Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 36-44 (2018)

www.astesj.com

ASTESJ ISSN: 2415-6698

Special Issue on Multidisciplinary Sciences and Engineering

On The Development of a Reliable Gate Stack for Future Technology Nodes Based on III-V Materials

Abhitosh Vais^{1,*}, Sonja Sioncke¹, Jacopo Franco¹, Vamsi Putcha^{1,2}, Laura Nyns¹, Arturo Sibaja-Hernandez¹, Rita Rooyackers¹, Sergio Calderon Ardila², Valentina Spampinato¹, Alexis Franquet¹, Jan Maes³, Qi Xie³, Michael Givens⁴, Fu Tang⁴, Xiang Jiang⁴, Marc Heyns^{1,2}, Dimitri Linten¹, Jerome Mitard¹, Aaron Thean⁵, Dan Mocuta¹ and Nadine Collaert¹

¹IMEC, Kapeldreef 75, 3001 Leuven, Belgium

²ESAT department, KU Leuven, 3000 Leuven, Belgium

³ASM Belgium, Kapeldreef 75, 3001 Leuven, Belgium

⁴ASM America, Phoenix, AZ 85034, USA

⁵Department of Electrical and Computer Engineering, NUS, 117546 Singapore

ARTICLE INFO

Article history: Received: 29 May, 2018 Accepted: 02 July, 2018 Online: 15 September, 2018

Keywords: InGaAs III-V passivation III-V reliability III-V MOSFET High-к oxides Oxide defects

ABSTRACT

In this work, we discuss how the insertion of a LaSiO_x layer in between an in-house IL passivation layer and the high-k has moved the III-V gate stack into the target window for future technology nodes. The insertion of this LaSiO_x layer in the gate stack has reduced the D_{it} and N_{bt} below the target level of $5x10^{11}$ /eV.cm² and $3x10^{10}$ /cm² (target at 10 years operation: ΔV_{fb} <30mV at 125°C) respectively. From physical analysis, it was found that LaSiO_x can stabilize the interaction of the IL layer with the InGaAs substrate. An implant free In_{0.53}Ga_{0.47}As n-MOSFET was fabricated with this gate stack and for the first time, a III-V gate stack meets the reliability target for advanced technology nodes with a max operating V_{ov} of 0.6 V. In addition, an excellent electron mobility ($\mu_{eff,peak}$ =3531 cm²/V-s), low SS_{lin}=71 mV/dec and an EOT of 1.15 nm were obtained. We also report the scaling potential of this stack to 1 nm EOT without any loss in performance, reliability and further reduction of the sub-threshold swing (SS_{lin}=68 mV/dec).

1. Introduction

III-V compound semiconductors have already been widely investigated as an alternative material to Silicon for future Metal -Oxide-Semiconductor Field Effect Transistors (MOS-FETs). MOS devices based on III-V compound semiconductor materials like InGaAs, with excellent performance, have been demonstrated on both 2-inch InP substrates and on a 300mm Si platform [1-5]. But, in order to become a commercially viable alternative to existing Si technologies, two major issues are yet to be solved: 1) the defective interface between III-V materials and the high-k oxide layers, and 2) the high density of defects in the most commonly investigated high-k oxides, Al₂O₃ and HfO₂.

Both of these issues have been shown to affect almost every aspect of device performance, such as the capacitance [6-11],

reliability of III-V based devices [11-14], on-state electrical parameters like mobility [15], and trans-conductance [16, 17]. As a result, it becomes extremely important to reduce their impact in order to make commercial III-V MOSFET technology a reality. In this regard, the use of a new IL layer in combination with an Al₂O₃/HfO₂ or just HfO₂ stack was reported, showing improved performance and a significant reduction of the oxide traps. However, with the requirement of a thin Al₂O₃ layer for gate stack thermal stability and due to the wide defect distribution in Al₂O₃, the total density of charging oxide traps was still higher than the target (10 years reliability target: flat-band voltage shift, $\Delta V_{fb} < 30$ mV at 125°C. Assuming a typical time power law exponent of 0.13, the failure criterion projects effective density of charged defects, ΔN_{eff} to $< 3x10^{10}/\text{cm}^2$ at operating field, for an Effective Oxide Thickness (EOT) of 1 nm [18, 19]).

This paper is an extension of the work presented in *IEEE* Symposium on VLSI Technology 2017. In this paper, we demonstrate and comprehensively discuss on the process of replacing Al₂O₃ in the IL/Al₂O₃/HfO₂ gate stack with LaSiO_x. Furthermore, we elaborate on the improvements, thereof, in the interface properties and reliability for operation at V_{DD}=0.8 V, which exceeds the operating target for future technology nodes without any loss in the electrical performance of the MOSFET device reported earlier.

2. Experimental details

Capacitors were made starting from an MBE grown 300 nm ntype In_{0.53}Ga_{0.47}As on 2-inch n-type InP substrates. The targeted Si doping in the In_{0.53}Ga_{0.47}As grown layer was ~1x10¹⁷ at/cm³. Prior to the gate stack deposition, the substrates were cleaned in a 2M HCl solution for 5 min at room temperature and subsequently rinsed in de-ionized water. H₂S pretreatment and deposition of the IL (Inter Layer), LaSiO_x, Al₂O₃ and HfO₂ were done in an ASM Pulsar® 3000 ALD reactor. The H₂S pretreatment is done in-situ prior to the high-k deposition. The IL used here is an ALD based layer with a κ -value ~6. The H₂S treatment and IL film deposition are both done at 250°C. Al₂O₃ and HfO₂ were deposited by ALD TMA/H₂O and HfCl₄/H₂O at 300°C. LaSiO_x is deposited by an ALD process at 250°C using the following precursors: LoLaPrime® (AIR Liquide), SiCl₄, H₂O. A 42% La concentration in the LaSiO_x is obtained by using a La:Si pulse ratio of 1:5. A full ALD cycle consists of : [[SiCl₄/purge/H2O/purge] x 5 + [LolaPrime/purge/H2O/purge] x 1] x n. Under these conditions, a GPC of 0.1754 nm is achieved.

Dot capacitors were fabricated by sputtering 80 nm TiN using physical vapor deposition (PVD). A dry-etch process was used to etch the metal gate. An anneal in forming gas ($10\% H_2/N_2$) was done prior to metal deposition (PDA) or post metal deposition (PMA) at 400°C for 5 min.

Implant-free quantum-well devices were also fabricated to study the impact of these passivation schemes on the device performance and reliability. A schematic diagram of the quantumwell MOSFET is shown in Fig.1. The stack for MOSFETs consists of a 15 nm un-intentionally doped $In_{0.53}Ga_{0.47}As$ channel layer, a 3 nm InP etch stop layer and a 50 nm n+ $In_{0.53}Ga_{0.47}As$ (Si-doped, $1x10^{19}$ cm⁻³) layer, all grown on a 2-inch semi-insulating InP substrate. Fig. 2 describes the process flow used in this work. The detailed device fabrication can be found in [20]. Prior to gate stack deposition, a digital etch (cycles of HCl and H_2O_2) was used to clean and smoothen the InGaAs channel surface. The different gate stacks that were studied are depicted in Table I.

I-V and C-V measurements were used to study the impact of the gate stack on the performance of the devices. I-V measurements were carried out using HP4156 parameter analyzer and C-V measurements were performed using a HP4284A-LCR meter. The interface defect density, D_{it}, is extracted using the conductance method from the parallel equivalent conductance G_p [21] at room temperature. The amount of oxide traps (ΔN_{eff}) are measured by C-V hysteresis measurements (forward and reverse sweep of the gate voltage) at different maximum stress voltages and the corresponding shift in flat band voltage, ΔV_{fb} , measured between the forward and backward trace is converted into a sheet charge (ΔN_{eff} (E_{ox})). The flat-band voltage is the gate voltage www.astesj.com corresponding to an inflection point in the double derivative of the normalized capacitance-voltage data at a frequency of 100 kHz [21,22]. The ΔN_{eff} at target field as well as the voltage acceleration

Figure. 1. Schematic representation of the MOSFET device (Dimensions are not to scale).

Mesa isolation by wet etching
SiO_2 hard mask deposition
Gate opening in SiO_2
Gate recess by wet etching
Surface preparation using optimized digital etch
process
Gate stack deposition
PVD TiN deposition and gate patterning by RIE
PVD Mo/Al S/D contact by lift-off
Post Metal anneal (PMA)

Figure 2. Process flow used in this work for MOSFET fabrication.

Table 1: Split table of III-V gate stacks

Sample ID	Dielectric
Ref	3 nm HfO ₂
А	1 nm IL/3 nm HfO ₂
A'	$0.5 \text{ nm IL/3 nm HfO}_2$
В	1 nm IL/1 nm $Al_2O_3/3$ nm HfO_2
B'	1 nm IL/0.2 nm $Al_2O_3/3$ nm HfO_2
С	1 nm IL/1 nm LaSiO _x /3 nm HfO ₂
C'	1 nm $\text{LaSiO}_x/3$ nm HfO_2

factor (γ , i.e. the slope of the log-log plot of ΔN_{eff} vs E_{ox}) is reported as a figure of merit to study the oxide trap behavior [23]. Although this method does not take into account the influence of stress temperature and stress time into account, it helps in identifying the trends between different gate stack/pretreatments. Bias temperature instability (BTI) characterization using extended Measure-Stress-Measure (eMSM) technique was used to evaluate the reliability of the MOSFET devices [23]. Finally, Time-Of-Flight Secondary Ion Mass Spectrometry (TOFSIMS) was used to study the chemistry of the stacks.

Figure 3. Measured RT CV's of gate stacks a) 'ref', b) A and c) B' described in Table I at 31 frequencies between 1kHz and 1MHz. The MOSCAP devices received a PDA at 400°C, 5' in Forming gas.

3. Results and discussion

3.1. The IL layer development and thermal stability

Fig. 3 shows the multi-frequency (1 kHz - 1 MHz) C-V for various samples in the split table of Table I, measured at room temperature. The reduction in the D_{it} bump and in frequency dispersion when inserting the IL (3-A,B') between the InGaAs channel and the HfO₂ layer clearly shows the improvement. Fig. 4 shows the result of the extraction of various electrical parameters from the measured C-V data. The extracted mid-gap D_{it} drops by more than a factor of 2 when inserting the IL accompanied with a negative flat band voltage, V_{fb} , shift (Fig. 4a,b). An H₂S treatment prior to the HfO₂ deposition has a similar effect: it reduces the D_{it}

and shifts the V_{fb} by -0.15 V. Compared to an H₂S treatment, the insertion of 1 nm of the IL layer shifts the V_{fb} to even more negative values and a larger reduction in D_{it} is observed. In addition, the IL layer reduces the ΔN_{eff} by 1 order of magnitude and increases the γ -value to 2.5. Although 0.5 nm of the IL layer shows similar trends, an optimum is reached when using 1nm of the IL layer. This result suggests that 1 nm of IL is needed to form a closed layer passivating the interface. When adding a thin (0.2 nm) Al₂O₃ cap on top of the IL layer, the D_{it} bump and frequency dispersion increase slightly (Fig. 3-B'). One can also observe that the V_{fb} shifts to more positive values and this goes hand in hand with a slight increase in ΔN_{eff} and reduction of the γ value. From these observations, a hypothesis can be put forward. Fig. 5 depicts

Figure 4. Electrical parameters extracted for gate stacks 'ref', A, A', B' described in Table I. a) Midgap D_{it} extracted from RT CV's. b) V_{tb} c) ΔN_{eff} extracted from RT CV hysteresis by converting the measured ΔV_{tb} into an effective charge sheet at the interface by: $\Delta N_{eff}=\Delta V_{tb}*C_{ox}/q$, and reported at charging equivalent field of 3.5 MV/cm [13]. V_{start} condition was taken at V_g =-1.5V. d) Field acceleration exponent, γ , i.e. the slope of the log-log plot ΔN_{eff} vs oxide field which is a measure of the misalignment between the channel carrier energy-i.e. InGaAs E_{f^-} and defect levels in the high-*k*. Filled bars represent the data after PDA, shaded bars represent the data after PMA.

Figure 5. Defect band model to explain the observed changes in the γ value and total amount of charged oxide traps at a given field. The IL passivation layer is creating a dipole shifting the misalignment between InGaAs E_f and defect levels in the high- κ . In Al₂O₃ a partial overlap between deep and shallow traps is existing [9] and an almost uniform defect band is present. Therefore, the dipole created is not as effective as compared to the situation where deep and shallow traps are well separated as is proposed for the stack with HfO₂.

a cartoon of a possible explanation. Defect band modeling [24,25] has shown that although peak defect densities in Al₂O₃ are lower, a partial overlap of the defect bands induces an almost uniform distribution of defect levels around the InGaAs conduction band edge, E_c . On the contrary, HfO₂ on InGaAs shows a minimum defect density slightly below the channel E_c (~0.2 eV below E_c), which can be exploited for improving gate stack reliability by introducing an interface dipole. The assumption is that the IL layer gives rise to such a dipole shifting the defect levels up with respect to the InGaAs E_c and shifting the minimum level into the device operating range. However, dipole engineering is not effective when a broad defect band without a clear minimum is present as is the case with Al_2O_3 .

From the results shown till now, one can conclude that the 1 nm IL/3 nm HfO₂ stack shows an optimum for all electrical parameters although the D_{it} and N_{bt} levels are still above the targeted values (5 x 10¹¹/eV.cm² and 3 x 10¹⁰/cm² respectively). However, when applying a PMA, we observe that the 1 nm IL/3 nm HfO₂ stacks degrades slightly i.e. a D_{it}, ΔN_{eff} increase and a reduction in the gamma value is observed in combination with a positive V_{fb} shift (Fig. 4-shaded bars). On the contrary, the stack with the Al₂O₃ cap does not degrade when a PMA is added. This result implies that although the initial gate stack properties are degraded when adding an Al₂O₃ cap, this cap can help in stabilizing the gate stack upon a PMA.

In conclusion, the IL approach provides an improved interface quality and increases the misalignment between the InGaAs channel E_f and the defect bands in the high- κ . The improved interface quality was proven to increase the performance of

InGaAs MOS devices on both planar as well as nanowire architectures. However, the introduction of a cap layer is needed to provide a good thermal stability. Although Al_2O_3 can provide a higher stability for thermal processing, the unfavorable defect band distribution in the Al_2O_3 does not allow for dipole engineering. In the next part, we show that a $LaSiO_x$ cap can provide both an improved thermal stability and a more favorable defect band distribution.

3.2. Replacement of Al_2O_3 stabilization cap by $LaSiO_x$

Fig. 6 shows the multi-frequency C-V for various gate stacks in Table I and demonstrates the impact of the insertion of LaSiO_x between the IL passivation and HfO₂. All the dot capacitors were measured after PMA at 400°C in forming gas anneal for 5 minutes. Although the CV's from the 1 nm IL/3 nm HfO₂ stack (Fig. 6A) and the 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ stack (Fig. 6C) look similar, one can notice that the frequency dispersion is further reduced when LaSiO_x is inserted between the IL and HfO₂. As was discussed in the previous section, an Al₂O₃ cap degrades the gate stack properties slightly. Although the difference between the stacks with the IL are subtle, a large difference can be observed when the IL is removed (Fig. 6C'). These results imply that both the IL and the LaSiO_x cap are needed to optimize the gate stack properties.

The D_{it} , extracted at mid gap, and capacitance equivalent thickness (CET) are shown in fig. 7. The insertion of the IL (A) reduces the mid gap D_{it} as was already reported in the previous section. The replacement of Al_2O_3 (B) by $LaSiO_x$ (C) further reduces the D_{it} and a reduction of the CET is also observed (CET=1.55 nm, EOT=1.15 nm). In addition, the total density of charging oxide traps drops to a value close to 1 x 10¹⁰ /cm² at E_{ox}

Figure 7: Mid gap D_{it} (bars) and CET (dots) extracted from the C-V data presented in fig. 6. Replacement of Al₂O₃ (B) by LaSiO_x (C) reduces the D_{it} to less than 4 x 10^{11} /cm²eV. The CET drops to 1.55 nm.

Figure 6. RT MF-CV's measured from dot capacitors of A) 1 nm IL/3 nm HfO₂, B) 1 nm IL/1 nm Al₂O₃/3 nm HfO₂, C) 1 nm IL/1 nm LaSiO_x/3 nm HfO₂, C') 1 nm LaSiO_x/3 nm HfO₂. Frequencies between 1 kHz-1 MHz (red-blue) were measured with logarithmic spacing. All capacitors received a PMA in forming gas for 5 minutes.

Figure 8: ΔN_{eff} (bars, left axis) extracted from C-V hysteresis ($V_{start}=V_{fb}$ -0.5 V) by converting the measured ΔV_{fb} into an effective charge sheet at the interface by: $\Delta N_{eff}=\Delta V_{fb}*C_{ox}/q$, and reported at charging equivalent field of 3.5 MV/cm [6]. Field acceleration exponent, γ , (dots, right axis) i.e. the slope of the log-log plot ΔN_{eff} vs oxide field which is a measure of the misalignment between channel carrier energy-i.e. InGaAs E_f and defect levels in the high-k [18].

= 3.5 MV/cm (Fig. 8) meeting the target for 10 years operation (10 years reliability criterion: $\Delta V_{\rm fb} < 30$ mV at 125°C. Assuming a typical time power law exponent of 0.13, the failure criterion projects $\Delta N_{\rm eff}$ to less than 3 x 10¹⁰ /cm² at operating field, for an EOT of 1 nm). The reduction of oxide traps below the target level is the result of the combination of the IL layer and LaSiO_x cap: while the IL layer increases the field dependence of the $\Delta N_{\rm eff}$ ($\gamma \sim$ 3.5), which is beneficial only for low voltage operation, the LaSiO_x cap consistently reduces the density of charging defects irrespective of the operating voltage.

Fig. 9 shows the forward and backward sweep of gate voltage for the C-V hysteresis measured at different V_{max} for 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ stack. At low overdrive voltages, the hysteresis is negligible. Only at higher overdrive voltages, a clear hysteresis can be measured. Notice also that the starting voltage for these measurements was carefully chosen at V_{fb}- 0.5 V. As was reported in [25], the C-V hysteresis measurements can largely depend on the V_{start} condition, as is also the case for gate stack under evaluation (Fig. 10). The more negative V_{start} condition reflects the discharging of deep traps that can take place during OFF-state, when the device is biased deep into the depletion and is an equally important criterion to take into account. Measuring at V_{start}=V_{fb}-0.5 V shows that oxide trap densities are within target. Starting from a more negative V_g, the oxide trap density increases and γ decreases. This observation indicates that this gate stack has a low

Figure 10: ΔN_{eff} as a function of applied E_{ox} for the stack with 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ for 2 different V_{start} conditions. V_{start}=-1.5V and V_{start}=V_{tb}-0.5V. The large dependence on the V_{start} conditions points to the presence of deep traps i.e. located at energies below InGaAs E_f at flatband.

amount of electron traps, but a more negative V_{start} charges hole traps, thereby increasing the total amount of traps during the measurement and decreasing the voltage dependence.

Therefore, BTI measurements were performed at both positive and negative stress conditions to capture the max V_{ov} for both stress conditions (Fig. 11). From these CV-BTI measurements, one can see that the 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ stack meets the

Figure 11: Max V_{ov} measured from positive and negative CV-BTI on MOS capacitors. For a target V_{DD} =0.8V, the max pos V_{ov} target (full line) is 0.53V and the max neg V_{ov} target (dashed line) is -0.26V (i.e. 1/3*V_{DD}).

Figure 9. 100 kHz CV up and down traces of the 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ gate stack measured at 3 different V_{max}. V_{start} was V_{tb}-0.5V.

Figure 12. TOFSIMS positive ion profiles from MOSCAPs of stacks a) A, b) B and c) C from Table I. All layers are aligned at the peak of the IL atom profile.

max V_{ov} target (for a V_{DD}=0.8 V) for both stress conditions. When removing the IL layer, none of the targets are met. As III-V materials will be introduced in technologies operating at V_{DD}=0.5V and resulting target V_{ov}=0.33 V (=2/3*V_{DD}), this implies that these MOSCAP In_{0.53}Ga_{0.47}As devices with the 1 nm IL/1 nm LaSiO_x/3 nm HfO₂ gate stack surpass the IIIV reliability requirements.

Stabilization of the IL by the Al_2O_3 or $LaSiO_x$ cap is confirmed from the TOFSIMS profiles measured on dot capacitors that received a PMA (Fig. 12). These profiles show the mixing of the Al atoms (from the Al_2O_3) or La atoms (from the $LaSiO_x$) with the IL. Diffusion of the IL atoms down into the InGaAs substrate is clearly present if no cap layer is deposited between IL and the HfO₂ (Fig. 12a). When an Al_2O_3 or $LaSiO_x$ cap is added on top of the IL (Figs. 12b and 12c), a steep slope of the IL elements down into the substrate is observed. The hypothesis is that the mixing of the Al or La atoms with the IL atoms is increasing the stability of the IL. Although the chemistry from both Al_2O_3 and $LaSiO_x$ cap layers can provide stabilization of the interaction of the IL with the substrate, the electrical characteristics of the $LaSiO_x$ cap are more favorable.

Modeling of the shallow and deep defect bands using the approach as described in [26], was done and explains the effect of the LaSiO_x cap (Fig. 13). The introduction of the IL layer narrows the distribution of the shallow defect band as well as shifts the mean energy of that band to shallower energies. Adding LaSiO_x in between the IL and HfO₂ further reduces the charging defect density. This reduction can be attributed to the stabilization that is provided by the LaSiO_x cap.

3.3. MOSFET device characteristics

Figs. 14 and 15 show the I_{ds} - V_{gs} and g_m - V_{gs} curves of the devices fabricated with stacks B (Al₂O₃ cap) and C (LaSiO_x cap). Excellent device characteristics in the form of high I_{on}/I_{off} ratio (> $2x10^6$, > $8x10^5$ at V_{ds} =0.05 V and 0.5 V respectively) and low SS_{lin} (< 75 mV/dec) were extracted for both the gate stacks. The device characteristics for stacks B, C, C', and C'' are given in Fig. 16 and 17. The on-state current increases (Fig. 16a and b) and the SS_{lin} decreases (Fig. 17) when Al₂O₃ (B) is replaced by LaSiO_x (C) between the IL layer and HfO₂. When scaling the HfO₂ to 2 nm (C''), a CET of 1.46 nm (EOT of 1.06 nm) is achieved with a

Figure 13: Defect density profile obtained by modeling the ΔV_{th} vs V_{gate} as described in [25]. Insertion of the IL layer causes narrowing of the shallow defect band, thus enhancing γ and shifting the mean defect level of this band to shallower energy [19] but increases the density of defects at deeper energies. Insertion of LaSiO_x consistently reduces the total defect density (both shallow and deep energies).

further improvement in the on-characteristics, and with a reduction in the SS_{lin} to 68 mV/dec. Note that the stack without the IL layer (1 nm LaSiO_x/3 nm HfO₂ stack only, C'), exhibits high on-current compared to the stack with the 1 nm IL/1 nm Al₂O₃/3 nm HfO₂ but

Figure 14: I_{ds} -V_{gs} for L_g=10 µm, W=100 µm device.

Figure 15: G_m-V_{gs} for L_g=10µm, W=100µm device.

Figure 16: I_{on} extracted at V_t+0.5V and for V_{ds}=0.05V (a) and V_{ds}=0.5V (b), W of the devices = 100µm, Lg=10µm. Replacement of Al₂O₃ (B) by LaSiO_x (C) in the gate stack improves I_{on} . Further improvement can be seen when the gate stack is scaled down (C").

also a high SS_{lin} reflecting a higher mid gap D_{it} extracted from the MOS capacitor C-V's (Fig. 7 and 8). Only slight changes in V_{th_in} (~50 mV) are observed when changing the stabilization cap (Fig. 18).

The mobility data (Fig. 19) reveal that while the dominant

Fig. 17 SS_{lin} for various gate stacks. Lg=50 $\mu m.$ SS_{lin} reduces by replacing Al₂O₃ (B) with LaSiO_x (C) in the gate stack. Scaling the HfO₂ (C'') thickness leads to further reduction.

Figure 18 V_{t, lin} for various gate stacks. L_g=50 μ m. Slight Vt_{lin} reduction by replacing Al₂O₃ (B) with LaSiO_x (C) in the gate stack is observed.

impact of insertion of the IL layer is on the peak mobility (μ_{eff} at peak = 3531 cm²/V.s), the replacement of the Al₂O₃ by LaSiO_x increases the electron mobility at high charge carrier density.

Figure 19 Improvement in the mobility at low N_s (due to the introduction of IL) and high N_s (as a result of replacement of Al_2O_3 with $LaSiO_x$). Mobility was extracted from L_g =50 μ m devices.

This observation suggests a reduction in the roughness using LaSiO_x in the gate stack instead of Al₂O₃. In addition, BTI measurements on MOSFETs confirm the good reliability observed on simple MOS capacitor structures. ΔN_{eff} and γ values were extracted under both positive and negative stress conditions (Fig. 20). Under both stress conditions, we can observe a reduction of ΔN_{eff} when adding the IL layer and further reduction is achieved by insertion of the LaSiO_x cap. In parallel, the value of γ increases when adding the IL layer but levels off when inserting the LaSiO_x. This confirms both the

Figure 20 ΔN_{eff} and γ extracted from BTI measurements on MOSFETs applying both positive and negative stress conditions. The data from MOSFETs confirm the trends observed on MOSCAPs.

observation in measurement data and modeling results from the MOSCAP data i.e. the IL layer provides the misalignment between the defect levels in the high- κ and the InGaAs E_f while the LaSiO_x reduced the total charging oxide defects. At negative stress conditions, the differences are less pronounced.

The extrapolated max V_{ov} and V_{un} at 10 years are shown in Fig. 21. Benchmarking the max V_{ov} of the newly proposed gate stack against Si gate stacks (Fig. 22) shows that by using the optimized gate stack III-V devices can meet even the more stringent reliability targets used for a scaled Si technology.

Figure 22. Max. operating overdrive voltage as a function of CET for various gate stacks on Si (p- and n-MOS) and InGaAs. The devices with the IL/LaSiO_x/HfO₂ gate stack surpass the relability target for III-V semiconductor based technology.

4. Conclusions

We have shown in this work the improved interface and reliability properties of the IL layer. A D_{it} and ΔN_{eff} reduction are accompanied with a negative V_{fb} shift and an increase in the value of γ . This suggests the formation of an interface dipole. When a favorable defect band distribution is present as is the case for HfO₂, dipole engineering can be applied to misalign the defect band with the InGaAs channel E_{f} . However, the thermal stability of this stack is limited and a severe intermixing of the IL layer with the InGaAs substrate at typical thermal budget of a IIIV gate stack, degrades the initial improvement seen from the IL layer.

A cap is needed to stabilize this interaction and both Al_2O_3 and $LaSiO_x$ can act as a stabilization layer by La or Al mixing with the IL-layer atoms. While the physical properties are very similar, the electrical properties in terms of oxide traps are very different. The different behavior can be explained by the presence of a broad defect band in Al_2O_3 making this cap layer not suitable for dipole engineering. On the other hand, $LaSiO_x$ shows a more favorable defect band distribution and a further reduction of the oxide defects is observed. In addition, the interface properties are improved and low CET (~1.5 nm) was maintained.

Excellent device characteristics were demonstrated combining the IL passivation layer with the bi-layer stack consisting of 1 nm LaSiO_x/3 nm HfO₂. III-V devices with record mobility and record reliability performance at scaled EOT were demonstrated. In addition, we show that this stack can be further scaled down to 1 nm EOT without loss of performance or reliability.

Conflict of Interest

The authors declare no conflict of interest.

References

 S. Sioncke, J. Franco, A. Vais, V. Putcha, L. Nyns, A. Sibaja-Hernandez, R. Rooyackers, S. Calderon Ardila, V. Spampinato, A. Franquet, J.W. Maes, Q.Xie, M.Givens, F. Tang, X. Jiang, M. Heyns, D. Linten, J. Mitard, A. Thean, D. Mocuta and N. Collaert, "First demonstration of \sim 3500 cm²/V-s electron mobility and sufficient BTI reliability (max V_{ov} up to 0.6 V) In_{0.53}Ga_{0.47}As nFET using an IL/LaSiO_x/HfO₂ gate stack", in IEEE Symposium on VLSI Technology 2017, pp. T38-T39, 2017. https://doi.org/10.23919/VLSIT.2017.7998192

- [2] A. Vais, A. Alian, L. Nyns, J. Franco, S. Sioncke, V. Putcha H. Yu, Y. Mols, R. Rooyackers, D. Lin, J.W. Maes, Q. Xie, M. Givens, F. Tang, X. Jiang, A. Mocuta, N. Collaert, K. De Meyer, A. Thean, "Record mobility (μ_{eff}~ 3100 cm²/Vs) and reliability performance (V_{ov}~ 0.5 V for 10yr operation) of In_{0.53}Ga_{0.47}As MOS devices using improved surface preparation and a novel interfacial layer" in IEEE Symposium on VLSI Technology, pp. 140-141. 2016. https://doi.org/10.1109/VLSIT.2016.7573410
- [3] C. B. Zota, F. Lindelöw, L.-E. Wernersson, and E. Lind. "InGaAs nanowire MOSFETs with I_{ON}= 555 μA/μm at I_{OFF}= 100 nA/μm and V_{DD}= 0.5 V" in IEEE Symposium on VLSI Technology, pp. 1-2. IEEE, 2016. https://doi.org/10.1109/VLSIT.2016.7573418
- [4] N. Waldron, S. Sioncke, J. Franco, L. Nyns, A. Vais, X. Zhou, H. C. Lin, G. Boccardi, J. W. Maes, Q. Xie and M. Givens, F. Tang, X. Jiang, E. Chiu, A. Opdebeeck, C. Merckling, F. Sebaai, D. van Dorp, L. Teugels, A. Sibaja Hernandez, K. De Meyer, K. Barla, N. Collaert, A. Thean, "Gate-all-around InGaAs nanowire FETS with peak transconductance of 2200 μS/μm at 50 nm Lg using a replacement Fin RMG flow" in IEEE International Electron Devices Meeting (IEDM), pp. 31-1. IEEE, 2015. https://doi.org/10.1109/IEDM.2015.7409805
- [5] R. Suzuki, N. Taoka, M. Yokoyama, S. Lee, S. H. Kim, T. Hoshii, T. Yasuda, W. Jevasuwan, T. Maeda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, "1-nm-capacitance-equivalent-thickness HfO₂/Al₂O₃/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density," Appl. Phys. Lett. **100**(13), 132906-1–132906-3 (2012). https://doi.org/10.1063/1.3698095.
- [6] F Palumbo, M Eizenberg, "Degradation characteristics of metal/Al₂O₃/n-InGaAs capacitors", Journal of Applied Physics, 115 (1), 014106 (2014). DOI: https://doi.org/10.1063/1.4861033
- [7] G. Jiao, C. Yao, Y. Xuan, D. Huang, P.D. Ye, and M.-F. Li, "Experimental Investigation of Border Trap Generation in InGaAs nMOSFETs With Al2O3 Gate Dielectric Under PBTI Stress", IEEE Trans. Electron Dev., 59, pp. 1661-67 (2012). https://doi.org/10.1109/TED.2012.2190417
- [8] I Krylov, B Pokroy, M Eizenberg, and D Ritter, "A comparison between HfO₂/Al₂O₃ nano-laminates and ternary Hf_xAl_yO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors", Journal of Applied Physics, 120 (12), 124505 (2016). https://doi.org/10.1063/1.4962855
- [9] K. Tang, R. Droopad, and P. C. McIntyre. "Border Trap Density in Al₂O₃/InGaAs MOS: Dependence on Hydrogen Passivation and Bias Temperature Stress", ECS Trans., 69 (5), pp. 53-60 (2015). https://doi.org/ 10.1149/06905.0053ecst
- [10] C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, R. M. Wallace, "Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning", Appl. Phys. Lett. 94, 162101 (2009). https://doi.org/10.1063/1.3120546
- [11] D. Lin, A. Alian, S. Gupta, B. Yang, E. Bury, S. Sioncke, R. Degraeve, M. L. Toledano, R. Krom, P. Favia, H. Bender, M. Caymax, K. C. Saraswat, N. Collaert, A. Thean, "Beyond interface: The impact of oxide border traps on InGaAs and Ge n-MOSFETs", in Proceedings of IEEE International Electron Device Meeting Technical Digest, 28.3.1 (2012). https://doi.org/10.1109/IEDM.2012.6479121
- [12] S. Deora, G. Bersuker, W.-Y. Loh, D. Veksler, K. Matthews, T. W. Kim, R. T. P. Lee, R. J. W. Hill, D.-H. Kim, W.-E. Wang, C. Hobbs, P. D. Kirsch, "Positive Bias Instability and Recovery in InGaAs Channel nMOSFETs", IEEE Transactions on Device and Materials Reliability, 13(4), 507 (2013). https://doi.org/10.1109/TDMR.2013.2284376
- [13] J. Franco A. Alian, B. Kaczer, D. Lin, T. Ivanov, A. Pourghaderi, K. Martens, Y. Mols, D. Zhou, N. Waldron, S. Sioncke, T. Kauerauf, N. Collaert, A. Thean, M. Heyns, and G. Groeseneken, "Suitability of high-k gate oxides for III-V devices: a PBTI study in In_{0.53}Ga_{0.47}As devices with Al₂O₃", in Proceedings of IEEE International Reliability Physics Symposium Technical Digest, 6A.2.1 (2014). https://doi.org/ 10.1109/IRPS.2014.6861098
- [14] N. Conrad, M. Si, S. H. Shin, J. J. Gu, J. Zhang, M. A. Alam, P. D. Ye, "Lowfrequency noise and RTN on near-ballistic III–V GAA nanowire MOSFETs", in Proceedings of IEEE International Electron Devices Meeting, 20.1.1 (2014). https://doi.org/10.1109/IEDM.2014.7047086
- [15] N. Taoka, M. Yokoyama, S. H. Kim, R. Suzuki, S. Lee, R. Iida, T. Hoshii, W. Jevasuwan, T. Maeda, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, "Impact of Fermi Level Pinning Due to Interface Traps Inside the Conduction Band on the Inversion-Layer Mobility in InGaAs Metal–Oxide–Semiconductor Field Effect Transistors". IEEE Trans. Dev. Mat. Rel. 13, 456 (2013). https://doi.org/10.1109/TDMR.2013.2289330.

- [16] S. Stemmer, V. Chobpattana, and S. Rajan, "Frequency dispersion in III-V metal-oxide-semiconductor capacitors", Appl. Phys. Lett. 100, 233510 (2012). https://doi.org/10.1063/1.4724330.
- [17] S. Johansson, M. Berg, K. M. Persson and E. Lind, "Transconductance method for characterization of border traps", *IEEE Trans. Electron Devices*, vol. 60, no. 2, February 2013. https://doi.org/ 10.1109/TED.2012.2231867
- [18] J. Franco, B. Kaczer, Ph. J. Roussel, J. Mitard, S. Sioncke, L. Witters, H. Mertens, T. Grasser, and G. Groeseneken, "Understanding the suppressed charge trapping in relaxed-and strained-Ge/SiO₂/HfO₂ p-MOSFETs and implications for the screening of alternative high-mobility substrate/dielectric CMOS gate stacks" in Proceedings of IEEE International Electron Devices Meeting, 15.2.1 (2013). https://doi.org/ 10.1109/IEDM.2013.6724634
- [19] J. Franco, A. Vais, S. Sioncke, V. Putcha, B. Kaczer, B-S. Shie, X. Shi, R. Mahlouji, L. Nyns, D. Zhou, and N. Waldron, "Demonstration of an InGaAs gate stack with sufficient PBTI reliability by thermal budget optimization, nitridation, high-k material choice, and interface dipole" in 2016 IEEE Symposium on VLSI Technology, pp. 1-2., 2016. https://doi.org/10.1109/VLSIT.2016.7573371
- [20] A. Alian, M. A. Pourghaderi, Y. Mols, M. Cantoro, T. Ivanov, N. Collaert, and A. Thean, "Impact of the channel thickness on the performance of ultrathin InGaAs channel MOSFET devices", in Proceedings of IEEE International Electron Device Meeting, pp.16.6.1-16.6.4, 2013. https://doi.org/ 10.1109/IEDM.2013.6724644
- [21] E. H. Nicolian and J. R. Brews, MOS Phys. and Tech., p. 215-216, Wiley Interscience, New York (2003).
- [22] R. Winter, J. Ahn, P. C. McIntyre, and M. Eizenberg, "New method for determining flat-band voltage in high mobility semiconductors", Journal of Vacuum Science & Technology B 31, 030604 (2013). https://doi.org/ 10.1116/1.4802478
- [23] D. K. Schroder, Semiconductor material and device characterization. John Wiley and Sons, 2006, ISBN: 978-0-471-73906-7.
- [24] B. Kaczer, T. Grasser, P.J. Roussel, J. Martin-Martinez, R. O'Connor, B. O'Sullivan, and G. Groeseneken, "Ubiquitous relaxation in BTI stressing— New evaluation and insights" in proceedings of IEEE International Reliability Physics Symposium, 2008, pp. 20-27, 2008. https://doi.org/ 10.1109/RELPHY.2008.4558858
- [25] A. Vais, J. Franco, H.-C. Lin, N. Collaert, A. Mocuta, K. De Meyer, and A. Thean, "Impact of starting measurement voltage relative to flat-band voltage position on the capacitance-voltage hysteresis and on the defect characterization of InGaAs/high-k metal-oxide-semiconductor stacks", Appl. Phys. Lett. 107, 223504 (2015). https://doi.org/ 10.1063/1.4936991
- [26] V. Putcha, J. Franco, A. Vais, B. Kaczer, S. Sioncke, D. Linten and G. Groeseneken, "Impact of slow and fast oxide traps on In_{0.53}Ga_{0.47}As device operation studied using CET maps", in proceedings of IEEE International Reliability Physics Symposium 2017, XT-8.1 (2017). https://doi.org/10.1109/IRPS.2018.8353603