

www.astesj.com 97

Virtual Output Queues Architecture for High Throughput Data Center Nodes

Angelos Kyriakos1,2, Ioannis Patronas1,2, Georgios Tzimas1, Vasileios Kitsakis1, Dionysios Reisis*1,2

1National and Kapodistrian University of Athens, Electronics Lab, Physics Dpt, GR-15784, Zografos Greece

2Institute for Communication and Computers (ICCS), National Technical University of Athens, Greece

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 25 July, 2018
Accepted: 12 September, 2018
Online: 22 September, 2018

 The latest design approach for Data Centers (DCs) follows the direction of exploiting
optical switching to connect Top-of-Rack (ToR) switches that serve thousands of data
storing and computing devices. A ToR’s usual function is the Virtual Output Queues
(VOQs), which is the prevalent solution for the head-of-line blocking problem of the DC
switches. An effective VOQs architecture improves the DC’s performance by reducing the
frames communication latency and it is efficient with respect to the implementation cost.
The current paper introduces a VOQs architecture for the ToRs of DCs that function with
Time Division Multiple Access (TDMA). The proposed VOQ architecture contains a
bounded number of queues at each input port supporting the active destinations and
forwarding the input Ethernet frames to a shared memory. An efficient mechanism of low
latency grants each queue to an active destination. The VOQs constitutes a module of a
ToR development, which is based on a commercially available Ethernet switch and two
FPGA Xilinx boards, the Virtex VC707 and the Xilinx NetFPGA. The VOQs architecture’s
implementation and validation took place on the NetFPGA board.

Keywords:
Data Centers
Virtual Output Queues
FPGAs

1. Introduction

Data centers are comprised of a large number of Servers
running Virtual Machines (VMs) and storage resources, which are
installed in racks and communicate via the local data center
network. The data centers performance depends on the available
computing and data storing capacity, the architecture and the
features as well as the performance of the underlying network and
the Top-of-Rack (ToR) switches connecting the servers to the data
center. A key factor in improving the performance of the ToR
switches is the solution of the head-of-line blocking issue that is
most often settled by embedding Virtual Output Queues
architectures [1]. The performance of the networks depends on
their interconnection scheme, which usually adhered to the multi-
layer approach, and they were based on the Fat Tree or the folded
Clos architectural schemes [2, 3, 4]. These approaches
nevertheless, are not efficiently scalable and also, in the cases of
data centers with a large number of nodes, lead to the use of a
considerable number of switches, cables and transceivers, which
increase power consumption.

In an effort to overcome these deficiencies researchers and
engineers have introduced data center interconnections including
an optical circuit switching as well as an electrical packet
switching networks [5, 6, 7]. A notable design is the all optical
data center proposed by the Nephele project [8]. The Nephele
design adopts the Time Division Multiple Access (TDMA) mode
of operation in the optical data center network. Consequently, the
transmissions are completed within fixed time segments, namely
the slots; each slot is assigned for sending a TDMA frame on a
specific path that connects a transmitter node to a receiver node.
The Nephele data center network is a Software Defined Network
(SDN) and all the arrangements regarding its operation are
dictated by a central data center controller. The controller is
responsible for generating the TDMA Schedule, which defines
which nodes communicate during each time-slot [9]. The first
version of the scalable, high capacity Nephele network is able to
accommodate up to 1600 Top-of-Rack (ToR) switches and each
ToR uses 20 links to connect to the data center optical network.

The overall system topology of the data center network is
depicted in Figure 1. The network includes I (I ≤ 20) parallel
planes, each consisting of I (I ≤ 20) unidirectional optical rings.

ASTESJ

ISSN: 2415-6698

*Dionysios Reisis, +30 210 727 6708/6720 & dreisis@phys.uoa.gr

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030513

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030513

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 98

Figure 1: Nephele Data Center Network Architecture

Figure 2: The Nephele Top-of-Rack (ToR) Switch Architecture Overview

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 99

The rings interconnect P (P ≤ 20) Points of Delivery (PODs).
A POD comprises of I Wavelength Selective Switches (WSS) to
connect the I rings, and is connected to W (W ≤ 80) ToRs, through
W pod-switches, one for each ToR switch. Each ToR switch has
I north ports, such that the ith north port is directed to the ith POD
of each plane (each port is connected to a different POD switch).
The south ports of the ToR switch connect the servers, though
network interface cards (NICs), with the data center network. The
performance of the ToR switch contributes significantly to the
operation of the entire data center and it depends on the utilization
of its resources as well as on the efficiency of the algorithms and
the techniques that it employs. Among the techniques that are
critical with respect to the ToR’s performance is the handling of
the Virtual Output Queues (VOQs). VOQs is an attractive
technique for overcoming the head-of-line blocking cases [10].

This paper presents an efficient VOQ organization regarding
the resource utilization and the latency needed to assign the
incoming Ethernet Frames to the queues of matching destinations.
The VOQ architecture introduced in this paper is advantageous
due to the following: first, it is efficient with respect to the
required implementation area, because it reduces the resources
needed to a single shared buffer per output port. This buffer stores
all the queues of data that this output port will transmit. Second,
the architecture is efficient with respect to the utilization of the
shared buffer’s bandwidth; this is because it maximizes the
throughput utilization of the buffer’s interface by utilizing for
storing and reading a paging organization, with each page
containing a large number of Ethernet frames. Third, the proposed
VOQ architecture is scalable, which is an advantage considering
the scalability of the entire data center.

The proposed technique achieves the aforementioned goals
based on the following ideas. The receiving ethernet Frames with
the same destination are collected at the input of the switch into
pages of frames. This operation is accomplished by using small
sized queues positioned at each input Ethernet port. In the
proposed design the number of these small sized queues at the
input is bounded by the sum of the connections that are: a)
serviced by each input Ethernet port and b) active during a small
window of time. The latency is minimized with respect to the time
required to associate each input Ethernet Frame to one of the
queues. This is accomplished by employing a mechanism that
maps each small size queue to one of the active destinations each
time an Ethernet Frame arrives at the ToR.

The motivation for designing the proposed VOQs
architecture came by the requirements of the ToR included in the
Nephele project but it can serve any network, that receives an
input of Ethernet frames and particularly those networks which
operate under TDMA scheme, are software defined and their
nodes may have to overcome the head-of-line blocking. The
prototype Nephele ToR switch includes a commercially available
Ethernet switch (Mellanox SX1024 [11]) and two Xilinx boards:
one Virtex VC707 and one NetFPGA SUME [12]. The

implementation and the validation of the VOQs architecture took
place on the NetFPGA board.

The paper is organized in five sections. Section II briefly
highlights the architecture of the Nephele ToR switch. Section III
introduces the architecture and the organization of the VOQs.
Section IV presents the details of the FPGA implementation and
finally, Section V concludes the paper.

2. The Architecture of the Top-of-Rack (ToR) Switch

The ToR design is a switch and its ports are divided in two
sets: a) the south ports, which are 16 10GEthernet ports
connecting the ToR with the servers b) the corresponding 16
10Gbps north ports that are connected to the optical data center
network. The ToR switch consists of three fundamental blocks.
The first is an Ethernet 16×16 switch having all ports as
10GEthernet [11]. The second is the North Extension. It is
implemented on an FPGA and its role is: a) the formation of
TDMA frames that consist of Ethernet frames and b) to implement
the interface of the ToR to the network’s optical (POD) switches
by using its north ports. The third block is the South Extension.
This FPGA based block connects the servers to the ToR. It has
increased complexity and its functionality includes: a) the
execution of the scheduling commands, b) to be responsible for
the communication of the ToR to the data center’s control plane,
c) to implement the VOQs design and d) to control all the
functions of the ToR.

Figure 2 presents the ToR switch’s architecture as well as the
functional blocks dedicated to the upstream traffic. In the part of
the South Extension the figure shows the LUT MAC-ID that it
assigns a tag to each incoming Ethernet frame. These 11 bits tags
will be used within the ToR for addressing the Ethernet frames
and saving on the required resources for address bits with respect
to the bits required for the MAC addresses of the destinations of
the incoming frames. The next action is to forward the Ethernet
frames to the VOQs/Shared Memory block. This block stores the
Ethernet frames in pages. Each page includes a large number of
Ethernet frames and its length matches the length of a TDMA
frame (also called Nephele frame). All the pages that belong to a
destination are arranged in a linked list. The pointers required for
keeping the information of each destination’s linked are managed
by the Memory Map block.

The Command Interpreter block (Figure 2) is responsible for
the translation of the SDN controller commands: it provides to
this ToR the destination ToR, which has to receive data in the
upcoming TDMA slot. The ToR complies to this command and it
retrieves the first page with Ethernet frames that belongs to the
linked list associated to the commanded destination and sends this
page to the Ethernet switch. There is a Lock mechanism (Figure
2) that grants either the storing operation of the input Ethernet
frames to the shared memory or the reading operation from that
memory of the TDMA frames. In more detail, the Lock
mechanism divides the time into small time windows TL. Each TL
is dedicated for either writing to the shared buffer or reading from

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 100

it. Hence, when the ToR reads from the shared buffer it will
continue buffering in the small size queues the incoming traffic
from the servers. The length of the TL is computed at design time
to balance: first, the throughput of the shared buffer, which
requires long burst transactions for improved performance and
second, the need of the ToR operation for writing/reading to/from
the shared buffer at close time instances.

The role of the Ethernet switch in the upstream direction, is
to forward the Ethernet frames to the North Extension and
particularly to the buffer of the corresponding destination’s north
port. In that buffer the Ethernet frames formulate the final
TDMA/Nephele frame, to which are also added first, the preamble
and second, a word required for each device synchronization. The
Command Interpreter follows the schedule received from the
control plane servers and it specifies (the red control signal of
Figure 2) the slot that the ToR will transmit that TDMA frame.
For the downstream direction, the Nephele design mandates the
Ethernet switch to just forward the frame from the north input port
to the corresponding south port. That is, the design complexity of
the ToR is mostly related to the upstream path.

The communication of the ToR switch with the control plane
is accomplished through the PCI Express interconnection. The
PCI Express interface in the proposed architecture is implemented
by the use of the Xilinx IP Core for PCIe and RIFFA (Reusable
Integration Framework for FPGA Accelerators) [13]. The RIFFA
framework consists of an API (Application Programming
Interface) and a driver/kernel module for the host PC and IP core
for the FPGA, all of which are open-source. The module provided

by RIFFA for the FPGA is designed as an extension to the Xilinx
core, which handles the physical layer of the PCIe interface.
3. Virtual Output Queues

The proposed VOQ design improves the required hardware
resources based on the following concept. During a narrow time
window TB, the ToR switch receives Ethernet frames at its south
ports for various destinations in the data center network, which
we define as active destinations. We consider that for all practical
purposes, the number of the active destinations, during TB, has an
upper limit, which can be an outcome of statistical measurements
of the network traffic patterns. The active destinations' upper limit
is significantly smaller compared to the number of all the possible
destinations in the data center. Hence, letting a queue to keep all
the incoming Ethernet frames during TB that have the same active
destination and prepare in this queue a burst to be written to the
shared buffer, leads to an architecture that includes a set of queues
with cardinal number equal to that of the active destinations, while
it still keeps the high throughput at the shared buffer.

 Considering the above, the VOQs architecture is comprised
of: first, the Shared Memory (buffer), second the Memory Map
depicted in Figure 2 and third, the VOQs controller. The detailed
architecture of the VOQs controller is shown in Figure 3: it is a
design of the VOQs controller that includes four (4) active
destinations and the corresponding queues, based on a hypothesis
that the application asks for four active destination and as shown
in Figure 3 there is one queue to support each active destination.
In order to define the length of the time window TB we consider
the following facts..

Figure 3: VOQs Controller Architecture Overview

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 101

The design of the shared buffer employs a Dynamic Random
Access Memory (DRAM) that can reach the considerable
throughput of 80 Gbps at its interface; this performance will be
feasible if the entire VOQs architecture can operate with burst
transactions for reading and writing from/to the shared buffer,
thus exploiting the DRAM interface, which requires a minimum
burst time tmb depending on the DRAM specifications. The
performance of the DRAM organization degrades significantly
when the size of the burst size decreases. We note here that, this
performance degradation cannot be expressed (defined) as a
function of the burst size, e.g. proportional. Therefore, reading
and writing from/to a page in the shared buffer (in the linked list
assigned to a destination) must be performed in bursts and each
burst has to consist of multiple Ethernet frames, in the order of
Kbytes. Therefore, we need an architecture of queues able to
gather into a single queue all the incoming Ethernet frames that
have the same destination; in that queue, the controller will
formulate a burst of these Ethernet frames. Finally, it will operate
in burst mode to store these frames into the page of the linked list
of that destination, which is kept in

We consider the time window TB and the number of queues
for active destinations k to be calculated by the following
reasoning. At a clock cycle T0, given that are available k queues
storing Ethernet frames of k different IP, there will be Ethernet
frames arriving to at most all of these queues and at the clock cycle
Tb that at least one of these queues has completed a burst, and this
queue can write the burst to the buffer. Therefore, this queue can
formulate another burst either for the IP that it was supporting up
to Tb or the queue can be reassigned by the controller to serve
another IP. Thus, in this scenario, the worst case is that we have
to keep the k queues serving their IPs for as long as no queue has
completed a burst: assuming that each queue receives an Ethernet
frame in a round robin fashion TB is at most equal to k × tmb.

According to the above, the efficiency of the VOQs
architecture is defined as the maximization of the utilization of the
available resources and the DRAM buffer throughput. For this
purpose, the design has to: a) include k queues for preparing the
bursts, so that each queue prepares a burst that will be stored in an
active destination linked list of pages; b) minimize latency and c)
minimize the number of the k queues along with their size. The su

cceeding paragraphs describe how we achieve the above
goals and they describe in detail the operations of the VOQs
Controller as well as its functional blocks and components.

The ToR switch is connected with 10G Ethernet to the servers
through its south ports. First, the Ethernet Frames that arrive from
the servers at the rate of 10G are buffered in the port queue of the
10G Ethernet module and then are forwarded and buffered to the
two Input Frame Queues (Figure 3) in the following way: we start
counting the incoming frames and depending on the arrival
sequence the odd numbered incoming Ethernet Frames are stored
in the first Input Frame Queue (the upper queue on Figure 3) and
the even Ethernet Frames to the second queue. This dual queue
architecture gives us the necessary time in order to perform in

real-time the two following operations on the Ethernet Frames:
while we store a frame in one of the Input Frame Queues, we
calculate its size and extract its destination’s IP, which then are
stored to two queues of significantly lesser size, the IP ID queue
and the SIZE queue, which are positioned close to each Input
Frame Queue in the design of Figure 3.

Each frame’s IP stored in the Input Frame Queues is passed
as input (address) to a LUT, named BRAM in Figure 3. The LUT
will specify (will give as output) the id of an Active Destination
Queue (on Figure 3 we shown an example design with four
queues): in the specified Active Destination Queue we will buffer
all the Ethernet Frames with the current active destination IP, in
order to form a burst that it will be stored into the linked list of
pages of that destination in the DRAM buffer. Apart the id of the
Active Destination Queue in that BRAM location is also stored a
flag (0/1). When the flag is equal to “1”, it specifies the case in
which the Active Destination Queue id (stored in the LUT) is
granted to the active destination IP. Alternatively, the case when
the flag equals to “0” indicates that the frame’s destination IP is
not yet served by any of the Active Destination Queues and hence,
the controller has to assign an Active Destination Queue to this IP.
Now, we consider the case of an Ethernet frame arriving at the
ToR and its IP address does not correspond to any of the Active
Destination Queues. If we have correctly calculated (during the
design of the ToR) the minimum required number of the Active
Destination Queues that it is sufficient to serve the application
demands, the VOQs controller will have an empty Active
Destination Queue available for assignment to a newly arrived

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 102

Ethernet frame that requests an Active Destination Queue to
buffer the following frames with the same IP destination. All the
id (numbers) of the unused Active Destination Queues are
buffered in the queue named Empty Queues in Figure 3. At the
same clock cycle that we read from the BRAM the id of the Active
Destination Queue that serves the frame’s IP along with the “1/0”
(assigned to a queue or not) flag, we also read the first empty
queue id from the Empty Queues. The multiplexer shown at
Figure 3 bellow the BRAM is controlled by the flag in order to
select: a) the BRAM output when the flag equals “1” and b) the
Empty Queues output if the flag is “0”. In the first case where we
will use the BRAM output, the empty queue id that was just
extracted from Empty Queues will be returned back in the Empty
Queues, since it was not used. The above design minimizes the
latency for the assignment of an active queue to the new
destination.

We have to mention that in order to exploit the high
throughput of the DRAM interface, we have to write the Ethernet
Frames in the shared buffer as a burst of contiguous words of a
significant length (512 bits in the example implementation of the
proposed architecture). We note here that, in a writing burst of
Ethernet frames the last 512-bit word might not be completely
filled with Ethernet frames payload and for completing the burst
we add 0xFF as padding. The simple padding provides the
advantage of simplifying the control and it reduces the latency at
the cost of the dummy data overhead in many pages in the shared
buffer. This padding overhead becomes larger for small Ethernet
frames and it is reduced significantly in the case of full Ethernet
frames. Note here that, when it’s time to transmit a TDMA frame
the shared memory will provide us with a page: we must be
informed regarding the exact number of the useful data in this
page in order to remove the padding. For this purpose, we store in
the header of each page the useful size along with the actual page
size, which is the overall sum of the useful size and the size of the
padding stored in the shared buffer.

A small size dual port memory shown in Figure 3. as Queue-
ID Memory, stores the IP that it is currently served by each Active
Destination Queue. Each address X of the Queue-ID Memory
corresponds to the Active Destination Queue with id X. The data
at that address X of the Queue-ID Memory is the destination’s IP
that is accommodated by this Active Destination Queue. When it
is the first time that an Ethernet Frame is stored in an empty Active
Destination Queue the id of this queue is used as the address to
the Queue-ID Memory, and in that address, we store the frame’s
IP. During the whole time that this Active Destination Queue
serves the IP, the Queue-ID Memory keeps the IP in that address.
Only when an Active Destination Queue is left with all its data
forwarded to the shared buffer, we will: first, erase the contents of
the served destination in the BRAM by acquiring the address (IP)
from the Queue-ID Memory and second, write the queue id to the
Empty Queues to refresh the Active Destination Queues that are
vacant and they can be granted to another destination IP.
Consequently, the location in the Queue-ID Memory will be

overwritten by the new IP, which will be served by the
corresponding Active Destination Queue.

The proposed design minimizes the time required to perform
all the previously mentioned operations with respect to clock
cycles. The architecture can achieve the time minimization due to
the parallelization of the operations and as a result, the VOQ
architecture diminishes the latency of each stage. Consequently,
the Active Destination Queues can be as many as the application
dictates as upper bound. Moreover, the length of each queue
doesn’t need to grow beyond the size of the burst that it is
specified by the DRAM controller for reaching its maximum
throughput.

The block called Memory Map stores all the information
related to each linked list in the shared buffer associated to each
destination IP. The memory map entries are shown in Figure 4, 5
in two working examples. Each entry of the Memory Map block
has the following pointers: one at the address of the first page of
the list noting from what page we are currently reading data to
transmit; one to the last page, required to inform the VOQs that
this is the page, which currently stores all the Ethernet frames for
the associated destination; one for the “next to write” address of
the last page (writing position in Figure 4), one for the “next to
read” address of the first page (reading position in Figure 5).
Moreover, the Memory Map entry provides the exact number of
useful data in the page: this information is used to compute the
total volume of data of the Ethernet frames with or without out the
padding.

Figure 5: Memory Map Organization Concurrent Write & Read Operations

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 103

The pointers at each Memory Map block location are
refreshed during each burst write/read transaction. Thus, at the
beginning of a write/read operation to/from the DRAM buffer we
know the exact number of the data (bytes) that will be written/read.
We operate the linked list of pages as a queue since we always
transmit the head page of the list. The memory map architecture
is able to concurrently write and read from the same linked list of
pages as shown in Figure 5.

A noteworthy advantage of the novel VOQ technique is the
scalability of the architecture, which can be easily configured to
accommodate various numbers of Active Destination Queues, the
size of the DRAM shared buffer and the size of the Memory Map
block. The pointers and the size of the linked list of pages for each
destination are stored in block rams (BRAM) in the FPGA. The
required size of the BRAMs is proportional to: first, the DRAM
memory size, and second the number of destinations in the data
center network. In the case that the size of the mapping
information is relatively large and it constrains the designer of
implementing the Memory Map on the FPGA internal BRAM
memory, the proposed architecture of the Memory Map block can
be implemented on an external Static Random Access Memory
(SRAM).

4. FPGA Implementation Details

We have realized an example VOQs design with four (4)
active destinations (k = 4 is adequate for most applications in
accordance with our TB and k calculations). The development of
the example implementation was made on the NetFPGA SUME
board using the Xilinx Vivado development tool. The design
includes 3 Intellectual Property (IP) hardware Cores from Xilinx:
a) 10GbE Subsystem, which includes the MAC and the 10GbE
PCS/PMA b) Integrated Block for PCI Express c) Memory
Interface Generator (MIG) for the shared DRAM buffer. The
NetFPGA board receives the scheduling commands from the host
desktop PC, which is running Linux and communicates with the
data center’s controller, which runs on a different PC in the same
local network.

Table 1: FPGA Resources

Slice LUTs 4194
Slice Registers 2415
Slices 1888
Logic LUTs 2639
Memory LUTs 1285
Flip flop pairs LUTs 4848
Block RAMs 62

The resources occupied in the NetFPGA SUME for the
VOQs Controller are presented in the Table 1, reported by the
Vivado tool. The input small sized queues are all performing at
156 Mhz clock and use 64 bits word length, in order to comply
with the 10G Ethernet physical layer standard. The Active

Destination Queues and memories alongside of them in our
implementation are performing at 200 MHz with 512-word length.

5. Conclusion

The current paper presented a VOQs architecture, which is
efficient with respect to latency and the hardware resources and it
supports a ToR switch that is adaptable to any data center network
operating under the TDMA scheme. The most noteworthy novelty
of the proposed VOQs architecture is the efficient use of a single
large shared buffer, the performance of which is fully exploited.
The VOQ organization is based on the notion of Active
Destination Queues that leads to maximize the utilization of the
shared buffer and reduces significantly the required number of the
Active Destination Queues to the number of the connections that
are active during a narrow time window. Moreover, the
management/control of the Active Destination Queues is efficient
due to the minimum latency that induces to the operation of the
ToR switch. Furthermore, the proposed architecture is scalable
with respect to the number (k) of the Active Destination Queues,
the scale of the data center network (number of destinations), the
shared buffer size and the Ethernet protocol (Ethernet type/Frame
size).

Conflict of Interest

The authors declare no conflict of interest.

References

[1] A. Kyriakos, I. Patronas, G. Tzimas, V. Kitsakis and D. Reisis, "Realizing
virtual output queues in high throughput data center nodes," 2017
Panhellenic Conference on Electronics and Telecommunications (PACET),
Xanthi, 2017, pp. 1-4. doi: 10.1109/PACET.2017.8259971

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.1402967

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data center
network,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, ser. SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp.
51–62. [Online]. Available: http://doi.acm.org/10.1145/1592568.1592576

[4] N. Farrington, E. Rubow, and A. Vahdat, “Data center switch architecture in
the age of merchant silicon”, in Proceedings of the 2009 17th IEEE
Symposium on High Performance Interconnects, ser. HOTI ’09, 2009, pp.
93–102.

[5] H. H. Bazzaz, M. Tewari, G. Wang, G. Porter, T. S. E. Ng, D. G. Andersen,
M. Kaminsky, M. A. Kozuch, and A. Vahdat, “Switching the optical divide:
Fundamental challenges for hybrid electrical/optical datacenter networks,” in
Proceedings of the 2Nd ACM Symposium on Cloud Computing, ser. SOCC
’11. New York, NY, USA: ACM, 2011, pp. 30:1–30:8. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038946

[6] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y.
Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch
architecture for modular data centers,” in Proceedings of the ACM
SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New York, NY, USA:
ACM, 2010, pp. 339–350. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851223

[7] K. Tokas, C. Spatharakis, I. Kanakis, N. Iliadis, P. Bakopoulos, H.
Avramopoulos, I. Patronas, N. Liakopoulos, and D. Reisis, “A scalable
optically-switched datacenter network with multicasting,” in 2016 European
Conference on Networks and Communications (EuCNC), June 2016, pp.
265–270.

[8] P. Bakopoulos, K. Christodoulopoulos, G. Landi, M. Aziz, E. Zahavi, D.
Gallico, R. Pitwon, K. Tokas, I. Patronas, M. Capitani, C. Spatharakis, K.
Yiannopoulos, K. Wang, K. Kontodimas, I. Lazarou, P. Wieder, D. Reisis, E.

http://www.astesj.com/
http://doi.acm.org/10.1145/1402946.1402967
http://doi.acm.org/10.1145/1592568.1592576
http://doi.acm.org/10.1145/2038916.2038946
http://doi.acm.org/10.1145/1851182.1851223

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 97-104 (2018)

www.astesj.com 104

Varvarigos, M. Biancani, H. Avramopoulos, “NEPHELE: an end-to-end
scalable and dynamically reconfigurable optical architecture for application-
aware SDN cloud datacenters”, IEEE Communications Magazine, 2018

[9] K. Christodoulopoulos, K. Kontodimas, K. Yiannopoulos, E. Varvarigos,
"Bandwidth Allocation in the NEPHELE Hybrid Optical Interconnect", 2016
18th International Conference on Transparent Optical Networks (ICTON),
July 2016.

[10] Pedro Yébenes, German Maglione-Mathey, Jesus Escudero Sahuquillo,
Pedro J. García, Francisco J. Quiles, “Modeling a switch architecture with
virtual output queues and virtual channels in HPC-systems simulators”, 2016
International Conference on High Performance Computing & Simulation
(HPCS), Innsbruck, Austria, July 2016.

[11] Mellanox Technologies, “SX1024: The Ideal Multi-Purpose Top-of-Rack
Switch”, White Paper, May 2013. Available:
https://www.mellanox.com/pdf/whitepapers/SX1024-The-Ideal-
Multipurpose-TOR-Switch.pdf

[12] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netfpga
sume: Toward 100 gbps as research commodity,” IEEE Micro, vol. 34, no. 5,
pp. 32–41, Sept 2014.

[13] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.
2015 RIFFA 2.1: A Reusable Integration Framework for FPGA Accelerators.
ACM Trans. Reconfigurable Technol. Syst. 8, 4, Article 22 (September 2015),
23 pages. Available: http://dx.doi.org/10.1145/2815631

http://www.astesj.com/
http://dx.doi.org/10.1145/2815631

	2. The Architecture of the Top-of-Rack (ToR) Switch
	3. Virtual Output Queues
	4. FPGA Implementation Details
	5. Conclusion
	The current paper presented a VOQs architecture, which is efficient with respect to latency and the hardware resources and it supports a ToR switch that is adaptable to any data center network operating under the TDMA scheme. The most noteworthy novel...

	Conflict of Interest
	References

