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Network motif analysis has several applications in many different fields
such as biological study and social network modeling, yet motif detection
tools are still limited by the intensive computation. Currently, there
are two categories for network motif detection method: network-centric
and motif-centric approach. While most network-centric algorithms ex-
cel in enumerating all potential motifs of a given size, the runtime is
infeasible for larger size of motifs. Researchers who are interested in
larger motifs and have established a set of potential motif patterns could
utilize motif-centric tools to check whether such patterns are truly net-
work motifs by mapping them to the target network and counting their
frequency. In the paper, we present NemoMap (Network Motif Mapping
algorithm) which is an improvement of the motif-centric algorithm, GK
(by Grochow and Kellis) and MODA (Motif Detection Algorithm). Ex-
perimental results on three different protein-protein interaction networks
show that NemoMap is more efficient in mapping complex motif pat-
terns, while GK and MODA is much faster in analyzing simpler patterns
with fewer edges. We also compare the performance of NemoMap and
ParaMODA (introduced previously to improve MODA), and the result
shows that NemoMap yields better runtime due to the implementation
of Grochow-Kellis’ symmetry-breaking technique and the better node
selection process.

1 Introduction

Advancements in modern computer processing power
and storage capability have enabled the collection of
large-scale networks such as social networks, computer
networks, and biological networks. These networks
hold thousands or even millions of nodes (vertices),
and they could be modelled using the graph structure
which allows researchers from different fields to study
under a common framework. One of the biggest chal-
lenges in network analysis is to determine network
motifs, defined as the subgraph patterns that occur
more frequently in the original network than in sim-
ilar randomized networks. As an extension of work
originally presented in IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), 2017 [1],

we provide an improved network motif detection algo-
rithm in this paper.

The motivation for network motif study comes
from the desire to gain more insight on the structural
foundation of complex networks because those sub-
structures might be the key component of a specific
functionality. Such knowledge could be used to classify
networks into “superfamilies” [2], or to select appro-
priate network model to study a real network [3]. In
biological networks, network motif analysis has been
used for discovering basic functional foundation in
Transcriptional Regulation Networks (TRN) [4, 5], pre-
dicting interaction in Protein-Protein Interaction (PPI)
networks [6], and studying breast-cancer related genes
[7].

Although network motif analysis has significant ap-
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plications in the real world, in practice it is infeasible
to find motif of larger size because the process involves
a nondeterministic polynomial time (NP) isomorphic
testing and statistical testing. Two graphs which have
the same number of nodes connecting in the same way
are considered isomorphic, and most network motif
analysis includes a huge number of isomorphic testing
to classify motif and to avoid double counting. Ad-
ditionally, statistical testing is used to determine the
uniqueness of motifs in a number of similar randomly
generated networks and the same process of isomor-
phic testing runs for each newly created network (or
ensemble of networks), so time complexity increases
dramatically. Typically, more than 1,000 networks are
generated, and the frequency of each motif is statisti-
cally compared using P-value or Z-score. A subgraph
pattern with P-value of less than 0.01 or a Z-score of
higher than 2 is identified as a network motif [8]. Such
operations are very time consuming and usually are
the main bottleneck of network motif analysis.

There have been several motif detection algorithms
developed over the years, and they generally fall into
two categories: network-centric and motif-centric [9].
The network-centric approach would search all possi-
ble enumerations of subgraphs of a given size in the
target network, while the motif-centric method would
predetermine one or more query graph patterns then
count the occurrence of each query graph in the origi-
nal network. Both approaches utilize statistical testing
to check the significance of each potential motif.

Here, we propose NemoMap (Network Motif Map-
ping algorithm) which is an extension of ParaMODA
in [1]. NemoMap improves the performance of
ParaMODA which is an improvement of the motif-
centric algorithms developed by Grochow-Kellis (GK)
[10]. NemoMap is implemented in C++ so that it can
be included in NemoLib [11], which is currently devel-
oped with Java, C++ and Python and includes network-
centric method only. With the addition of NemoMap
in NemoLib, we expect to have both choices available
in a single library. In this paper, we also compare
the performance of NemoMap against GK, as well as
ParaMODA.

The rest of the paper is organized as the following:
Section 2 describes background information of net-
work motif; Section 3 discusses NemoMap algorithm
and its implementation; Section 4 reports experimen-
tal results and performance comparison, followed by
conclusion and future works in Section 5.

2 Network Motif

2.1 Network Motif Detection

Network motifs were introduced in 2002 by Milo et al.
as “patterns of interconnections occurring in complex
networks at numbers that are significantly higher than
those in randomized networks” [4]. Suppose we have a
network G with |G| vertices, and a number k such that
3 ≤ k << |G|. A connected subgraph M of size k which

appears more frequently in G than a predetermined
threshold value is a network motif. Typically, we use
the statistical P-value or Z-score of the frequency of M
in thousands of randomly generated similar networks
as the threshold value.

P-value(M) =
1
N

N∑
n=1

c(n), (1)

where c(n) =
{

1, if fR(M) ≥ fG(M).
0,otherwise

Z-score(M) =
fG(M)−µ(fR(M))

σ (fR(M))
(2)

Here, N is the number of random graphs, and
fG(M) is the frequency of M in the target network
while fR(M)is the frequency of M in the random net-
work. µ(fR(M)) is the mean of frequencies of M in the
random networks and σ (fR(M)) is the standard devia-
tion of frequencies of M in the random networks.

Generally, a subgraph with P-value < 0.01 or Z-
score > 2.0 is considered a network motif after analyz-
ing in more than 1,000 random networks [8].

2.2 Isomorphic Testing

Figure 1: (a) A sample undirected graph; (b) A subgraph pattern;
(c) M1-M5 are all isomorphic to (b)

Two graphs are isomorphic if they have the same num-
ber of nodes and there is “a one-to-one mapping be-
tween their nodes such that each edge in one graph
can be mapped to an edge in the other graph” [12].
Figure 1 shows isomorphic subgraph patterns as an
example. Since isomorphic testing is known to be an
NP-complete problem, a common practice for catego-
rizing graphs is to use a program called Nauty [13]
to canonically label subgraph patterns; if two graphs
have the same canonical label, they are isomorphic.
One drawback of using Nauty is its dependency on the
Linux operating system.

Another technique for analyzing isomorphism is
comparing certain invariants of the graphs such as
the degree of each node or the degrees of each node’s
neighbors [10]. Those properties are inherent to the
structure of the graph, so two graphs are isomorphic if
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they have the same properties. Here, we will utilize the
later approach because we want the implementation
without Nauty, to be operating system (OS) indepen-
dent.

2.3 Network-Centric Approach

Many researchers have developed algorithms and soft-
ware implementations of network motif detection fo-
cusing on the network-centric approach which searches
all possible enumerations of subgraphs of a given size
in the original target network. Some of the most distin-
guished applications include MAVisto [14], MFinder
[15], FANMOD [16, 17], Kavosh [18], NemoFinder [19],
and NetMODE [20], most of which involve the typical
process of enumerating different k-size subgraphs in
the original network. Unfortunately, even with modern
computer architecture such solutions are still limited
in the size of detectable motifs. Network-centric algo-
rithms using exhaustive exact enumeration of k-size
subgraphs in the network can often find only motifs
with up to 6 nodes [10] due to the time-consuming
process of scanning for every nodes and edges of the
network.

One method to substantially reduce such pro-
cessing time is sampling, employed by applications
like MFinder and FANMOD. MFinder uses an edge-
sampling strategy introduced by Kashtan et al. [15]
which randomly selects an edge in the target network
then picks a k-size subgraph around that edge to com-
pare. However, edge-sampling technique seems to be
biased toward subgraphs that have more edges result-
ing in higher count for such subgraphs [12]. Addition-
ally, there is also the node-sampling strategy used by
FANMOD which assigns a probability to the node to
determine the chance that such node would be explore
further [17]. The later sampling technique proves to
be more efficient in reducing runtime, yet it could only
increase FANMOD maximum discoverable motif size
to 8 nodes.

2.4 Motif-Centric Approach

Due to the limitation of network-centric algorithms,
Grochow and Kellis (GK) introduced a different ap-
proach for larger motif detection by first determining
a query list of subgraph patterns of size k, then finding
the frequency of each pattern in the target network by
mapping the query graphs to all possible location in
the network [10].

This strategy is described as “motif-centric”, and
the application can find motifs of up to 15 nodes. More-
over, the algorithm employs an efficient enumeration
process called symmetry-breaking technique to sig-
nificantly reduce isomorphic testing which is one of
the most intensive tasks in network motif detection.
The symmetry-breaking condition ensures that each
mapping of the query graph to the target network
is unique so that unnecessary isomorphic testing is
avoided. However, one disadvantage is that it requires
a set of query subgraphs to start with. Therefore, if

the researcher has no method to determine an appro-
priately concise k-size query list, run-time can suffer
heavily with increasing subgraph size since full enu-
meration of all possible variations of k-size subgraphs
is needed. Table 1 shows the exponential growth of
pattern variations of k-size subgraphs up to 10 nodes,
and in the worst-case scenario the application would
have to iterate over 341,247,400,399,400,000,000 of
10-node patterns many of which might not even exist
in the target graph [9].

Table 1: Number of non-isomorphic subgraphs for
undirected and directed graphs with up to 10 vertices.
Courtesy of [8]

Heavily inspired by Grochow-Kellis’ (GK) algo-
rithm, MODA (Motif Discovery Algorithm) [21] im-
proves upon the former by the introduction of a query
graph hierarchy expansion treeas illustrated in Figure
2. MODA chooses a subgroup of the query graphs
which might appear more frequently in the target net-
work to start mapping with as the top level of the tree;
then it adds one edge to each graph of the previous
level while ensuring that no duplicate is present to
build the subsequent level of the tree. Because each
level is only extended by one edge, the mapping infor-
mation of the previous level can be saved and reused
to extend mapping by one node, so computation time
would be reduced substantially. It also uses a node-
sampling method during the edge-expansion based
on the linearly proportional distribution of nodes and
edges [9].

3 NemoMap

We propose NemoMap (Network Motif Mapping al-
gorithm) as an extension of ParaMODA [1] which is
an improvement of the motif-centric algorithm intro-
duced by Grochow-Kellis (GK). We call it NemoMap
since it is an improvement of the mapping function in-
troduced by GK and we will include it in the NemoLib
library [11]. Since this is a direct improvement of GK,
we will firstly explain in detail the main components
of GK, then discuss our alteration in NemoMap, and
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lastly compare the difference in implementation of
NemoMap and ParaMODA.

Figure 2: Expansion tree of size-4 subgraph, courtesy
of [21]

3.1 Grochow-Kellis (GK)

We will discuss the mapping function of GK which
focuses on the mapping of a query graph to the target
network to find the frequency of such query graph’s
appearance in the network because NemoMap and
ParaMODA improve upon such functionality.

Suppose we have an input network G and a query
graph H , and the goal is to find and count all the possi-
ble mapping f from H to G which G can support. GK
mapping algorithm involves three functions as shown
in Algorithm 1, 2, and 3.

As discussed in Section 2.4, GK utilizes comparison
of two invariants between graphs to test for isomor-
phism: the degree of each node and the degrees of
each node’s neighbors. It starts with an arbitrarily par-
tial map of one node h of H to one node g of G, then
extends that map by a single node for every recursive
call of IsomorphicExtensions (Algorithm 2) until all
nodes of H are mapped to appropriate nodes of G.
Additionally, IsomorphicExtensions guarantees that
any newly mapped node is connected to the already-
mapped nodes, so the returned mapping must be an
isomorphism [10].

Although the symmetry-breaking condition is op-
tional, it significantly improves runtime and memory
usage. Figure 3 shows symmetry-breaking example.
Without symmetry-breaking, FindSubgraphInstances
(Algorithm 1) would have to maintain a list of all map-
pings in memory to screen out duplicate mappings
resulting in low efficiency as the program has to con-
stantly write and read data from memory or disk. On
the other hand, symmetry-breaking ensures that each
mapping is unique, so there is no need to maintain
the mapping list. Such feature substantially reduces

memory usage and runtime for larger network analysis
or bigger size query graphs [10] as illustrated in Table
2.

Figure 3: Symmetry-breaking example: Finding conditions that
will break all the symmetries of a 6-node graph. White nodes are
fixed by any automorphism preserving the indicated conditions,
and other nodes are shaded according to their equivalence class
under the automorphisms which preserve the indicated conditions.
(Courtesy of [10])

3.2 ParaMODA

Compared to GK algorithm, ParaMODA follows closely
with a couple of alterations. In FindSubgraphIn-

stances in Algorithm 1, instead of going through all
nodes h of H , we only arbitrarily choose one node h to
traverse from. The chosen h node serves as the fixed
starting point for all traversals of the query graph, and
since the nodes of G are only traversed once with the
chosen node h, the visited nodes g of G are not re-
moved from the network [1]. There are no changes to
IsomorphicExtensions in Algorithm 2.

ParaMODA improves time complexity by elimi-
nating the inner iteration (loop) in FindSubgraphIn-

stances at the expense of not shrinking the network
by keeping visited nodes. The performance compari-
son will be discussed in Section 4. The logic behind
the removal of the inner iteration comes from the fact
that if the query graph is connected and the network is
unchanged, any node of the network could be used as
the starting point for mapping because the set of edges
remain unchanged [1].

Another advantage of ParaMODA is the possibil-
ity of parallelization. Since each mapping from H to
G is unique and each starting mapping node of the
network is independent, we can partition the vertices
easily across processors and have the result aggregated.
Because the nodes are ordered based on their degrees
in descending order, we can achieve better load distri-
bution across processes by using strategies that factor
in the uneven nature of that distribution [1].

3.3 NemoMap

As an extension to ParaMODA [1], NemoMap main-
tains the core structure with two differences: the clarifi-
cation of node h choosing process, and the implementa-
tion of symmetry-breaking technique. We implement
NemoMap in C++ so that it can be included in the
NemoLib library [11].

Instead of arbitrarily picking a node h of H to
start the mapping process as discussed in Section 3.2,
NemoMap chooses the most constrained node h to tra-
verse from. This selection process starts with picking
the node with the highest degree, and if there are more
than one nodes with the same highest degree we will
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Algorithm 1: FindSubgraphInstances (G,H), by courtesy of [10]
Find all instances of query graph H in network G
Input : Graph G and a query graph H
Output : A set of all instances of H in G
Start with an empty set of instances
Find Aut(H). Let HE be the equivalence representatives of H
Find symmetry-breaking conditions C of H given HE and Aut(H)
Order the nodes of G by increasing degree and then by increasing neighbor degree sequence
for each node g of G do

for each node h of H such that g can support h do
Let f be the partial map associating f (h) = g
Find all isomorphic extensions of f [up to symmetry] (i.e. call IsomorphicExtensions (f ,H ,G,
C[h]))

Add the images of these maps to the set of all instances
Remove g from G

Return the set of all instances.

Table 2: The number of subgraphs encountered by NemoMap with and without symmetry-breaking (including
multiple encounters for the version without symmetry-breaking). The improvement factor is exactly the average
number of automorphisms of subgraphs of the associated size. (Courtesy of [10])

select among them the node with the highest sum of
neighbors degrees. If there is still a tie after the second
selection round, we will arbitrarily choose one node
among the last filtered group to be node h. Such se-
lection process helps reduce the number of recursive
isomorphic testing as the constrained node h has a
lower chance of being mapped to nodes in G, resulting
in a faster runtime. Algorithm 4 shows the altered
process.

Without symmetry-breaking, ParaMODA suffers
from memory overhead issue when analyzing query
with a large number of mappings because the program
has to maintain a list of mappings to avoid duplication.
As a result, the program frequently runs out of mem-
ory and crashes if the target network is large. Further-
more, it also has slower runtime as redundant recursive
calls for isomorphic testing are completed. NemoMap
solves this problem by including the GK symmetry-
breaking condition with a little tweak. Because only
one node h of H is chosen, SymmetryConditions in Al-
gorithm 3 does not need to find the symmetry-breaking
conditions for all nodes ofH ; only the conditions of the
selected node h are needed as illustrated in Algorithm
5.

NemoMap implementation also uses the standard

vector data structure instead of the user-defined class
Mappings as in ParaMODA program. The change is
due to performance optimization, and from the fact
that all query graph mappings always start from one
fixed node h with the same extension path. Therefore,
from the standpoint of a key-value pair of the Map-
pings class with the keys representing mapped nodes
h of query graph H , the key’s sequence order will al-
ways be the same, so there is no need to maintain such
data; we can save it at the beginning for later use if
necessary. Instead, we use a vector to store the values,
i.e. the corresponding mapping nodes g of network G,
in the correct order that the keys are in.

The input file format for the query graph and the
target network of NemoMap remains the same with
each line contain two integers separated by a white
space or a tab. Each line of the input file represents
an edge of the graph, and the two integers are the ID
number of the nodes which form such edge. Lines start
with “#” are comments and will be ignored [1]. Ad-
ditionally, the program disallows self-edge, i.e. edge
from a node pointing to itself, as well as duplicating
edge.

As discussed earlier, the program generates a list
of mappings of the query graph H in all possible lo-
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Algorithm 2: IsomorphicExtensions(f ,H ,G, C[h]), by courtesy of [10]

Find all isomorphic extensions of partial map f :HG [satisfying C(h)]
Input : Partial map f :H → G, a graph G, query graph H , and a symmetry-breaking condition C(h)
Output : All isomorphic extensions of f
Start with an empty list of isomorphisms
Let D be the domain of f
if D =H then

Return a list consisting solely of f. (Or write to disk)
Let m be the most constrained neighbor of any d ∈D (constrained by degree, neighbors mapped, etc.)
for each neighbor n of f (D) do

if there is a neighbor d ∈D of m such that n is not neighbors with f (d), or if there is a non-neighbor d ∈D
of m such that n is neighbors with f (d), or if assigning f (m) = n would violate a symmetry-breaking
condition in C(h)] then

Continue with the next n
else

Let f ′ = f on D, and f ′(m) = n
Find all isomorphic extensions of f ′

Append these maps to the list of isomorphisms
Return the list of isomorphisms.

Algorithm 3: SymmetryConditions(HE ,Aut(H)), by courtesy of [10]
Find symmetry-breaking conditions for H given HE , Aut(H)
Input : Nodes of H grouped into equivalence classes HE , automorphisms of H Aut(H)
Output : A map from equivalence representatives to sets of symmetry-breaking conditions
Let M be an empty map from equivalence representatives to sets of conditions
for each n ∈HE do

Let C be an empty set of conditions
n′ = n
A = Aut(H)
do

Add “Label(n′) <Min{Label(m)|m ∼ An′ and m , n′}” to C
A = {f ∈ A|f (n′) = n′}
Find the largest A-equivalence class E
Pick n′ ∈ E arbitrarily

while |A| , 1
Let M(n) = C

Return M

cations of the network G. The mappings can be saved
to disk if necessary, however the current NemoMAp
implementation simply discards them and only count
the number of mappings found.

3.4 Summary of Changes

The changes in NemoMap vs. GK algorithm are pick-
ing one fixed node h in terms of mapping and find-
ing symmetry-breaking condition of only that node.
NemoMap is implemented in C++ and includes the
symmetry-breaking technique, while ParaMODA is
written in C# and does not have symmetry-breaking;
NemoMap also have an improved node h selection pro-
cess. Table 3 summarizes the changes.

4 Experiments

4.1 Setup

Motif-centric approach is not primarily designed for
exhaustive search of network motif, so we will focus on

comparing runtime performance between NemoMap
and GK on predetermined query graph mapping. The
experiment will include two parts: performance com-
parison between NemoMap and ParaMODA, and be-
tween NemoMap and GK. All testing will be conducted
on three protein-protein interaction (PPI) networks ob-
tained from the Database of Interacting Proteins (DIP)
[22]:

• Homo sapiens (Hsapi): 1,715 nodes with 1,873
edges (low edge density)

• Escherichia coli (E. coli): 1,223 nodes with 1,654
edges (average edge density)

• Saccharomyces cerevisiae (S. cerevisiae): 2,164
nodes with 4,303 edges (high edge density)

As mentioned in [1], the performance difference
between ParaMODA and GK algorithm varies widely
depending on the query graph used. In this paper,
we attempt to elaborate which query graph categories
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Algorithm 4: FindSubgraphInstances NemoMap(G,H)

Find all instances of query graph H in network G
Input : Network G and a set of query graph H
Output : A set of all instances of H in G
Start with an empty set of instances
Pick the most constrained node h from H (constrained by degree, sum of neighbors’ degrees)
Find Aut(H)
Find symmetry-breaking conditions C of h given Aut(H)
Order the nodes of G by increasing degree and then by increasing neighbor degree sequence
for each node g of G such that g can support h do

Let f be the partial map associating f (h) = g
Find all isomorphic extensions of f [up to symmetry] (i.e. call IsomorphicExtensions (f ,H ,G, C[h]))
Add the images of these maps to the set of all instances

Return the set of all instances.

Algorithm 5: SymmetryConditions NemoMap(HE ,Aut(H))
Find symmetry-breaking conditions for H given HE , Aut(H)
Input : Automorphisms of H,Aut(H)
Output : A set of symmetry-breaking conditions for node h
Let C be an empty set of conditions
n′ = n
A = Aut(H)
do

Add “Label(n′) <Min{Label(m)|m ∼ An′ and m , n′}” to C
A = {f ∈ A|f (n′) = n′}
Find the largest A-equivalence class E
Pick n′ ∈ E arbitrarily

while |A| , 1
Let M(n) = C Return M

are more advantageous to each algorithm. Therefore,
we break down the query graphs into three pattern
groups:

• Group Simple: Low edge-to-node count

• Group Average: Average edge-to-node count

• Group Complex: High edge-to-node count

We choose to use the ratio of edge count to node
count as a measure for a graph complexity with higher
ratio equating to higher complexity. Although there
are other factors in a graphs complexity such as out-
degree distribution, we think using the edge-to-node

ratio would making the experiment more manageable.
Each query graph group consists of four query graphs
with four to seven nodes. All tests were conducted on
a desktop computer with the following specifications:

• CPU: Intel Core i5-8400 (6-core) 2.80Ghz, Turbo
4.00Ghz, 9MB cache

• RAM: 16GB DDR4 2133Mhz

• Hard Drive: 240GB SSD

• GPU: Intel UHD Graphics 630

• OS: Windows 10 Home Edition

Table 3: Summary of changes of NemoMap compared to ParaMODA and GK
NemoMap ParaMODA GK

Language C++ C# Java
Mapping Pick the most constrained node

h of query graph H (constrained
by degree, sum of neighbors’ de-
grees), then start all mapping
from the h, and do not remove
mapped node g

Pick an arbitrary node h of
query graph H , then start
all mapping from the h,
and do not remove mapped
node g

Iterate over all nodes of
H (or all representative
node of H if symmetry-
breaking is used), and re-
move mapped node g after
every iteration

Symmetry-
breaking

Find symmetry-breaking condi-
tion for only one fixed node h

Symmetry-breaking condi-
tion is not included

Find symmetry-breaking
condition for all represen-
tative nodes of H

www.astesj.com 192

http://www.astesj.com


T. Huynh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 186-199 (2018)

• IDE: Visual Studio 2017 Community

The source code of Grochow-Kellis’ algorithm in
Java was provided by the author [10], and all runtimes
reported for GK are measured using this implementa-
tion. The source code was compiled with the IntelliJ
IDEA 2018.5 Community IDE.

4.2 Performance Metrics

The primary performance metric is runtime measured
in milliseconds (ms). The comparison metric Reduc-
tion is computed to represent the relative performance
between NemoMap and GK algorithm, and is defined
in Equation (3):

RGK =
TGK − TNemoMap

TGK
× 100 (3)

Here, TGK is the runtime of Grochow-Kellis’ algo-
rithm in millisecond (ms), and TNemoMap is the runtime
of NemoMap in ms. RGK represents the relative reduc-
tion in runtime from using NemoMap instead of GK
expressed in percentage.

Another similar metric RP araMODA is computed to
represent the relative performance between NemoMap
and ParaMODA, and is defined in the following equa-
tion:

RP araMODA =
TP araMODA − TNemoMap

TP araMODA
× 100 (4)

TP araMODA, TNemoMap are the runtime of
ParaMODA in ms and NemoMap in ms respectively,
and RP araMODA is the relative reduction in runtime
from using NemoMap instead of ParaMODA expressed
in percentage.

4.3 Results and Discussion

We show the results comparing the performance
of NemoMap against Grochow-Kellis as well as of
NemoMap against ParaMODA in Table 4, Table 5, and
Table 6.

4.3.1 NemoMap vs. ParaMODA

In all cases, the implementation of NemoMap ran sig-
nificantly faster than ParaMODA, and the performance
gap widens when the complexity of the network in-
creases. Starting with the simpler network of Hsapi
(1,715 nodes and 1,873 edges: edge-to-node ratio of
1.09) in Table 4, we have runtime reduction ranging
from 61.29% to 99.57% when using NemoMap; the
second network of E. coli has more complexity with
a higher edge-to-node ratio (1,223 nodes and 1,654
edges: ratio of 1.35) which results in a higher reduc-
tion rate of between 93.58% to 99.97% in runtime as
recorded in Table 5; lastly, in Table 6, the most complex
network S. cerevisiae with a very high edge-to-node
ratio of 1.99 (2,164 nodes and 4,303 edges) yields an

even higher reduction range from 94.16% to 99.96%
in runtime for NemoMap.

ParaMODA ran out of memory and stopped in sev-
eral runs, most of which are case with large numbers
of mappings (more than 9 million mappings). As dis-
cussed in earlier sections, this problem could be ad-
dressed by introducing symmetry-breaking technique
into the program so that maintaining a list of mappings
in memory is not needed. Furthermore, symmetry-
breaking also reduced runtime by eliminating redun-
dant isomorphic testing which is the most intensive
task of subgraph mapping. Other elements that might
help improve runtime include language performance
difference between NemoMap and ParaMODA and the
level of code optimization.

4.3.2 NemoMap vs. Grochow-Kellis

As mentioned in our previous work [1], performance
difference between ParaMODA and GK varied depend-
ing on the query graph. Therefore, we attempt to fig-
ure out the factors affecting performance difference
between NemoMap and GK in this paper by dividing
query graphs into groups. For illustration purposes, we
sketch the performance in runtime (ms) of NemoMap
and GK with line charts on the networks of Hsapi, E.
coli, and S. cerevisiae in Figure 4, 5, and 6 respectively.
Each Figure contains three charts for the three different
groups of query graphs as described in Section 4.1: (a),
(b), and (c) denotes the Simple, Average, and Complex
pattern accordingly.

In most scenarios, GK’s algorithm was substantially
slower than NemoMap. However, in the case of simple
query graphs which had a small count of edges (edge
count was smaller than node count), NemoMap run-
time was slower as illustrated by chart (a) of Figure 4,
5, and 6 with increasing performance gap when the
query graph size gets bigger. Interestingly, NemoMap
was faster for simple query graphs of size 4, but it
dragged behind for size-5 and larger query graphs.
The runtime also got slower when the network be-
comes more complex: on the Hsapi, NemoMap was
behind by 40.79% to 72.06%; for the E. coli, the gap
increased to up to 89.30% slowdown; lastly, the S. cere-
visiae networks show slower performance of between
49.63% to 90.76%.

On the other hand, when the query graphs became
complex with more edges, NemoMap ran much faster
than GK. Chart (b) and (c) of Figure 4, 5, and 6 all
show exponential improvement in runtime when us-
ing NemoMap. Although we did not see an upward
trend in performance improvement when the query
graph size increases or when the network gets more
complex, runtime reduction rate was consistently in
the 75% to 90% range as recorded in Table 4, 5, and
6. The only exception was in Table 5 for the Average
pattern size-6 query graph with improvement of only
48.84%.

Such observation was consistent in all three tested
PPI networks. One possible explanation could be from
the isomorphic testing phase, which is the most inten-
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Table 4: Performance comparison on the PPI network of Hsapi

Table 5: Performance comparison on the PPI network of E. coli
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Table 6: Performance comparison on the PPI network of S. cerevisiae

Figure 4: Graph of runtime against query graph size for (a) Simple graph, (b) Average graph, and (c) Complex
graph between NemoMap and Grochow-Kellis for Hsapi. NemoMap outperforms in all cases except for (a).
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Figure 5: Graph of runtime against query graph size for (a) Simple graph, (b) Average graph, and (c) Complex
graph between NemoMap and Grochow-Kellis for E. coli. NemoMap outperforms in all cases except for (a).

Figure 6: Graph of runtime against query graph size for (a) Simple graph, (b) Average graph, and (c) Complex
graph between NemoMap and Grochow-Kellis for S. cerevisiae. NemoMap outperforms in all cases except for
(a).
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sive task of the subgraph mapping. As discussed in
Section 3.1, GK uses two invariants between graphs
to test for isomorphism: the degree of each node and
the degrees of each nodes neighbors. To clarify the
first invariant, when trying to map a node h of query
graph H to a node g of network G, if node g’s degree is
smaller than node h’s degree then h cannot be mapped
to g and the function must move on to another node g
as illustrated in Figure 7.

Figure 7: Node h cannot be mapped to node g because
g’s degree is smaller than h’s degree

Figure 8: Mapping two different query graphs (a) H ,
and (b) H ’ to the same network G

Looking at two different scenarios as illustrated
in Figure 8, we have one network G and we want to
map two query graphs H and H ′ to. Assuming that we
choose the first mapping node h and h′ as highlighted
for each query graph, and we examine the possibility
of mapping node h to each node of network G.

In scenario (a), node h has a degree of three so only
node 1 of G can support it. As a result, the recur-

sive call for isomorphic testing will only be called and
branched out when trying to map node h to 1; node 2,
3, 4, and 5 will be aborted early so no isomorphic test
is ran. On the other hand, in scenario (b), node h′ has
a degree of two so node 1, 2, 3, and 4 can all support it,
resulting in a lot more of isomorphism recursive tests
since only mapping to node 5 can be aborted early.

The larger number of isomorphic tests and the
lower chance to abort early in (b) are advantageous
for GK because it uses the same isomorphic testing
algorithm as NemoMap, but the network is getting
smaller and smaller after every iteration because GK
removes mapped nodes from the network unlike the
fixed network of NemoMap. However, GK needs to iter-
ate over all nodes ofH ′ , so the removal effect might get
canceled out. If the query graph is highly symmetrical
and symmetry-breaking is used, then it will unlikely to
be fully even out. Recall that with symmetry-breaking,
GK only iterates over representative nodes of equiv-
alence class. In (b), node A, B, and C belong to the
same equivalence class as they are symmetrical (for
more detail on equivalence class please reference [10]),
so instead of iterating over four nodes (h′, A, B, and
C), Grochow-Kellis would only iterate over two nodes
(h′ and one arbitrary node from the equivalence class).
Such effect might help GK retain better performance
on simpler query graphs with lower nodes’ degrees
and large equivalence classes.

As mentioned in the previous section, other ele-
ments that might affect runtime include language per-
formance difference between C++ and Java and the
level of code optimization.

5 Conlusion and Future Works

In this paper, we present NemoMap, a motif-centric
algorithm inspired by the work of Grochow and Kellis
[10], as a tool to determine the frequency of a sub-
graph’s appearance in a target network. Extending
from our previous work in ParaMODA [1], the new ex-
perimental results show that there is improvement in
performance using NemoMap, yet it does not apply in
all cases. Specifically, we observe that NemoMap runs
much faster when analyzing complex query graphs
with more edges, while Grochow-Kellis’ solution is
more efficient for simpler query graphs with fewer
edges (i.e. lower degrees) and high symmetry. As an
extension, NemoMap also sees large improvement in
runtime and memory usage compared to the prede-
cessor ParaMODA due to the utilization of symmetry-
breaking technique and the better node selection pro-
cess.

Additionally, NemoMap structure allows for an eas-
ier parallelization scheme, as multiple query graphs
or different nodes of the same query graph can be as-
signed to different processors running concurrently.
Such operation is necessary for future research as the
need for finding larger network motif becomes more
prominent. Another essential future item is the im-
plementation of a random network generator and a
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Figure 9: Visualization of groups of query graphs used for testing

statistical analysis system into the mapping function
so that the NemoMap program could become a com-
plete network motif detection suite.

The source code of NemoMap and usage in-
struction are available on https://github.com/tien-
huynh/NemoMap. ParaMODA is also available on
https://github.com/smbadiwe/ParaMODA.
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