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 The latest design approach for Data Centers (DCs) follows the direction of exploiting 
optical switching to connect Top-of-Rack (ToR) switches that serve thousands of data 
storing and computing devices. A ToR’s usual function is the Virtual Output Queues 
(VOQs), which is the prevalent solution for the head-of-line blocking problem of the DC 
switches. An effective VOQs architecture improves the DC’s performance by reducing the 
frames communication latency and it is efficient with respect to the implementation cost. 
The current paper introduces a VOQs architecture for the ToRs of DCs that function with 
Time Division Multiple Access (TDMA). The proposed VOQ architecture contains a 
bounded number of queues at each input port supporting the active destinations and 
forwarding the input Ethernet frames to a shared memory. An efficient mechanism of low 
latency grants each queue to an active destination. The VOQs constitutes a module of a 
ToR development, which is based on a commercially available Ethernet switch and two 
FPGA Xilinx boards, the Virtex VC707 and the Xilinx NetFPGA. The VOQs architecture’s 
implementation and validation took place on the NetFPGA board.  
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1. Introduction  

Data centers are comprised of a large number of Servers 
running Virtual Machines (VMs) and storage resources, which are 
installed in racks and communicate via the local data center 
network. The data centers performance depends on the available 
computing and data storing capacity, the architecture and the 
features as well as the performance of the underlying network and 
the Top-of-Rack (ToR) switches connecting the servers to the data 
center. A key factor in improving the performance of the ToR 
switches is the solution of the head-of-line blocking issue that is 
most often settled by embedding Virtual Output Queues 
architectures [1].  The performance of the networks depends on 
their interconnection scheme, which usually adhered to the multi-
layer approach, and they were based on the Fat Tree or the folded 
Clos architectural schemes [2, 3, 4]. These approaches 
nevertheless, are not efficiently scalable and also, in the cases of 
data centers with a large number of nodes, lead to the use of a 
considerable number of switches, cables and transceivers, which 
increase power consumption. 

In an effort to overcome these deficiencies researchers and 
engineers have introduced data center interconnections including 
an optical circuit switching as well as an electrical packet 
switching networks [5, 6, 7]. A notable design is the all optical 
data center proposed by the Nephele project [8]. The Nephele 
design adopts the Time Division Multiple Access (TDMA) mode 
of operation in the optical data center network. Consequently, the 
transmissions are completed within fixed time segments, namely 
the slots; each slot is assigned for sending a TDMA frame on a 
specific path that connects a transmitter node to a receiver node. 
The Nephele data center network is a Software Defined Network 
(SDN) and all the arrangements regarding its operation are 
dictated by a central data center controller. The controller is 
responsible for generating the TDMA Schedule, which defines 
which nodes communicate during each time-slot [9]. The first 
version of the scalable, high capacity Nephele network is able to 
accommodate up to 1600 Top-of-Rack (ToR) switches and each 
ToR uses 20 links to connect to the data center optical network. 

The overall system topology of the data center network is 
depicted in Figure 1. The network includes I (I ≤ 20) parallel 
planes, each consisting of I (I ≤ 20) unidirectional optical rings. 
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Figure 1: Nephele Data Center Network Architecture 

 
Figure 2: The Nephele Top-of-Rack (ToR) Switch Architecture Overview 
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The rings interconnect P (P ≤ 20) Points of Delivery (PODs). 
A POD comprises of I Wavelength Selective Switches (WSS) to 
connect the I rings, and is connected to W (W ≤ 80) ToRs, through 
W pod-switches, one for each ToR switch. Each ToR switch has 
I north ports, such that the ith north port is directed to the ith POD 
of each plane (each port is connected to a different POD switch). 
The south ports of the ToR switch connect the servers, though 
network interface cards (NICs), with the data center network. The 
performance of the ToR switch contributes significantly to the 
operation of the entire data center and it depends on the utilization 
of its resources as well as on the efficiency of the algorithms and 
the techniques that it employs. Among the techniques that are 
critical with respect to the ToR’s performance is the handling of 
the Virtual Output Queues (VOQs). VOQs is an attractive 
technique for overcoming the head-of-line blocking cases [10].  

This paper presents an efficient VOQ organization regarding 
the resource utilization and the latency needed to assign the 
incoming Ethernet Frames to the queues of matching destinations. 
The VOQ architecture introduced in this paper is advantageous 
due to the following: first, it is efficient with respect to the 
required implementation area, because it reduces the resources 
needed to a single shared buffer per output port. This buffer stores 
all the queues of data that this output port will transmit. Second, 
the architecture is efficient with respect to the utilization of the 
shared buffer’s bandwidth; this is because it maximizes the 
throughput utilization of the buffer’s interface by utilizing for 
storing and reading a paging organization, with each page 
containing a large number of Ethernet frames. Third, the proposed 
VOQ architecture is scalable, which is an advantage considering 
the scalability of the entire data center.  

The proposed technique achieves the aforementioned goals 
based on the following ideas. The receiving ethernet Frames with 
the same destination are collected at the input of the switch into 
pages of frames. This operation is accomplished by using small 
sized queues positioned at each input Ethernet port. In the 
proposed design the number of these small sized queues at the 
input is bounded by the sum of the connections that are: a) 
serviced by each input Ethernet port and b) active during a small 
window of time. The latency is minimized with respect to the time 
required to associate each input Ethernet Frame to one of the 
queues. This is accomplished by employing a mechanism that 
maps each small size queue to one of the active destinations each 
time an Ethernet Frame arrives at the ToR. 

The motivation for designing the proposed VOQs 
architecture came by the requirements of the ToR included in the 
Nephele project but it can serve any network, that receives an 
input of Ethernet frames and particularly those networks which 
operate under TDMA scheme, are software defined and their 
nodes may have to overcome the head-of-line blocking. The 
prototype Nephele ToR switch includes a commercially available 
Ethernet switch (Mellanox SX1024 [11]) and two Xilinx boards: 
one Virtex VC707 and one NetFPGA SUME [12]. The 

implementation and the validation of the VOQs architecture took 
place on the NetFPGA board.  

The paper is organized in five sections. Section II briefly 
highlights the architecture of the Nephele ToR switch. Section III 
introduces the architecture and the organization of the VOQs. 
Section IV presents the details of the FPGA implementation and 
finally, Section V concludes the paper. 

 
2. The Architecture of the Top-of-Rack (ToR) Switch  

The ToR design is a switch and its ports are divided in two 
sets: a) the south ports, which are 16 10GEthernet ports 
connecting the ToR with the servers b) the corresponding 16 
10Gbps north ports that are connected to the optical data center 
network. The ToR switch consists of three fundamental blocks. 
The first is an Ethernet 16×16 switch having all ports as 
10GEthernet [11]. The second is the North Extension. It is 
implemented on an FPGA and its role is: a) the formation of 
TDMA frames that consist of Ethernet frames and b) to implement 
the interface of the ToR to the network’s optical (POD) switches 
by using its north ports. The third block is the South Extension. 
This FPGA based block connects the servers to the ToR. It has 
increased complexity and its functionality includes: a) the 
execution of the scheduling commands, b) to be responsible for 
the communication of the ToR to the data center’s control plane, 
c) to implement the VOQs design and d) to control all the 
functions of the ToR.  

Figure 2 presents the ToR switch’s architecture as well as the 
functional blocks dedicated to the upstream traffic. In the part of 
the South Extension the figure shows the LUT MAC-ID that it 
assigns a tag to each incoming Ethernet frame. These 11 bits tags 
will be used within the ToR for addressing the Ethernet frames 
and saving on the required resources for address bits with respect 
to the bits required for the MAC addresses of the destinations of 
the incoming frames. The next action is to forward the Ethernet 
frames to the VOQs/Shared Memory block. This block stores the 
Ethernet frames in pages. Each page includes a large number of 
Ethernet frames and its length matches the length of a TDMA 
frame (also called Nephele frame). All the pages that belong to a 
destination are arranged in a linked list. The pointers required for 
keeping the information of each destination’s linked are managed 
by the Memory Map block.  

The Command Interpreter block (Figure 2) is responsible for 
the translation of the SDN controller commands: it provides to 
this ToR the destination ToR, which has to receive data in the 
upcoming TDMA slot. The ToR complies to this command and it 
retrieves the first page with Ethernet frames that belongs to the 
linked list associated to the commanded destination and sends this 
page to the Ethernet switch. There is a Lock mechanism (Figure 
2) that grants either the storing operation of the input Ethernet 
frames to the shared memory or the reading operation from that 
memory of the TDMA frames. In more detail, the Lock 
mechanism divides the time into small time windows TL. Each TL 
is dedicated for either writing to the shared buffer or reading from 
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it. Hence, when the ToR reads from the shared buffer it will 
continue buffering in the small size queues the incoming traffic 
from the servers. The length of the TL is computed at design time 
to balance: first, the throughput of the shared buffer, which 
requires long burst transactions for improved performance and 
second, the need of the ToR operation for writing/reading to/from 
the shared buffer at close time instances.  

The role of the Ethernet switch in the upstream direction, is 
to forward the Ethernet frames to the North Extension and 
particularly to the buffer of the corresponding destination’s north 
port. In that buffer the Ethernet frames formulate the final 
TDMA/Nephele frame, to which are also added first, the preamble 
and second, a word required for each device synchronization. The 
Command Interpreter follows the schedule received from the 
control plane servers and it specifies (the red control signal of 
Figure 2) the slot that the ToR will transmit that TDMA frame. 
For the downstream direction, the Nephele design mandates the 
Ethernet switch to just forward the frame from the north input port 
to the corresponding south port. That is, the design complexity of 
the ToR is mostly related to the upstream path. 

The communication of the ToR switch with the control plane 
is accomplished through the PCI Express interconnection. The 
PCI Express interface in the proposed architecture is implemented 
by the use of the Xilinx IP Core for PCIe and RIFFA (Reusable 
Integration Framework for FPGA Accelerators) [13]. The RIFFA 
framework consists of an API (Application Programming 
Interface) and a driver/kernel module for the host PC and IP core 
for the FPGA, all of which are open-source. The module provided 

by RIFFA for the FPGA is designed as an extension to the Xilinx 
core, which handles the physical layer of the PCIe interface.  
3. Virtual Output Queues 

The proposed VOQ design improves the required hardware 
resources based on the following concept. During a narrow time 
window TB, the ToR switch receives Ethernet frames at its south 
ports for various destinations in the data center network, which 
we define as active destinations. We consider that for all practical 
purposes, the number of the active destinations, during TB, has an 
upper limit, which can be an outcome of statistical measurements 
of the network traffic patterns. The active destinations' upper limit 
is significantly smaller compared to the number of all the possible 
destinations in the data center. Hence, letting a queue to keep all 
the incoming Ethernet frames during TB that have the same active 
destination and prepare in this queue a burst to be written to the 
shared buffer, leads to an architecture that includes a set of queues 
with cardinal number equal to that of the active destinations, while 
it still keeps the high throughput at the shared buffer.  

 Considering the above, the VOQs architecture is comprised 
of: first, the Shared Memory (buffer), second the Memory Map 
depicted in Figure 2 and third, the VOQs controller. The detailed 
architecture of the VOQs controller is shown in Figure 3: it is a 
design of the VOQs controller that includes four (4) active 
destinations and the corresponding queues, based on a hypothesis 
that the application asks for four active destination and as shown 
in Figure 3 there is one queue to support each active destination. 
In order to define the length of the time window TB we consider 
the following facts..

 

Figure 3: VOQs Controller Architecture Overview 
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The design of the shared buffer employs a Dynamic Random 
Access Memory (DRAM) that can reach the considerable 
throughput of 80 Gbps at its interface; this performance will be 
feasible if the entire VOQs architecture can operate with burst 
transactions for reading and writing from/to the shared buffer, 
thus exploiting the DRAM interface, which requires a minimum 
burst time tmb depending on the DRAM specifications. The 
performance of the DRAM organization degrades significantly 
when the size of the burst size decreases. We note here that, this 
performance degradation cannot be expressed (defined) as a 
function of the burst size, e.g. proportional. Therefore, reading 
and writing from/to a page in the shared buffer (in the linked list 
assigned to a destination) must be performed in bursts and each 
burst has to consist of multiple Ethernet frames, in the order of 
Kbytes. Therefore, we need an architecture of queues able to 
gather into a single queue all the incoming Ethernet frames that 
have the same destination; in that queue, the controller will 
formulate a burst of these Ethernet frames. Finally, it will operate 
in burst mode to store these frames into the page of the linked list 
of that destination, which is kept in 

We consider the time window TB and the number of queues 
for active destinations k to be calculated by the following 
reasoning. At a clock cycle T0, given that are available k queues 
storing Ethernet frames of k different IP, there will be Ethernet 
frames arriving to at most all of these queues and at the clock cycle 
Tb that at least one of these queues has completed a burst, and this 
queue can write the burst to the buffer. Therefore, this queue can 
formulate another burst either for the IP that it was supporting up 
to Tb or the queue can be reassigned by the controller to serve 
another IP. Thus, in this scenario, the worst case is that we have 
to keep the k queues serving their IPs for as long as no queue has 
completed a burst: assuming that each queue receives an Ethernet 
frame in a round robin fashion TB is at most equal to k × tmb.  

According to the above, the efficiency of the VOQs 
architecture is defined as the maximization of the utilization of the 
available resources and the DRAM buffer throughput. For this 
purpose, the design has to: a) include k queues for preparing the 
bursts, so that each queue prepares a burst that will be stored in an 
active destination linked list of pages; b) minimize latency and c) 
minimize the number of the k queues along with their size. The su 

cceeding paragraphs describe how we achieve the above 
goals and they describe in detail the operations of the VOQs 
Controller as well as its functional blocks and components. 

The ToR switch is connected with 10G Ethernet to the servers 
through its south ports. First, the Ethernet Frames that arrive from 
the servers at the rate of 10G are buffered in the port queue of the 
10G Ethernet module and then are forwarded and buffered to the 
two Input Frame Queues (Figure 3) in the following way: we start 
counting the incoming frames and depending on the arrival 
sequence the odd numbered incoming Ethernet Frames are stored 
in the first Input Frame Queue (the upper queue on Figure 3) and 
the even Ethernet Frames to the second queue. This dual queue 
architecture gives us the necessary time in order to perform in 

real-time the two following operations on the Ethernet Frames: 
while we store a frame in one of the Input Frame Queues, we 
calculate its size and extract its destination’s IP, which then are 
stored to two queues of significantly lesser size, the IP ID queue 
and the SIZE queue, which are positioned close to each Input 
Frame Queue in the design of Figure 3.  

 

Each frame’s IP stored in the Input Frame Queues is passed 
as input (address) to a LUT, named BRAM in Figure 3. The LUT 
will specify (will give as output) the id of an Active Destination 
Queue (on Figure 3 we shown an example design with four 
queues): in the specified Active Destination Queue we will buffer 
all the Ethernet Frames with the current active destination IP, in 
order to form a burst that it will be stored into the linked list of 
pages of that destination in the DRAM buffer. Apart the id of the 
Active Destination Queue in that BRAM location is also stored a 
flag (0/1). When the flag is equal to “1”, it specifies the case in 
which the Active Destination Queue id (stored in the LUT) is 
granted to the active destination IP. Alternatively, the case when 
the flag equals to “0” indicates that the frame’s destination IP is 
not yet served by any of the Active Destination Queues and hence, 
the controller has to assign an Active Destination Queue to this IP. 
Now, we consider the case of an Ethernet frame arriving at the 
ToR and its IP address does not correspond to any of the Active 
Destination Queues. If we have correctly calculated (during the 
design of the ToR) the minimum required number of the Active 
Destination Queues that it is sufficient to serve the application 
demands, the VOQs controller will have an empty Active 
Destination Queue available for assignment to a newly arrived 
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Ethernet frame that requests an Active Destination Queue to 
buffer the following frames with the same IP destination. All the 
id (numbers) of the unused Active Destination Queues are 
buffered in the queue named Empty Queues in Figure 3. At the 
same clock cycle that we read from the BRAM the id of the Active 
Destination Queue that serves the frame’s IP along with the “1/0” 
(assigned to a queue or not) flag, we also read the first empty 
queue id from the Empty Queues. The multiplexer shown at 
Figure 3 bellow the BRAM is controlled by the flag in order to 
select: a) the BRAM output when the flag equals “1” and b) the 
Empty Queues output if the flag is “0”. In the first case where we 
will use the BRAM output, the empty queue id that was just 
extracted from Empty Queues will be returned back in the Empty 
Queues, since it was not used. The above design minimizes the 
latency for the assignment of an active queue to the new 
destination.  

We have to mention that in order to exploit the high 
throughput of the DRAM interface, we have to write the Ethernet 
Frames in the shared buffer as a burst of contiguous words of a 
significant length (512 bits in the example implementation of the 
proposed architecture). We note here that, in a writing burst of 
Ethernet frames the last 512-bit word might not be completely 
filled with Ethernet frames payload and for completing the burst 
we add 0xFF as padding. The simple padding provides the 
advantage of simplifying the control and it reduces the latency at 
the cost of the dummy data overhead in many pages in the shared 
buffer. This padding overhead becomes larger for small Ethernet 
frames and it is reduced significantly in the case of full Ethernet 
frames. Note here that, when it’s time to transmit a TDMA frame 
the shared memory will provide us with a page: we must be 
informed regarding the exact number of the useful data in this 
page in order to remove the padding. For this purpose, we store in 
the header of each page the useful size along with the actual page 
size, which is the overall sum of the useful size and the size of the 
padding stored in the shared buffer. 

A small size dual port memory shown in Figure 3. as Queue-
ID Memory, stores the IP that it is currently served by each Active 
Destination Queue. Each address X of the Queue-ID Memory 
corresponds to the Active Destination Queue with id X. The data 
at that address X of the Queue-ID Memory is the destination’s IP 
that is accommodated by this Active Destination Queue.  When it 
is the first time that an Ethernet Frame is stored in an empty Active 
Destination Queue the id of this queue is used as the address to 
the Queue-ID Memory, and in that address, we store the frame’s 
IP. During the whole time that this Active Destination Queue 
serves the IP, the Queue-ID Memory keeps the IP in that address. 
Only when an Active Destination Queue is left with all its data 
forwarded to the shared buffer, we will: first, erase the contents of 
the served destination in the BRAM by acquiring the address (IP) 
from the Queue-ID Memory and second, write the queue id to the 
Empty Queues to refresh the Active Destination Queues that are 
vacant and they can be granted to another destination IP. 
Consequently, the location in the Queue-ID Memory will be 

overwritten by the new IP, which will be served by the 
corresponding Active Destination Queue. 

The proposed design minimizes the time required to perform 
all the previously mentioned operations with respect to clock 
cycles. The architecture can achieve the time minimization due to 
the parallelization of the operations and as a result, the VOQ 
architecture diminishes the latency of each stage. Consequently, 
the Active Destination Queues can be as many as the application 
dictates as upper bound. Moreover, the length of each queue 
doesn’t need to grow beyond the size of the burst that it is 
specified by the DRAM controller for reaching its maximum 
throughput.   

The block called Memory Map stores all the information 
related to each linked list in the shared buffer associated to each 
destination IP. The memory map entries are shown in Figure 4, 5 
in two working examples. Each entry of the Memory Map block 
has the following pointers: one at the address of the first page of 
the list noting from what page we are currently reading data to 
transmit; one to the last page, required to inform the VOQs that 
this is the page, which currently stores all the Ethernet frames for 
the associated destination; one for the “next to write” address of 
the last page (writing position in Figure 4), one for the “next to 
read” address of the first page (reading position in Figure 5). 
Moreover, the Memory Map entry provides the exact number of 
useful data in the page: this information is used to compute the 
total volume of data of the Ethernet frames with or without out the 
padding.  

 

Figure 5: Memory Map Organization Concurrent Write & Read Operations 
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The pointers at each Memory Map block location are 
refreshed during each burst write/read transaction. Thus, at the 
beginning of a write/read operation to/from the DRAM buffer we 
know the exact number of the data (bytes) that will be written/read. 
We operate the linked list of pages as a queue since we always 
transmit the head page of the list. The memory map architecture 
is able to concurrently write and read from the same linked list of 
pages as shown in Figure 5.  

A noteworthy advantage of the novel VOQ technique is the 
scalability of the architecture, which can be easily configured to 
accommodate various numbers of Active Destination Queues, the 
size of the DRAM shared buffer and the size of the Memory Map 
block. The pointers and the size of the linked list of pages for each 
destination are stored in block rams (BRAM) in the FPGA. The 
required size of the BRAMs is proportional to: first, the DRAM 
memory size, and second the number of destinations in the data 
center network. In the case that the size of the mapping 
information is relatively large and it constrains the designer of 
implementing the Memory Map on the FPGA internal BRAM 
memory, the proposed architecture of the Memory Map block can 
be implemented on an external Static Random Access Memory 
(SRAM). 

4. FPGA Implementation Details 

We have realized an example VOQs design with four (4) 
active destinations (k = 4 is adequate for most applications in 
accordance with our TB and k calculations). The development of 
the example implementation was made on the NetFPGA SUME 
board using the Xilinx Vivado development tool. The design 
includes 3 Intellectual Property (IP) hardware Cores from Xilinx: 
a) 10GbE Subsystem, which includes the MAC and the 10GbE 
PCS/PMA b) Integrated Block for PCI Express c) Memory 
Interface Generator (MIG) for the shared DRAM buffer. The 
NetFPGA board receives the scheduling commands from the host 
desktop PC, which is running Linux and communicates with the 
data center’s controller, which runs on a different PC in the same 
local network.  

Table 1: FPGA Resources 

Slice LUTs 4194 
Slice Registers 2415 
Slices 1888 
Logic LUTs 2639 
Memory LUTs 1285 
Flip flop pairs LUTs 4848 
Block RAMs 62 

The resources occupied in the NetFPGA SUME for the 
VOQs Controller are presented in the Table 1, reported by the 
Vivado tool. The input small sized queues are all performing at 
156 Mhz clock and use 64 bits word length, in order to comply 
with the 10G Ethernet physical layer standard.  The Active 

Destination Queues and memories alongside of them in our 
implementation are performing at 200 MHz with 512-word length. 

5. Conclusion 

The current paper presented a VOQs architecture, which is 
efficient with respect to latency and the hardware resources and it 
supports a ToR switch that is adaptable to any data center network 
operating under the TDMA scheme. The most noteworthy novelty 
of the proposed VOQs architecture is the efficient use of a single 
large shared buffer, the performance of which is fully exploited. 
The VOQ organization is based on the notion of Active 
Destination Queues that leads to maximize the utilization of the 
shared buffer and reduces significantly the required number of the 
Active Destination Queues to the number of the connections that 
are active during a narrow time window. Moreover, the 
management/control of the Active Destination Queues is efficient 
due to the minimum latency that induces to the operation of the 
ToR switch. Furthermore, the proposed architecture is scalable 
with respect to the number (k) of the Active Destination Queues, 
the scale of the data center network (number of destinations), the 
shared buffer size and the Ethernet protocol (Ethernet type/Frame 
size).  
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