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The aim of the present work is to guarantee the trajectory tracking of a
nonlinear biological process and compare two control approaches. The
main objective of this work is to elaborate a fuzzy model and build a fuzzy
controllers for a biological process by using the fuzzy Takagi-Sugeno.
Two controllers are synthesized, the parallel distributed compensation
control and optimal fuzzy linear quadratic integral control. In both cases,
the physical constraints on the manipulated inputs are respected. In
addition, the case with and without the observer is presented, where a
fuzzy observer based control is used with unmeasurable premise variables.
Finally, the performances and the effectiveness of both the modeling and
the control are demonstrated via simulations.

1 Introduction

Nowadays, the biological processes become one of the
important industrial processes thanks to their advan-
tages, such as the treatment of organic substrates, pro-
tein production and the production of ethanol gas etc.
However, their modeling and control form a real chal-
lenge problem for both control engineers and theorists,
where this kind of systems are characterized by strong
variations of system parameters and unknown kinetics
owing to the time-varying characteristics and multiple
interactions generated by the living microorganisms
[1, 2]. Therefore, we obtain a highly nonlinear system.
The motivation of this work is to linearize the model
and benefit from linear theory control and to try to de-
velop a nonlinear control, which is very difficult in this
case. Also to use the Takagi-Sugeno (T-S) model, fur-
thermore, the proposed controllers can be applied to
the real process. It only needs to identify a T-S model
from experimental data. T-S approach has been rec-
ognized as an effective tool for handling the previous
difficulty.

There are different techniques for controlling the
bioprocess using Takagi-Sugeno models, such as opti-
mal fuzzy linear quadratic regulators for discrete-time
[3], a fuzzy integral controller to force the switching of
a bioprocess between two different metabolic states is

treated in [4], an internal model control design strategy
is developed for a particular Continuous Stirred-Tank
Reactor (CSTR)[5]. A PID and fuzzy controller are pro-
posed in [6] to stabilize the CSTR around the equilib-
rium point, where the authors consider only one input,
which is not the case in practice. Also, the case of un-
certain Takagi-Sugeno system is treated in [7], where
an observer with unmeasurable premise variables and
unknown input is considered for a wastewater treat-
ment plant. In addition, the predictive control based
on fuzzy observer is studied for a sludge depollution
bioprocess in [8, 9], in this framework one can cite
[10, 11, 12]. Furthermore, the modeling and the con-
trol of bioprocess based on neural network approach
is treated in [13, 14]. In the same spirit, a nonlin-
ear model autoregressive with exogenous input model
predictive control is developed in [15] to control the
fermentation process. Also, an integral backstepping
control law is developed in [16] for controlling the
dissolved oxygen level for bacteria fermentation.

The problem treated in this paper is how to model
and control the biomass growth process, ensuring the
trajectory tracking while taking into account the fol-
lowing constraints:
- The mathematical model is nonlinear and not affine
in control.
- The variables control present the physical constraints,
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which make the computation of the control gains diffi-
cult.
- The full system states are not measurable.
The present paper has two goals, the first is to build
a fuzzy model of biological process based on Takagi-
Sugeno tool, especially the nonlinearity sector meth-
ods. The second is to ensure the tracking trajectory
of the desired outputs using two approaches: the Par-
allel Distributed Compensation (PDC) [17] and the
Linear Quadratic Integral (LQI) control. Where the
strong physical constraints on the inputs [18] are tak-
ing into account. In addition, the proposed controllers
are compared. The stability conditions are formed in
the Linear Matrix Inequalities (LMIs) terms.

This paper is organized as follows: Section 2
presents the description of the Takagi-Sugeno mod-
eling. Section 3 describes the parallel distributed com-
pensation control. Then, one can address the fuzzy
output tracking control problem in section 4 and we
show that it can be solved by using two methods: the
PDC technique and the optimal linear quadratic con-
trol. Section 5 describes the controller design based
on fuzzy observer with unmeasurable premise vari-
ables. Section 6 introduces the proposed biological
process. Finally, the simulation and the discussion of
the obtained results are given to compare the proposed
controllers.

2 Takagi-Sugeno Fuzzy Model

In order to extend the existing approaches of control
and observation for linear to nonlinear system, Takagi
and Sugeno have proposed a fuzzy dynamic model to
represent this kind of system. The T-S fuzzy model
is a set of linear models connecting via membership
functions. To build the T-S fuzzy model, three methods
exist in the literature [17]: The black box identification,
the linearization method and the nonlinearity sector
methods. The third method gives an exact T-S rep-
resentation of nonlinear system without information
loss.
Consider the following nonlinear system:

ẋ(t) = f (x(t)) + g(x(t))u(t)
y(t) = Cx(t) (1)

where x ∈ Rn is the state, u ∈ Rm is the input vector,
y ∈Rq represents the output measurement vectors and
C ∈Rq∗n is the output matrix. In addition, f (.) and g(.)
represent the nonlinear functions.
The T-S fuzzy model uses a set of fuzzy if-then rules,
which represent local linear input-output relations of
a nonlinear system. The ith rule of the T-S model given
as follows:
Rule i:
if z1(t) is Fi1(z1(t)) and z2(t) is Fi2(z2(t)) ... and zp(t) is
Fip(zp(t))

Then

ẋ(t) = Aix(t) +Biu(t)
y(t) = Cix(t)

(2)

Where Fip are the membership functions of fuzzy sets,
i ∈ {1,2, ...r}, r is the number of rules, Ai ∈ R

n∗n,
Bi ∈ Rn∗m, Ci ∈ Rq∗n and z1(t), ..., zp(t) are the premise
variables which can be dependent of the input, the out-
put or the state. The global T-S fuzzy model is given in
the following form:

ẋ(t) =
r∑
i=1
hi(z(t))(Aix(t) +Biu(t))

y(t) = Cx(t)
(3)

where

hi(z(t)) =

∏p
j=1F

i
j (zj (t))

r∑
i=1

∏p
j=1F

i
j (zj (t))

(4)

The activation functions hi(z(t)) indicates the acti-
vation degree of the ith associated local model, this
functions verifies all time the convex sum propriety:

0 ≤ hi(z(t)) ≤ 1
r∑
i=1
hi(z(t)) = 1,∀i ∈ {1,2, ..., r}. (5)

3 PDC control approach

3.1 Fuzzy regulator design via PDC

To stabilize the system presented by their T-S fuzzy
model, the PDC controller is usually used to design a
fuzzy controller. The main idea is to design a local con-
troller for each sub-model based on local control rule,
which shares with the fuzzy model the same fuzzy sets.
The overall fuzzy controller is represented by:

u(t) = −
r∑
i=1

hi(z)Kix(t) (6)

Where the Ki represent the local feedback gains. by
using (6) in (3) the system in closed-loop becomes:

ẋ(t) =
r∑
i=1

r∑
j=1
hi(z)hj (z)(Ai −BiKj )x(t)

=
r∑
i=1
h2
i (z)Giix(t) + 2

r∑
i<j
hi(z)hj (z)(

Gij+Gji
2 )x(t)

(7)
with Gij = Ai −BiKj , the stability conditions of (7) are
given by the following theorem [17].

Theorem 1 The continuous fuzzy system (7) is asymp-
totically stable, if there exist a common positive matrix
P ∈ Rn×n and a common positive semi definite matrix
Q ∈ Rn×n and for a number of active rules s, where
1 < s ≤ r such that:

GTiiP + PGii + (s − 1)Q < 0 (8)

(
Gij +Gji

2
)T P + P (

Gij +Gji
2

)−Q ≤ 0, i < j (9)

where s > 1.
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In order to transform the preview conditions into LMIs
form, one can consider the following variables: X = P −1

, Ki = MiX
−1 , Q = P Y P , where X > 0, Y ≥ 0 and

Mi(i = 1, ..., r), then the stabilization conditions be-
come:

AiX −BiMi +XATi −M
T
i B

T
i + (s − 1)Y < 0

AiX −BiMj +XATi −M
T
j B

T
i +AjX −BjMi

+XATj −M
T
i B

T
j − 2Y ≤ 0, i < j

(10)

4 Trajectory tracking control

The trajectory tracking control of nonlinear systems is
the subject this section. In the tracking loop, we con-
sider the integral of the tracking error eI =

∫
(yr−y)dt =∫

(yr −Cx)dt [19], with yr is the desired output. If we
consider the following augmented state:

Xa =
[
x
eI

]
Then, the following augmented system is obtained:Ẋa(t) =

r∑
i=1
hi(z(t))(ĀiXa(t) + B̄iu(t) + D̄Yr )

y(t) = C̄Xa(t)
(11)

where: Āi =
[
Ai 0
−C 0

]
, B̄i =

[
Bi
0

]
, C̄ =

[
C 0

]
, D̄ =

[
0
I

]
,

Yr =
[
yr1
yr2

]
with Yr , denote the desired reference trajectory.

4.1 PDC control

To achieve the output tracking, the state feedback PDC
control based on the previous LMIs can be used. The
fuzzy controller u(t) has the same form of (6), where x
is replaced by the augmented state Xa:

u(t) = −
r∑
i=1

hi(z)KiXa(t) = −
r∑
i=1

hi(z)(Ki xx+Ki IeI )

(12)
The feedback gains of the controller Ki =

[
Ki x Ki I

]
are obtained by solving the LMIs (10).

4.2 LQI control

To design the LQI control, the following quadratic cost
criterion must be minimized by the control law u(t):

J =
∫ ∞

0
(XTa (t)QXa(t) +uT (t)Ru(t))dt (13)

for this reason, the following candidate quadratic Lya-
punov function is considered:

V (Xa) = XTa PXa (14)

The augmented system (7) is stable if :

XTa QXa +uTRu + V̇ (Xa) < 0 (15)

(Āi + B̄iKi)
T Pi + Pi(Āi + B̄iKi) +Q+KTi RKi < 0 (16)

(ĀiXi+B̄iYi)
T +(ĀiXi+B̄iYi)+XiQXi+Y

T
i RYi < 0 (17)

(ĀiXi + B̄iYi)
T + (ĀiXi + B̄iYi) +Y Ti RYi −Xi(−Q)Xi < 0

(18)
by using the Schur complement procedure, the follow-
ing stability conditions are obtained:

¯(AiXi + B̄iYi)T + (ĀiXi + B̄iYi) Xi Y Ti
∗ −Q̃ 0
∗ ∗ −R̃

 < 0 (19)

where: Q−1 = Q̃, R−1 = R̃, Xi = P −1
i , Ki = YiX

−1
i ,

i = 1, ..., r
This LMIs will be calculated for each sub-model, here
is about the conventional linear quadratic integral con-
trol using the fuzzy model. The control law is not
based on fuzzy rules.

The control law will be respect the physical con-
straints on the control input, where this problem is
studied in many practical cases [20, 21, 22, 23]. To
ensure the stabilization under constraints on the in-
puts, the conditions given in the following theorem
[17] must be verified.

Theorem 2 For a known initial condition Xa(0), the con-
straint ‖u(t)‖2 ≤ η is enforced at all times t ≥ 0 if the
LMIs: [

1 Xa(0)T

Xa(0) X

]
≥ 0 (20)[

X MT
i

Mi η2I

]
≥ 0 (21)

hold

4.3 Observer design

In bioprocess control problems, the state variables are
not usually available. By introducing the observer, one
can reconstruct partially or all the state variables. This
section presents the fuzzy observer design with unmea-
surable premise variables z(t) (hi(z) , hi(ẑ)).
Based on the structure of the fuzzy model (3), the fuzzy
observer is given as follows:

˙̂x(t) =
r∑
i=1
hi(ẑ)(Ai x̂(t) +Biu(t) +Li(y(t)− ŷ(t))

ŷ(t) =
r∑
i=1
hi(ẑ)Ci x̂(t)

(22)
where x̂ denotes the estimated state and Li the gains of
the observer.
In order to compute this gains the following theorem
[24] gives the necessary conditions for ensuring the
convergence of the state estimation error to zero.

Theorem 3 If there exist symmetric and definite positive
matrices P ∈ Rn×n, Q ∈ Rn×n, matrices Yi ∈ Rn×q and a
scalar α > 0 such that:

ATi P + PAi −CT Y Ti −Y
T
i C ≤ −Q (23)[

Q −α2
I P

P I

]
> 0 (24)
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then, the estimation error between the T-S fuzzy model (3)
and the fuzzy observer (22) is converges asymptotically to
zero.
where: Li = P −1Yi .

Proof 1 See Appendix.

5 Process description

The proposed biological process in this paper is a
biomass growth process, which consists to grow the
population of microorganisms (biomass) by the con-
sumption of a substrate (glucose), according to the
following reaction scheme:

k1S
µ(.)
7−→ X (25)

The dynamic model of this process is established from
the mass-balance [25], which describes the evolution of
substrate and biomass concentrations in a continuous
bioreactor. This model can be represented by a high
nonlinear system as follows:dXdt = µ(.)X −DX

dS
dt = −k1µ(.)X +D(Sin − S)

(26)

The state variables are the biomass X and substrate S
concentrations, k1 denotes the pseudo stoichiometric
coefficient and µ(.) represent the specific growth rate,
the ”Monod law” characterizes µ(.) is:

µ(S) = µmax
S

Ks + S
(27)

where µmax is the maximum specific growth rate; Ks is
the Monod or saturation constant. The input variables
are the dilution rate D(t) and the influent substrate
concentration Sin. The parameters of the proposed
model are given in the Table 1.

Parameters Value Unit
µmax 0.38 h−1

Ks 5 g/l
k1 1/0.07
Smaxin 140 g/l

Table 1: Simulation parameters

5.1 Takagi-Sugeno model design

The model (26) must be transformed into affine in con-
trol model like in (1), where the bioprocess models are
known belong to the class of affine nonlinear models,
this can be easily shown by assuming that:

D = D1 +D2

Sin = D2
D1+D2

Smaxin
(28)

where D1(t) and D2(t) are respectively the water and
the substrate dilution rate, then one can replace D(t)

and Sin(t) in (26) by their expressions (28), the follow-
ing affine model is obtained:[

dX
dt
dS
dt

]
=
[
µ(S)X
−k1µ(S)X

]
+
[
−X −X
−S Smaxin − S

][
D1
D2

]
(29)

where:

f (x) =
[
µ(S)X
−k1µ(S)X

]
, g(x) =

[
−X −X
−S Smaxin − S

]
x(t) =

[
X
S

]
and u(t) =

[
D1
D2

]
To build the T-S model, the following nonlinearities
are considered:

z1(x) = µ(S) (30)

z2(x) = X (31)

z3(x) = S (32)

This leads:

A(z) =
[
z1 0
−k1z1 0

]
and B(z) =

[
−z2 −z2
−z3 −z3 + Smaxin

]
where the number of nonlinarities n = 3, the global
model can be represented by r = 2n = 8 sub-models.
The local membership functions are defined by:

F1
1 (z1) = z1−zmin1

zmax1 −zmin1
, F2

1 (z1) = zmax1 −z1

zmax1 −zmin1

F1
2 (z2) = z2−zmin2

zmax2 −zmin2
, F2

2 (z2) = zmax2 −z2

zmax2 −zmin2

F1
3 (z3) = z3−zmin3

zmax3 −zmin3
, F2

3 (z3) = zmax3 −z3

zmax3 −zmin3

Finally, the activation functions are:

h1(z) = F1
1 (z1)F1

2 (z2)F1
3 (z3), h2(z) = F1

1 (z1)F1
2 (z2)F2

3 (z3)
h3(z) = F1

1 (z1)F2
2 (z2)F1

3 (z3), h4(z) = F1
1 (z1)F2

2 (z2)F2
3 (z3)

h5(z) = F2
1 (z1)F1

2 (z2)F1
3 (z3), h6(z) = F1

1 (z1)F1
2 (z2)F2

3 (z3)
h7(z) = F2

1 (z1)F2
2 (z2)F1

3 (z3), h8(z) = F2
1 (z1)F2

2 (z2)F2
3 (z3)

For the simulation, the parameters given in Table 1 are
considered and leads to the following min and max of
premise variables:

0.018 ≤ µ(S) ≤ 0.35
3.8 ≤ X ≤ 20
0.6 ≤ S ≤ 140

the computed matrix Ai and Bi of each sub-model are
given as follows:

A1 = A3 = A5 = A7 =
[

0.3507 0
−5.0106 0

]
A2 = A4 = A6 = A8 =

[
0.0179 0
−0.2551 0

]

B1 = B2 =
[
−20 −20
−140 0

]
,B3 = B4 =

[
−3.8 −3.8
−140 0

]
B5 = B6 =

[
−20 −20
−0.6 139.4

]
,B7 = B8 =

[
−3.8 −3.8
−0.60 139.4

]
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6 Simulation and results

In the first case, all the states variables (substrate and
biomass concentrations) are supposed measurable (i.e.

C =
[
1 0
0 1

]
).

The desired trajectory (Xr and Sr ), which represent re-
spectively of biomass and substrate concentrations are
computed by using the following reference model:

Ẋr = −0.97Xr + 0.97refX
Ṡr = −0.65Sr + 0.65refS

(33)

where refX and refS are the setpoints.

6.1 Tracking control based on state feed-
back

6.1.1 PDC control

The studied bioprocess presents the physical con-
straints on the control as shown in the Table 2

Variables Constraints
Dilution rate h−1 0.01 6D 6 0.38

Influent substrate g/l 60 6 Sin 6 140

Table 2: The control constraints

For a number of active sub-model s = 5 and η =
1.55, the LMIs (10), (20) and (21) are solved by using
the solver SeDuMi in MATLAB toolbox YALMIP, gives
the following gains:

K1 =
[

0.0384 −0.0044 −0.0007 0.0083
−0.2821 0.0064 0.0564 −0.0088

]
K2 =

[
0.0052 −0.0044 −0.0007 0.0083
−0.2472 0.0064 0.0563 −0.0088

]
K3 =

[
0.03470 −0.0044 0.0002 0.0083
−0.2963 0.0064 0.05930 −0.0088

]
K4 =

[
0.0011 −0.0044 0.0002 0.0083
−0.2605 0.0064 0.05910 −0.0088

]
K5 =

[
−0.2149 −0.0010 0.0572 0.0074
−0.0287 0.0044 −0.0014 −0.0083

]
K6 =

[
−0.2480 −0.0010 0.0571 0.0074
0.0060 0.0044 −0.0015 −0.0083

]
K7 =

[
−0.22450 −0.0009 0.0592 0.0074
−0.0371 0.0044 0.0003 −0.0083

]
K8 =

[
−0.25660 −0.0009 0.0590 0.0074
−0.0028 0.0044 0.0003 −0.0083

]

P =


0.0059 −0.0000 −0.0011 0.0000
−0.0000 0.0008 0.0000 −0.0002
−0.0011 0.0000 0.0008 −0.0000
0.0000 −0.0002 −0.0000 0.0008


Q =


7.5254 0.0002 2.9997 −0.0011
0.0002 35.5015 0.0002 0.0002
2.9997 0.0002 23.9724 0.0013
−0.0011 0.0002 0.0013 26.1931



The initial conditions are x0 = (6.6 5.50)T and the
obtained results are shown in Figures 1 and 2, the tra-
jectory tracking is achieved, where the biomass and the
substrate concentrations follow the desired outputs. In
addition, the constraints on the inputs controlD(t) and
Sin(t) are respected.

Figure 1: Evolution of the system outputs

Figure 2: Control inputs D(t) and Sin(t)

6.1.2 LQI control

Solving the LMIs established in (19), (20) and (21) the
obtained weighting matrices are:

R =
[
0.328 0.000
0.000 0.328

]
.10−3

Q =


0.2529 0.0025 −0.0264 −0.0007
0.0025 0.2252 −0.0004 −0.0422
−0.0264 −0.0004 0.1345 0.0015
−0.0007 −0.0422 0.0015 0.1966

 .10−3

The controller gains are:

K1 =
[

0.0202 −0.0081 0.0044 0.0101
−0.0736 0.0128 0.0098 −0.0056

]
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K2 =
[

0.0010 −0.0095 0.0010 0.0105
−0.0368 0.0052 0.0195 −0.0030

]
K3 =

[
0.0317 −0.0095 0.0008 0.0106
−0.2002 0.0039 0.0165 −0.0004

]
K4 =

[
0.0016 −0.0096 0.0002 0.0106
−0.1086 0.0023 0.0271 −0.0005

]
K5 =

[
−0.0247 −0.0003 0.0211 0.004
−0.031 0.0095 −0.0006 −0.009

]
K6 =

[
−0.0345 −0.0050 0.0200 0.0033
−0.0024 0.0096 0.0009 −0.0105

]
K7 =

[
−0.1471 −0.0047 0.0211 0.0035
−0.0369 0.0095 0.0003 −0.0105

]
K8 =

[
−0.1064 −0.0026 0.0274 0.0009
−0.0023 0.0096 0.0003 −0.0107

]
The Figures 3 and 4 show the simulation results using
LQI control, where the controlled outputs variables
achieve the desired outputs, also the constraints on
control are respected.

Figure 3: Evolution of the system outputs

Figure 4: Control inputs D(t) and Sin(t)

The results obtained are comparable or even better
than those obtained using the PDC controller.

6.2 Tracking control based on recon-
structed state feedback

In the practical case, only the substrate concentration
is measured and the biomass is estimated, then the out-
put matrix in (1) becomes C =

[
0 1

]
. For the initial

conditions of system x0 = (4 8)T , the initial condi-
tions of observer x̂0 = (5 7)T and for a scalar α = 0.5,
the following observer gains are obtained:

L1 = L3 = L5 = L7 =
[

5.2458
−1.3202

]
L2 = L4 = L6 = L8 =

[
0.3483
−0.6440

]

Q =

5.655 0.000 −0.000
0.000 4.4141 0.000
−0.00 0.000 6.2045


P =

0.5985 0.0843 0.0000
0.0843 0.6103 0.0000
0.0000 0.0000 0.6103


6.2.1 PDC control

The resolution of the same LMIs in last case gives the
following gains.

K1 =
[

0.0231 −0.0043 0.0067
−0.1294 0.0058 −0.0037

]
K2 =

[
−0.0057 −0.0044 0.0066
−0.1082 0.0058 −0.0033

]
K3 =

[
0.0304 −0.0044 0.0064
−0.1425 0.0058 −0.0027

]
K4 =

[
−0.0038 −0.0045 0.0065
−0.1187 0.0058 −0.0031

]
K5 =

[
−0.0814 −0.0015 0.0094
−0.0336 0.0044 −0.0065

]
K6 =

[
−0.1090 −0.0015 0.0092
−0.0016 0.0044 −0.0064

]
K7 =

[
−0.0857 −0.0018 0.0096
−0.0359 0.0048 −0.0065

]
K8 =

[
−0.1151 −0.0015 0.0094
−0.0036 0.0046 −0.0064

]

P =

 0.0114 −0.0001 −0.0003
−0.0001 0.0010 −0.0002
−0.0003 −0.0002 0.0008


Q =

 0.0114 −0.0001 −0.0003
−0.0001 0.0010 −0.0002
−0.0003 −0.0002 0.0008


The Figure 5 shows a comparison between the con-
trolled variable S, his estimated Ŝ and the desired
output Sr . The obtained result show that S follows
correctly Sr and the observer estimates the states of

www.astesj.com 323

http://www.astesj.com


M. Abyad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 4, 318-326 (2018)

system (Ŝ = S) after 4.33 hours. The Figure 6 presents
the control inputs D(t) and Sin(t), which respect the
constraints.

Figure 5: Evolution of the system outputs

Figure 6: Control inputs D(t) and Sin(t)

6.2.2 LQI control

In this part, we illustrate the obtained results using
LQI control. Solving the LMIs (20), (21), (19) we obtain
the following controller gains and weighting matrices:

R =
[
0.2040 0.0002
0.0002 0.2028

]
.10−3

Q =

 0.1138 0.0012 −0.0009
0.0012 0.1360 −0.0196
−0.0009 −0.0196 0.1072

 .10−3

K1 =
[

0.0000 −0.0043 0.0066
−0.0566 0.0087 −0.0035

]
K2 =

[
0.0015 −0.0076 0.0067
−0.0124 0.0015 −0.0001

]
K3 =

[
0.0182 −0.0072 0.0069
−0.1308 0.0032 −0.0003

]

K4 =
[

0.0017 −0.00760 0.0067
−0.0222 0.0003 0.0002

]
K5 =

[
−0.0130 0.0005 0.0032
−0.0231 0.0071 −0.00560

]
K6 =

[
−0.0105 −0.0017 0.0009
−0.0016 0.0076 −0.0067

]
K7 =

[
−0.0624 −0.0034 0.0027
−0.0327 0.0073 −0.0062

]
K8 =

[
−0.0204 −0.0009 0.0004
−0.0018 0.0076 −0.0067

]

The Figures 7 and 8 present the same variables in the
Figures 5 and 6 using the LQI control. where the ob-
tained results indicate clearly that the desired perfor-
mances can be achieved more better than the results
obtained by PDC control, the Figure 9 shows the state
estimation error of the state variables ( biomass and
substrate concentrations), where this error tends to
zero after 4.33 hours.

Figure 7: Evolution of the system outputs

Figure 8: Control inputs D(t) and Sin(t)
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Figure 9: The sate estimation error

6.3 Comparison of both controllers

The outputs behaviors in the Figures 1, 3, 5, 7, show
that the PDC controller presents some overshoot com-
pared with LQI controller, where the PDC control re-
quires the stabilization of all the different sub-models
cross terms (hi(z) , hj (z)) too, which increases the LMIs
need to be solved. Moreover, in terms of speed, the
comparison shows clearly that the LQI controller is
fast than PDC one. In general, the comparison shows
that the LQI controller presents the best performance.

6.4 Comparison with other methods

Another method of bioprocess control based on neural
network model has been developed in [13], where the
process is controlled via a neural predictive controller
in that case the controller doesn’t refer to a mathemat-
ical model for the process but consider the black box
identification. In our case we are based on the mathe-
matical model for the synthesis of the controller, the
obtained results are satisfactory regarding the result
obtained in [13]. Another work in the same spirit devel-
oped by A. Nikfetrat [14], where the study considers a
predictive controller applied to a biological feed-batch
process without taking into account the constraints on
the input variables and shows an important error in
tracking reference trajectories, where the present work
gave better results.

7 Conclusion

In this paper, the modeling and the control of the
biomass growth process are treated. The objective is
to control and compare two controllers. The nonlinear
model of this process obtained from the mass-balance
is transformed to Takagi-Sugeno fuzzy model, which
represents exactly the original nonlinear model. Then,
a T-S observer is designed to reconstruct the unmeasur-
able state when the premise variables are not measur-
able. To ensure the trajectory tracking two controllers

are tested. The PDC and the linear quadratic control.
The obtained results show that the two controllers are
both effective. Finds that the second controller is more
stable. In addition, the inputs respect the physical con-
straints of the process.
In this study, we only focus on the bioprocess control
in faulty free case, that is why one interesting future
work is to build a fault-tolerant control for this process.

Appendix

The proof of the Theorem 3 is presented here, we con-
sider the following state estimation error:

e(t) = x(t)− x̂(t) (34)

their dynamic becomes:

ė(t) =ẋ(t)− ˙̂x(t)

we take:

M (x, x̂,u) = (
r∑
i=1

hi(z)−
r∑
i=1

hi(ẑ))(Aix+Biu(t)) (35)

the error dynamic then becomes:

ė =
r∑
i=1

hi(ẑ)(Ai −LiC)e(t)+ M (x, x̂,u) (36)

if we assume that the term M (x, x̂,u) satisfies the con-
dition of Lipschitz as follows:

‖ M (x, x̂,u)‖ ≤ α‖x − x̂‖ (37)

to ensure the convergence of (36) , one can consider
the following candidate quadratic Lyapunov function:

V (e(t)) = e(t)T P e(t) (38)

leads to:

V̇ (e(t)) =
r∑
i=1
hi(ẑ)e(t)T ((Ai −LiC)T P + P (Ai −LiC))+

M (x, x̂,u)T P e(t) + e(t)T P M (x, x̂,u)
(39)

Lemma 1 For two real matrices X and Y of appropriate
dimensions, the following inequality is verified:

XT Y +XY T < XTΩ−1X +YΩY T ,Ω > 0

Applying the previews lemma to the term:
M (x, x̂,u)T P e(t) + e(t)T P M (x, x̂,u) , the derivative of
(39) is expressed as:

V̇ (e(t)) ≤ eT (ATi P −C
T LTi P + PAi − P LiC +α2

I+ P P )e
(40)

If there exists a symmetric and positive definite matrix
Q =QT such that:

ATi P −C
T LTi P + PAi − P LiC ≤ −Q (41)
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leads to:
−Q+α2

I+ P P < 0 (42)

Finally, we apply the Schur complement to (42) we
obtain: [

Q −α2
I P

P I

]
> 0 (43)

Then the proof is completed.
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