
Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 5, 1-5 (2018)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Evaluation of Methods for Sentence Similarity for Use in In-
telligent Tutoring System

Emil Brajković*, Daniel Vasić Tomislav Volarić

Faculty of Science and Education, Department of Informatics, University of Mostar, 88 000, Bosnia and Herzegov-
ina

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 04 July, 2018
Accepted: 20 August, 2018
Online: 05 September, 2018

Keywords:
Intelligent Tutoring Systems
Natural Language Processing
Natural Language Generation
Sentence Similarity
Vector Space Models
Tree Edit Distance
Fuzzy Analytic Hierarchy
Process

Finding similarity of textual data is very important task in natural
language processing. In this article we present approach to finding
similarity of words, paragraphs, sentences and documents. Semantic
similarity is one of the central tasks in many applications, including text
summarization, Intelligent Tutoring Systems (ITS) etc. In ITS sentence
similarity is used to compare the student’s response with the correct
answer. The result is used to gain information about student’s level of
knowledge. We propose three different methods that measure text to text
semantic relatedness. There are multiple approaches to finding the right
measure to determine the similarity of the sentences. Some measure the
alignment of characters, and other measure semantic similarity between
sentences. In this work we present and evaluate methods for finding not
just similarity of sentences but even also similarity of whole paragraphs
and documents. We have evaluated these methods using the data from
the Yahoo Question and Answer of the Non-Factual Data Set.

1 Introduction
In this paper we extend our research from[1] where we
presented and evaluated methods for finding similar-
ity between textual data. These methods can be used
inside modules of ITS to evaluate student performance
[2]. ITS systems are computer-based instructional sys-
tems that are composed of four principal models: the
expert model, the learner model, the tutor model and
the interface. Expert model otherwise known as do-
main model is intended as a model that contains all
concepts, rules and problem solving strategies. Ex-
pert model can be used in variety of contexts such as a
source of expert knowledge, students evaluation and
student performance error detection. In this model
components for sentence similarity are very useful.
Student model is an overlay on expert model and is
one of the main components of ITS system. In this
model special attention is directed to students affec-
tive and cognitive state and it’s evaluation through the
learning process [3]. Tutoring model receives the in-
formation from student and domain model. Tutoring
model is an ITS component that makes choices about
tutoring actions and strategies. One of the most im-
portant component of ITS system is communication

module [4]. Main objective of this module is to fill in
the gap between the computer who understands ma-
chine language instructions and user of an ITS system
who understands natural language. Often in commu-
nication module question answering systems are im-
plemented. The student receives the question about
domain knowledge and answers the question in natu-
ral language. It is very important to find robust method
of evaluating the students answer. Students answer to
given question can be full sentence, phrase or even one
word, so this task is not trivial. In general sentence
similarity methods can be divided into two categories
true understanding and text to text methods [5]. Ex-
isting methods for finding sentence similarity work
with very high dimensional data and are not adaptable
for use in ITS systems. This paper focuses directly on
computing the similarity between very short texts. The
focus is on finding true understanding text similarity
for use in student answer evaluation. The structure of
this article includes related work section followed by
Proposed algorithm for sentence similarity and Eval-
uation of proposed methods section. In Related work
section we list all similar works in this field. We also
show how our proposed method differs from other

*Emil Brajković, Matice hrvatske b.b., +38763181014 & emil.brajkovic@fpmoz.sum.ba

www.astesj.com 1
https://dx.doi.org/10.25046/aj030501

http://www.astesj.com
http://www.astesj.com


E. Brajković et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 1-5 (2018)

similar methods. The section Proposed algorithm for
sentence similarity includes couple subsections where
we discuss the implementation of algorithm evaluated
in this article. In the section Evaluation of proposed
methods, we expand our previous evaluation with the
new method explained in this article. In this section
we briefly comment our evaluation methodology and
show our results. In the conclusion we list our conclu-
sions and future work related to this article.

2 Related work

ITS systems that are used in many different fields[3]
could greatly benefit from robust sentence similarity
method. Recent advancements in natural language
processing has contributed many valuable solutions in
finding sentence similarity. This section reviews some
of the solutions addresses the difference between them
and methods proposed in this paper. Overall meth-
ods for finding sentence similarity could be knowledge
based and statistical based. Some of the most pop-
ular statistical based sentence similarity methods is
Latent Semantic Analysis (LSA)[6]. LSA works by ap-
plying Singular Value Decomposition to co-occurrence
matrix that is generated from textual data. Resulting
dense representations of words on which cosine dis-
tance can be used to determine its relatedness. LSA
method can distinguish between highly similar and
dissimilar words but it is insensitive to minor similar-
ities or dissimilarities between word pairs[7]. More
recent knowledge based methods for sentence sim-
ilarity measurement rely on semantic databases to
find distances between concepts from two compared
sentences[8]. These methods relying on the existence
of concepts from sentence inside the semantic database,
word sense disambiguation tool and the algorithm
for finding similarity of two concepts. Another ap-
proach finding sentence similarity are the methods
that are based on word embeddings[9]. These meth-
ods are based on finding dense word representations
that are extracted from hidden layers of neural net-
work. The cosine distance can be used to calculate
word similarity (word that appear in similar contexts
are closer). This distance is very good approximation
of similarity because Word2Vec might find different
sorts of most-similar words. This makes Word2Vec
model very scalable and usable in real world applica-
tions. Word embedding methods are more preferred
over approaches using lexical databases and show bet-
ter results on word similarity evaluation tasks. The
state-of-the-art systems implement hybrid approach
using word embeddings and lexical databases[10]. In
this work we use hybrid approach for finding sentence
similarity using word embeddings and non-projective
tree matching algorithm.

3 Proposed algorithm for sentence
similarity

In this section we provide overview of our algorithm
for sentence similarity that is used for evaluation of

students answers in ITS system. There are several nat-
ural language processing steps that include syntax and
semantic text preprocessing. Such preprocessed text
is used as a structure for our algorithm to find the list
of phrases that are semantically similar. We prepro-
cess the sentence based on its semantic constituents.
Then we build semantic tree of phrases for the two
sentences that are being compared. Global steps for
this approach in sentence similarity finding are:

• Text preprocessing for two sentences for which
we want to find the similarity

• Finding word similarity based on word embed-
dings

• Finding maximum common subgraph based on
association graph

The details of the implementation will be explained
in subsections.

3.1 Text preprocessing

Nodes are lists of words that can be connected to
other words. Globally we can divide nodes into noun
nodes, verb nodes, proposition nodes and adverbial
node. Nodes with multiple words contain main word
which is called head word. Visual representations of
the nodes in sentences are shown in fig. 01.

Figure 1: Parsed sentence using POS tagging algorithm
for English language, node dependency relations and
semantic roles

The words in sentence are segmented into nodes.
These nodes are connected by syntactic and seman-
tic relations that are parsed using CoreNLP[11] and
SENNA[12] tools.

3.2 Finding similarity of words in sen-
tences using word embeddings

To solve the word order problem the idea is to develop
algorithms that will find similarity of two graphs. As
shown in figures above the sentences are actually non
projective trees, there are many algorithms that deal
with tree similarity[13][14]. To find sentence similarity
we need to compare the similarity of nodes in depen-
dency tree of the two sentences. To find the word
similarity, GloVe[15] word embeddings are used. The
GloVe is actually a dictionary with word vector pairing

www.astesj.com 2

http://www.astesj.com


E. Brajković et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 1-5 (2018)

such as Word2Vec[16]. This dictionary is developed
from training a shallow neural network on large text
corpora using co occurrence matrix generated from all
words in corpora, the network is optimized on custom
loss function and 100 dimensional weights that are at
start randomly initialized after the optimization with
SGD algorithm are paired with corresponding words.
Such vector representations are called word embed-
dings and are very popular because the structure and
the way the vectors are obtained give great results for
finding semantically similar words. The similarity of
words can be calculated with cosine distance of two
word vectors. Every word is paired with 100 dimen-
sion real valued vector that is extracted from shallow
layer of neural network. Nodes that are most similar
are paired to so called node pairs. Nodes are paired
with nodes with maximal similarity and similarity is
calculated with algorithm 01.

Data: corresponding sentences G1 and G2
Result: list of edges E and similarities S
while v1 in G1 do

while v2 in G2 do
if similarity(v1, v2) > border then

put v1, v2 into list of edges E;
put sim into list of similarities S;

else
continue the iteration;

end
end

end
Algorithm 1: Algorithm for pairing nodes inside
two sentences

Similarity function is something that can be greatly
improved, its very dependent on the dictionary and
corpora that is trained on, the newer methods for sen-
tence similarity include finding similarities of word
phrases using approaches such as skip-thoughts[17].
For every node word sense disambiguation is applied
in sentence preprocessing step so the concept based
similarities can also be used, but our experiments
showed better results for word embeddings approach
mainly because not all phrases are contained in Word-
Net database[18].

Glove embeddings showed very good results for
finding phrase similarity. Phrase similarity is similar-
ity of multiple words, or in this case nodes. For cal-
culation of phrase similarity we used Word Movers
Distance[19] Finding similar node pairs is process
where borders of similarity are set to exclude the nodes
that have very small similarity or no similarity at all.
Borders are defined based on the word type, our as-
sumption is that if nodes are verbs or nouns the sim-
ilarity should be larger, but if the node is apposition,
proposition, pronoun or something else the border of
similarity should be not that high. The borders are
defined as follows: Verb nodes - 0.80, Noun nodes and
all other node types (pronoun, aposition, proposition)
- 0.60. The similar and paired nodepairs are shown in
fig. 02.

Figure 2: Paired node pairs from two sentences

3.3 Finding maximum common subgraph
of whole sentences based on associa-
tion graph

The next step is to find the maximum complete sub-
graph of two graphs, to do that we use nodes that
are similar. From constructed node pairs we create so
called association graph as defined in [20], all nodes
that are similar are used to generate graph on which
algorithm for finding maximum clique is applied.

Association graph AG The graph product GP (V ;E)
of two graphs G1(V 1;E1) and G2(V 2;E2) is a new
graph defined on the vertex set V = V 1⊗V 2 and the set
of edges E = E1 ⊗E2. The association graph AG(E,V )
defined here is one of the graph products with the
following adjacency conditions. Any e = vivs;vjvt con-
sidered to be adjacent:

• if vi ∈ V1is adjacent to vj ∈ V1 in the original
graph G1 and vs ∈ V2 is adjacent to vt ∈ V2 in the
original graph G2 , or,

• if vi is not adjacent to vj and vs is not adjacent to
vt .

The association graph AG made by the previous def-
inition should have all possibilities of vertex matches
between two initial graphs G1 and G2; namely, a clique
in AG corresponds to a common subgraph between G1
and G2; . Thus, the original problem of obtaining the
largest match of sentences can be reduced to the com-
putational task of searching for the largest clique in
AG, MCL(AG). For given two sentences the association
graph is used for finding maximum clique.

A subgraph subg1 of graph G1 is a new graph ob-
tained from G1 by deleting some edges and vertices’s,
the same applies to subg2.The nodes and vertices’s that
are deleted are those that do not belong to the maxi-
mum clique MCL(AG).

If (node1,node2) < AG, where it is node1 ∈ G1 and
node2 ∈ G2, then node1 and node2 are deleted from
AG.

Subgraph subg1 and subgraph subg2 are maximal
common subgraph MCS. For computing similarity we
experimented with use of the Jaccard coefficient[23]

www.astesj.com 3

http://www.astesj.com


E. Brajković et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 1-5 (2018)

which can be calculated shown in equation (1).

¨JC = (G1,G2) = MCS(G1 +G2)−MCS (1)

This measure is the measure for the similarity of
the sentences, so if we want to get the dissimilarity
measure DM we use the JC and subtract it as follows
DM = 1− JC. We used this measure for evaluation and
comparison with other algorithms.

Data: list of all edges E and sentences G1 and
G2

Result: list of connected edges AG
while E1 in E do

while E2 in E do
if v1 of E1 and v1 of E2 are adjacent in G1
then

if v2 of E1 and v2 of E2 are adjacent in
G2 then

put E1, E1 into list;
else

continue the iteration;
end

else
if v2 of E1 and v2 of E2 are not
adjacent in G2 then

put E1, E1 into list;
else

continue the iteration;
end
continue the iteration;

end
end

end
Algorithm 2: Algorithm for finding association
graph AG

4 Evaluation of proposed methods

Yahoo Non Factoid Question Dataset[24] was used
in evaluation of good vs bad answers. The dataset
contains 87,361 questions and appropriate answers,
from which one of them was marked as the best an-
swer for that question. Each question contains it’s best
answer along with other answers submitted by users.
This dataset contains non-factoid QA, which means it
covers topics beyond factoid question answering, such
as Who is the father of artificial intelligence?.

These answers are somewhat complex and finding
function for similarity is a complex task. The objective
was to find the method that maximizes the function
of dissimilarity of two sentences. Reason for this is
that answers that are labeled as best must be differ-
ent than the other answers, labeled as bad answers.
The evaluation methodology was conducted in three
phases using three algorithms. We evaluated parse
tree, knowledge tree and word vector representations.
In the evaluation phase we define dissimilarity func-
tion as the function where we subtract the similarity
score from maximum score. The parse tree and knowl-
edge tree was traversed using Eulers algorithm and

then Sorensen-Dice[21][22] algorithm was used to de-
termine the similarity of trees. The results of our eval-
uation are shown in table I. We included the results of
new proposed method described in this article. The
resulting number shows the average dissimilarity mea-
sure that is generated by sum of all scores and divided
by number of sentences.

Table 1: Results of two best algorithm evaluation on
whole nf6l dataset

Algorithm Number
of Ques-
tions

Number
of sen-
tences

Result

Knowledge tree
and Dice

5000 29723 74.078

Word2Vec sen-
tence dissimilar-
ity

5000 29723 68.740

New algorithm
sentence dissim-
ilarity

5000 29723 66.120

Knowledge tree
and Dice

10000 61017 74.847

Word2Vec sen-
tence dissimilar-
ity

10000 61017 68.808

New algorithm
sentence dissim-
ilarity

10000 61017 70.234

Knowledge tree
and Dice

87361 638847 76.302

Word2Vec sen-
tence dissimilar-
ity

87361 638847 67.778

New algorithm
sentence dissim-
ilarity

87361 638847 78.453

In our previous work[1] the method that was giving
reasonable results was the knowledge tree approach.
In this algorithm we used the constituency tree which
was traversed using Euler’s path algorithm on and
nodes where compared using WordNet similarity mea-
sure. The new method in measuring sentence similar-
ity has shown even better results for the whole corpus.
Approach given in this work is insensitive to word or-
der and semantically close terms such as synonyms,
hypernyms and other. In table I it is shown that new
algorithm proposed in this work gave the best results
in finding dissimilarity measure between good and
bad answers. In future work we plan to evaluate this
method by standard means of evaluation using some
of the standard tasks for sentence similarity, such as
STS Benchmark[27].

References
[1] D. Vasic, E. Brajkovic, ”Tree and word embedding based sen-

tence similarity for evaluation of good answers in intelligent
tutoring system”, In proceedings SoftCom, 2017.

www.astesj.com 4

http://www.astesj.com


E. Brajković et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 1-5 (2018)

[2] T. Volarić, D. Vasić, E. Brajković Adaptive Tool for Teaching
Programming Using Conceptual Maps. In: Hadźikadić M., Av-
daković S. (eds) Advanced Technologies, Systems, and Applica-
tions. Lecture Notes in Networks and Systems, vol 3. Springer,
2017.

[3] S.R.D. Santos, J.L.M. Amaral, J.F.M. Amaral, ”Adaptive Intel-
ligent Systems applied to two-wheeled robot and the effect of
different terrains on performance”, Advances in Science, Tech-
nology and Engineering Systems Journal, vol. 2, no. 1, pp. 1-5
(2017)

[4] R. Nkambou, J Bourdeau, R. Mizoguchi, Advances in Intelli-
gent Tutoring Systems, Springer-Link, 2010.

[5] V. Rus, M. Lintean, A. C. Graesser, D. S. McNamara, Text-to-
text similarity of sentences, Applied Natural Language Process-
ing: Identification, Investigation and Resolution, 2011.

[6] C. Papadimitriou, H. Tamaki, P. Raghavan, P. Raghavan, S. Vem-
pala, ”Latent Semantic Indexing: A Probabilistic Analysis”,
In proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 1998,
pp. 159–168.

[7] S. Simmons, Z. Estes, ”Using Latent Semantic Analysis to Esti-
mate Similarity”, In proceedings The 28th Annual Conference
of the Cognitive Science Society, 2006.

[8] A. Pawar, V. Mago, ”Calculating the similarity between words
and sentences using a lexical database and corpus statistics”,
IEEE transactions on knowledge and data engineering, 2018.

[9] M. Tomas, I. Sutskever, K. Chen, G. Corrado, J. Dean, ”Dis-
tributed Representations of Words and Phrases and their Com-
positionality”, 2013.

[10] R. Speer, J. Chin, C. Havasi, ”ConceptNet 5.5: An Open Multi-
lingual Graph of General Knowledge”, In proceedings AAAI
Conference on Artificial Intelligence, 2017,

[11] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, The Stanford CoreNLP Natural Language
Processing Toolkit, in Association for Computational Linguis-
tics (ACL) System Demonstrations, 2014, pp. 5560.

[12] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu
and P. Kuksa. ”Natural Language Processing (Almost) from
Scratch”, Journal of Machine Learning Research (JMLR), 2011.

[13] P. Bille. Asurvey on tree edit distance and related problems. In
Theory of Computer Science, 2004., pp. 217–239.

[14] R. Yang, P. Kalnis, A. K. H. Tung, ”Similarity Evaluation on
Tree-structured Data”, In proceedings of 2005 in SIGMOD
Conference, 2005.

[15] J. Pennington, R. Socher, C. D. Manning, ”GloVe: Global Vec-
tors for Word Representation”, Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1532–1543.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estima-
tion of Word Representations in Vector Space, Jan. 2013.

[17] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R.
Urtasun S. Fidler, ”Skip-Thought Vectors”, CoRR, 2015.

[18] C. Fellbaum, ”WordNet: An Electronic Lexical Database”, Cam-
bridge, MA: MIT Press, 1998.

[19] M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, ”From
Word Embeddings To Document Distances”,In Proceedings of
the 32nd International Conference on International Conference
on Machine Learning, 2015.

[20] M. Hattori,Y. Okuno ,S. Goto, M. Kanehisa, ”Genome informat-
ics. International”, In proceedings of Conference on Genome
Informatics, 2003.

[21] L. R. Dice, Measures of the Amount of Ecologic Association
Between Species, Ecology, vol. 26, no. 3, 1945.

[22] T. Sorensen, A method of establishing groups of equal ampli-
tude in plant sociology based on similarity of species and its
application to analyses of the vegetation on Danish commons,
Biol. Skr., vol. 5, 1948.

[23] P. Jaccard, ”Jaccard coefficient similarity”, New Phytologist vol.
11, 1912 pp. 37–50

[24] S. Harding, nfL6: Yahoo Non-Factoid Question Dataset. [On-
line]. Available: https://ciir.cs.umass.edu/downloads/nfL6/.
[Accessed: 19-May-2017].

[25] D. Y. Chang, Applications of the extent analysis method on
fuzzy AHP, Eur. J. Oper. Res., vol. 95, no. 3, pp. 649655, 1996.

[26] C.-L. Hwang and K. Yoon, The Technique for Order of Prefer-
ence by Similarity to Ideal Solution. Berlin, Germany: Springer-
Verlag Berlin Heidelberg, 1981.

[27] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia
(2017) ”SemEval-2017 Task 1: Semantic Textual Similarity Mul-
tilingual and Cross-lingual Focused Evaluation Proceedings
of the 10th International Workshop on Semantic Evaluation”,
2017.

[28] T. Landauer, P. Foltz, and D. Laham, An Introduction to Latent
Semantic Analysis, Discourse Process., no. 25, 1998.

www.astesj.com 5

http://www.astesj.com

	Introduction
	Related work
	Proposed algorithm for sentence similarity
	Text preprocessing
	Finding similarity of words in sentences using word embeddings
	Finding maximum common subgraph of whole sentences based on association graph

	Evaluation of proposed methods

