24

H_measure_4
 ET=300

H_comp_4
 ET=17

12

T_measure_4
 ET=1

T_preproc_4
 ET=4

14

P_comp_4
 ET=14

16 16

24 10 10

Storage
 ET=248

128

AN_sample_1
 ET=1

AN_sample_2
 ET=1

AN_sample_3
 ET=1

AN_sample_3
 ET=1

AN_sample_4
 ET=1

AN_sample_5
 ET=1

AN_sample_6
 ET=1

AN_sample_7
 ET=1

AN_filter_1
 ET=4

10

Compress_AN
 ET=8

16

AN_filter_2
 ET=4

10

16

AN_filter_3
 ET=4

10

16

AN_filter_3
 ET=4

10

16

AN_filter_4
 ET=4

10

16

AN_filter_5
 ET=4

10

16

AN_filter_6
 ET=4

10

16

AN_filter_7
 ET=4

10

16

AN_sample_8
 ET=1

AN_filter_8
 ET=4

10

16

128

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 138

Table 1. Runtime calculation for an intuitive design

Name of task Execution
time steps Total number Allocated to P1 Allocated to P2 Allocated to P3

AN_sample 1 8 0 8 0

AN_filter 4 8 0 8 0

P_measurement 25 4 3 1 0

H_measurement 300 4 2 2 0

T_measurement 1 4 0 4 0

P_comp 14 4 0 0 4

H_comp 17 4 0 0 4

P_preproc 4 4 3 1 0

T_preproc 4 4 0 4 0

Compress_PTH 10 1 0 0 1

Storage 248 1 0 0 1

Compress_AN 8 1 0 0 1

Total execution time (in time steps) 1766 687 689 390

4.5. Evaluation of the existing decomposition for the high
speed data logger

A carefully designed intuitive solution that complies with all
the constraints was presented in Subsection 4.6. The intuitive
decomposition is done firstly based on the parameter values in
Table 1. The resulting segment graph is shown in Fig. 16.

S1

S2

S3

Fig. 16. Segment graph of the existing solution

(high speed data logger)

In this implementation, the required number of processors is 3,
the restart time is 690 time steps, and the latency is 1080 time steps.
This intuitively designed system will be the basis for comparison.

4.6. Results provided by DECHLS without decomposition for the
high-speed data logger

Fig. 15 shows that the dataflow graph has such a special
structure in this case, which causes less than 4 processors, only if
the latency is increased from 570 to above 1400 time steps. This

was calculated by the modified HLS tool. If the latency is
increased to 1400 time steps (140 ms), then the solution is possible
by applying 3 processors. However, this case requires a longer
restart time, 1050 time steps (105 ms) than the prescribed value of
1000 (100 ms) given in Subsection 4.6.

4.7. Results provided by DECHLS with preliminary
decomposition for the high-speed data logger

Without prescribing the number of segments, the DECHLS
yields 4 segments (Fig. 17 a). For comparison, 3, 4, 5 and 6
segments were prescribed by applying both KL and spectral
clustering (SC) methods. For the sake of simplicity, only the
following three cases from these are illustrated:

• 3 segments, KL method (Fig. 17. b)

• 3 segments, spectral clustering method, shortest restart
time with 3 processors (Fig. 17. c)

• 5 segments, KL method, longest restart time with 3
processors (Fig. 17. d)

In this example, the number of segments and the selected
decomposition method had greater influence on the results than in
the sound source localisation example.

It is also notable, that the solution with 4 segments has the
shortest latency, but not the longest restart time. However, the
solution yielding the shortest restart time does not result in the
longest latency. All of the above-mentioned cases are illustrated in
Fig. 18.

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 139

 c) b)

S3

S2

S1

S1

S2

S3

S4

S3
S2

S1

S5 S1

S2

S3

S4

a) d)

Fig. 17. Segment graphs and relative execution times obtained by some different decompositions (high speed data logger)

Fig. 18. Number of processors vs. restart time for comparison

(high speed data logger)

Number of processors versus restart time

2

3

4

5

6

7

8

9

600 650 700 750 800 850 900 950 1000 1050

Restart time [0.1 ms]

C
os

t [
N

um
be

r o
f p

ro
ce

ss
or

s]

without decomposition (Latency=1400) 4 segment spectral (Latency=992)
5 segment KL (Latency=1166) 3 segment spectral (Latency=1292)
3 segment KL (Latency=1768) Intuitive design (Latency=1080)

http://www.astesj.com/

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 140

Fig. 19. Number of processors versus restart time with increased latency (high speed data logger)

4.8. The effect of increasing the latency by DECHLS for the
high speed data logger

In this example, the segment graphs yield significantly
different latency values. Since increasing the latency may cause a
not neglectable decrease in cost, it is worthy to analyze this effect.
In the above presented cases, the longest latency time obtained is
L=1768. For illustration, all other cases have been recalculated
after increasing the latency to this value. The results are shown in
Fig. 19.

It can be observed that the increased latency provides a more
cost-efficient solution by applying the spectral clustering method
producing 4 segments. This result can be considered the best one
with only 2 processors with pipeline restart time 920, and with the
latency value 1768. Note, that the cost became lower, but the
restart time and the latency time values are worse than in the
intuitive implementation. However, the design constraints set in
Subsection 4.6 remained still fulfilled.

5. Conclusion

The system-level synthesis phase in designing multiprocessing
systems can be supported by evaluating and comparing the
solutions based on various numbers of processors in respect to
desired properties of the system. In this paper, a method and an
experimental tool (DECHLS) have been presented for generating
various system-level structures. The method and the tool DECHLS
are based on the combination of preliminary task decomposition
and a modified high-level synthesis tool. In its present form, this
combined method applies specific decomposition algorithms and

a suitably modified high-level synthesis tool as components. These
components can be modified or substituted by other ones
according to the purpose of the designer or to the specific
properties of the target system. The application of the tool
DECHLS is illustrated on redesigning two existing
multiprocessing systems by analyzing and evaluating the effects
on various special requirements. For both examples, several
alternative solutions were obtained by DECHLS, and the most
characteristic results have been plotted as the cost (number of
processors) against the pipeline throughput (as restarting period or
initialization interval). Based on such considerations, the designer
can select the most advantageous solutions regarding the priority
order of cost, pipeline throughput and latency. For the presented
specific constraints, some of the obtained solutions can be
considered better than the existing system. The definition and
calculation of the considered parameters can be modified by the
user in DECHLS.

Acknowledgment

The research work presented in this paper has been supported by
the Hungarian Scientific Research Fund OTKA 72611, by the
"Research University Project" TAMOP IKT T5 P3 and the
research project TAMOP-4.2.2.C-11/1/KONV-2012-0004.

References

[1] Gy. Racz, P. Arato, “A Decomposition-Based System Level Synthesis
Method for Heterogeneous Multiprocessor Architectures“ IEEE System On
Chip Conference, IEEE 2017, Munich, Germany
https://doi.org/10.1109/SOCC.2017.8226082

Number of processors versus restart time with increased latency

2

3

4

5

6

7

8

600 650 700 750 800 850 900 950 1000 1050

Restart time [0.1 ms]

C
os

t [
N

um
be

r o
f p

ro
ce

ss
or

s]

3 segment KL (Latency=1768) Intuitive design (Latency=1080)
4 segment spectral (Latency=1768) 5 segment KL (Latency=1768)
3 segment spectral (Latency=1768) without decomposition (Latency=1768)

http://www.astesj.com/
https://doi.org/10.1109/SOCC.2017.8226082

P. Arato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 129-141 (2018)

www.astesj.com 141

[2] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, J.
Teich, “Electronic System-Level Synthesis Methodologies“, IEEE T
COMPUT AID D., 28(10), 1517-1530, 2009

[3] R. Corvino, A. Gamatié, M. Geilen, L. Józwiak, “Design space exploration
in application-specific hardware synthesis for multiple communicating
nested loops“, in IEEE ICSAMOS, 128-135, 2012

[4] A. Carminati, R. S. de Oliveira, L. F. Friedrich, “Exploring the design space
of multiprocessor synchronization protocols for real-time systems“, Journal
of Systems Architecture (JSA), 60(3), 258-270, 2014. ISSN 1383-7621

[5] A. Cilardo, L. Gallo, N. Mazzocca, “Design space exploration for high-level
synthesis of multi-threaded applications”, Journal of Systems Architecture
(JSA), 59(10D), 1171-1183, 2013., ISSN 1383-7621

[6] P. Arató, Z. A. Mann, A. Orbán, “Finding optimal hardware/software
partitions”, Formal Methods in System Design, 31(3), 241-263. 2007

[7] J. Wu, T. Srikanthan, G. Chen, “Algorithmic Aspects of Hardware/Software
Partitioning: 1D Search Algorithms,” IEEE T. COMPUT., 59(4), 532-544,
2010. doi: 10.1109/TC.2009.173

[8] R. Ernst, J. Henkel, T. Benner, “Hardware-software cosynthesis for
microcontrollers”, IEEE Design & Test of Computers, 10(4), 64-75, 1993.

[9] N. Govil, S. R. Chowdhury, “GMA: a high speed metaheuristic algorithmic
approach to hardware software partitioning for Low-cost SoCs”, 2015
International Symposium on Rapid System Prototyping (RSP), Amsterdam,
2015.

[10] P. Arató, T. Visegrády, I. Jankovits, High Level Synthesis of Pipelined
Datapaths, John Wiley & Sons, New York, ISBN: 0 471495582 4, 2001.

[11] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, D. Stroobandt, “An
overview of today’s high-level synthesis tools”, Design Automation for
Embedded Systems, 16(4), 31-51, 2012.

[12] T. Mukk, A. M. Rahmani, N. Dutt, “Adaptive-Reflective Middleware for
Power and Energy Management in Many-Core Heterogeneous Systems”,
International Symposium & Workshop on Many-Core Computing:
Hardware and Software, Southampton, UK, 2018.

[13] P. Arató, Z. A. Mann, A. Orbán, “Time-constrained scheduling of large
pipelined datapaths”, Journal of Systems Architecture (JSA), 51(12), 665-
687, 2005.

[14] P. G. Paulin, J. P. Knight, “Force-directed scheduling for the behavioral
synthesis of ASICs” IEEE T COMPUT AID D., 8(6), 661-679, 1989.

[15] M. Grajcar, “Genetic List Scheduling Algorithm for Scheduling and
Allocation on a Loosely Coupled Heterogeneous Multiprocessor System”,
36th ACM/IEEE Conference on Design Automation, New Orleans, LA,
USA, 1999.

[16] J-H. Ding, Y-T. Chang, Z-D. Guo, K-C. Li, Y-C. Chung, “An efficient and
comprehensive scheduler on Asymmetric Multicore Architecture systems”,
Journal of Systems Architecture, 60(3), 305-314, 2014, ISSN 1383-7621

[17] C-S. Lin, C-S. Lin, Y-S. Lin; P-A. Hsiung, C. Shih, “Multi-objective
exploitation of pipeline parallelism using clustering, replication and
duplication in embedded multi-core systems”, Journal of Systems
Architecture (JSA), 59(10C), 1083-1094, 2013, ISSN 1383-7621

[18] Gy. Pilászy, Gy. Rácz, P. Arató, “The effect of increasing the latency time
in High Level Synthesis”, Periodica Polytechnica Electrical Engineering,
58(2), 37-42, 2014. https://doi.org/10.3311/PPee.7024

[19] K. O'Neal, D. Grissom, P. Brisk, “Force-Directed List Scheduling for Digital
Microfluidic Biochips”, IEEE/IFIP 20th International Conference on VLSI
and System-on-Chip (VLSI-SoC), Santa Cruz, USA, 2012.

[20] P. G. Paulin, J. P. Knight, “Force-Directed Scheduling in Automatic Data
Path Synthesis”, 24th Conference on Design Automation, New York, USA,
1987.

[21] P. Arató, D. Drexler, Gy. Rácz, “Analyzing the Effect of Decomposition
Algorithms on the Heterogeneous Multiprocessing Architectures in System
Level Synthesis” Buletinul Stiintific al Universitatii Politehnica din
Timisoara Romania Seria Automatica si Calculatore / Scientific Buletin of
Politechnica University of Timisoara Transactions on Automatic Control
and Computer Science, 60(74) 39-46. 2015.

[22] B. Hendrickson, R. Leland, “The Chaco User’s Guide Version 2.0”,
Technical Report SAND94-2692, 1994.

[23] B. Hendrickson, R. Leland, “A Multilevel Algorithm for Partitioning
Graphs”, In Proc. Supercomputing '95. (Formerly, Technical Report
SAND93-1301), 1993.

[24] B. Hendrickson, R. Leland, “An Improved Spectral Graph Partitioning
Algorithm for Mapping Parallel Computations”, SIAM J. Sci. Stat. Comput.,
16(2), 452-469, 1995.

[25] G. Karypis, V. Kumar, “Metis-unstructured graph partitioning and sparse
matrix ordering system version 2.0”, 1995.

[26] A. Trifunovic, W. J. Knottenbelt, “Parkway 2.0: a parallel multilevel
hypergraph partitioning tool”, Computer and Information Sciences-ISCIS
2004, Springer, 789-800. 2004.

[27] M. Goraczko, J. Liu, D. Lymberopoulos, “Energy-Optimal Software
Partitioning in Heterogeneous Multiprocessor Embedded Systems”, DAC
2008., Anaheim, California, USA, 2008.

[28] G. Suba, “Hierarchical pipelining of nested loops in high-level synthesis”,
Periodica Polytechnica Electrical Engineering, 58(3) 81-90, 2014.
https://doi.org/10.3311/PPee.7610

[29] J. Subhlok, G. Vondran, “Optimal latency - throughput tradeoffs for data
parallel pipelines”, 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, Padua, Italy, 1996.

[30] C. J. Alpert, A. B. Kahng, S.-Z. Yao, “Spectral partitioning with multiple
eigenvectors”, Discrete Applied Mathematics, 90(1), 3-26, 1999.

[31] Project documentation of KMR_12-1-2012-0222 titled “The development of
a complex monitoring system for fishing waters”

http://www.astesj.com/

	1. Introduction and Related works
	3. Decomposition of the Task Description
	4. Benchmark Solutions and Evaluations
	4.1. A sound source localization system
	4.2. Evaluation of the existing decomposition for the sound source localization
	4.1. Results provided by DECHLS without decomposition for the sound source localization
	4.2. Results provided by DECHLS with preliminary decomposition for the sound source localization
	4.3. The effect of increasing the latency by DECHLS for the sound source localization
	4.4. A high speed industrial data logger

	Table 1. Runtime calculation for an intuitive design
	4.5. Evaluation of the existing decomposition for the high speed data logger
	4.6. Results provided by DECHLS without decomposition for the high-speed data logger
	4.7. Results provided by DECHLS with preliminary decomposition for the high-speed data logger
	4.8. The effect of increasing the latency by DECHLS for the high speed data logger

	5. Conclusion
	Acknowledgment
	References

