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 Cloud Computing is considered nowadays an attractive solution to serve the Big Data 
storage, processing, and analytics needs. Given the high complexity of Big Data workflows 
and their contingent requirements, a single cloud provider might not be able alone to satisfy 
these needs. A multitude of cloud providers that offer myriad of cloud services and 
resources can be selected. However, such selection is not straightforward since it has to 
deal with the scaling of Big Data requirements, and the dynamic cloud resources 
fluctuation. This work proposes a novel cloud service selection approach which evaluates 
Big Data requirements, matches them in real time to most suitable cloud services, after 
which suggests the best matching services satisfying various Big Data processing requests. 
Our proposed selection scheme is performed throughout three phases: 1) capture Big Data 
workflow requirements using a Big Data task profile and map these to a set of QoS 
attributes, and prioritize cloud service providers (CSPs) that best fulfil these requirements, 
2) rely on the pool of selected providers by phase 1 to then choose the suitable cloud 
services from a single provider to satisfy the Big Data task requirements, and 3) implement 
multiple providers selection to better satisfy requirements of Big Data workflow composed 
of multiples tasks. To cope with the multi-criteria selection problem, we extended the 
Analytic Hierarchy Process (AHP) to better provide more accurate rankings. We develop 
a set of experimental scenarios to evaluate our 3-phase selection schemes while verifying 
key properties such as scalability and selection accuracy. We also compared our selection 
approach to well-known selection schemes in the literature. The obtained results 
demonstrate that our approach perform very well compared to the other approaches and 
efficiently select the most suitable cloud services that guarantee Big Data tasks and 
workflow QoS requirements. 
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1. Introduction   

Cloud Computing is a promising potential venue for processing 
Big Data tasks as it provides on-demand resources for managing 
and delivering efficient computation, storage, and cost-effective 
services. However, managing and handling Big Data implicates 
many challenges across several levels, among which are the 
difficulty of handling the dynamicity of the environment resources, 
the dataflow control throughout the service compositions, and 
guaranteeing functional and performance quality. Therefore, 
abundant Cloud Service Providers (CSPs) offering comparable 
services and functionalities proliferate in the market to meet the 
growing challenging demands. Subsequently, the selection of the 
most appropriate cloud provider is recognized to be a challenging 

task for users. Not only appropriate in terms of functionality 
provisioned, but also satisfying properties required by the user 
such as specific levels of quality of service and reputation, 
especially with the exaggerated cloud providers’ marketing claims 
of guaranteed QoS levels.  

Hence, providing an automatic and modest means for selecting 
a cloud provider which will enable Big Data tasks and guarantee a 
high level of Quality of Cloud Service (QoCS) is a necessity. 
Moreover, modeling and evaluation of trust among competing 
cloud providers enables wider, safer and more efficient use of 
Cloud Computing. 

Therefore, it is necessary to propose a comprehensive, adaptive 
and dynamic trust model to assess the cloud provider Quality of 
Service prior to making selection decisions. 
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A large number of CSPs are available today. Most pf CSPs 
offers a myriad of  services, for instance, Amazon Web Service 
(AWS) offers 674 varying services which are classified according 
to locality, Quality Of Service, and cost [1]. Automating the 
service selection to not only rely of simple criterion such as cost, 
availability, and processing power, but to consider service quality 
agreement is crucial. Current CPS selection approaches support 
straightforward monitoring schemes and do not provide a 
comprehensive ranking and selection mechanism. For instance, 
CloudHarmony [2] supports up-to-date benchmark results that do 
not consider the price while Cloudorado [3] supports price 
measurement, however neglects other dynamic QoS properties. 

Selecting the best CSP reveals twofold objectives, and adds 
value to both CSPs and Big Data users as well as applications. 
CSPs provision services that attract clients’ interest and support 
their processing and storage needs. However, users must ensure 
that services they were offered meet their expectation in terms of 
quality and price.    

Difficulties linked to CSP selection to handle Big Data tasks 
include for example the following: 1) The limited support for Big 
Data users in describing their various QoS needs of different Big 
Data tasks. 2) The difficulty to search in a high dimensional 
database or repository of CSPs.  3) The challenge to consider the 
continuous variations in the QoS needs and the Big Data related 
requirements. And 4) The limited  support for mapping Big Data 
task quality requirements to the underlying cloud services and 
resources quality characteristics. By doing so, we can guarantee an 
end-to-end quality support from the top-down Big Data quality 
consideration to cloud services and resources quality enforcement.  

Our main objective in this work is to build a full-fledged 
approach that supports Big Data value chain with the best cloud 
services and resources that are trustworthy, automatically scale, 
and support complex and varying Big Data quality requirements. 
This is possible with the development of a comprehensive cloud 
services selection model that fulfills the needs of a Big Data job 
with the efficient supporting cloud services. Our solution will 
impose QoS of Big Data processes through dynamic provisioning 
of cloud services by one or multiple CSPs that will ensure high 
quality cloud services and fulfill crucial Big Data needs. we 
propose in this paper a selection approach which includes three 
phases as follows: our first selection scheme, eliminates CSPs that 
cannot support the QoS requirements of a Big Data job, which 
decreases the next selection stage search scope. Consecutively, our 
second selection stage extends the Analytic Hierarchy Process 
(AHP) approach to provide selection based on ranking cloud 
services using various attributes such as Big Data job 
characteristics, Big Data task profile (BDTP), Quality of Service 
and considering the continuous changes in cloud services and 
resources.  

The third phase consists of selecting cloud services among 
different cloud providers, this happens mainly if none of the cloud 
providers can support the BDTP solely. In addition, if the Big Data 
job is possibly split into smaller jobs, during the three selection 
phases, our approach maps the upper quality requirements of the 
Big Data job to lower level matching quality characteristics of 
cloud services.  

2. Related Work 

Cloud service selection attracted the attention of researchers 
because of its crucial role in satisfying both the users’ and 
providers’ objectives having high quality service while optimizing 
resource allocation and costs.  They proposed various approaches 
to handle and manage the cloud service selection problem. In this 
section we outline and classify these approaches and emphasize on 
their strengths and weaknesses.    

A broker-based system is described in [4] where the authors 
proposed a multi-attribute negotiation to select services for the 
cloud consumer. The quality data is collected during predefined 
intervals and analyzed to detect any quality degradation, thus 
allowing the service provider to allocate additional resources if 
needed to satisfy the SLA requirements. Another broker-based 
framework was proposed to monitor  SLAs of federated clouds [5] 
with monitored quality attributes measured periodically and 
checked against defined thresholds. Additionally, in [6], the 
authors proposed a centralized broker with a single portal for cloud 
services, CSP, and cloud service users. The authors in  [7] 
proposed a distributed service composition framework for mobile 
applications. The framework is adaptive, context-aware and 
considers user’s QoS preferences. However, this framework is not 
suitable for for cloud service selection due to heterogeneity and 
dynamicity nature of the cloud environments. 

The authors in [8] proposed a broker–based cloud service 
selection framework which uses an ontology for web service 
semantic descriptions named OWL-S [9]. In this framework, 
services are ranked based on a defined scoring methodology. First, 
the services are described using logic-based rules expressing 
complex constraints to be matched to a group of broker services. 
Another service selection system was proposed in [10] where the 
authors proposed a declarative ontology-based recommendation 
system called ‘CloudRecommender’ that maps the user 
requirements and service configuration. The objective of the 
system is to automate the service selection process, and a prototype 
was tested with real-world cloud providers Amazon, Azure, and 
GoGrid, which demonstrated the feasibility of the system. 

In [11], a declarative web service composition system using 
tools to build state charts, data conversion rules, and provider 
selection policies was proposed. The system also facilitates 
translation of specifications to XML files to allow de-centralized 
service composition using peer-to-peer inter-connected software 
components. In addition, the authors in [12] proposed a storage 
service selection system based on an XML schema to describe the 
capabilities, such as features and performance. 

Optimizing the performance is a significant issue in Cloud 
Computing environments. In other words, better resource 
consumption and enhanced application performance will be 
achieved when embracing the appropriate optimization techniques 
[13]. For example, minimizing the cost or maximizing one or more 
performance quality attributes. In [14], a formal model was 
proposed for cloud service selection where the objective is to not 
only the cost but also the risks (e.g., cost of coordination and cost 
of maintenance). In this evaluation, the model studies different cost 
factors, such as coordination, IT service, maintenance, and risk 
taking. Furthermore, the risks are denoted in terms of integrity, 
confidentiality, and availability. 

The authors in [15] proposed a QoS-aware cloud service 
selection to provide SaaS developers with the optimized set of 
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composed services to attend multiple users having different QoS 
level requirements. They used cost, response time, availability, and 
throughput as different QoS attributes. The ranking of services is 
evaluated using integer programming, skyline, and a greedy 
algorithm providing a near-optimal solution. 

 Different optimization techniques were adopted for cloud 
service selection in the literature. One of which were proposed in 
[16], which used a probabilistic and Bayesian network model. The 
authors modeled the discovery of cloud service as a directed 
acyclic graph DAG to represent the various entities in the system. 
In [18], the authors model cloud service selection as a multi-
objective p-median problem according to pre-defined optimization 
objectives. Their objectives are to optimize the QoS, the number 
of provisioned services, the service costs, and network 
transmission costs simultaneously in the given continuous periods. 
The model also supports the dynamic changing users’ 
requirements over time. Similarly in [17], the authors suggested a 
service selection model based on combining fuzzy-set multiple 
attribute decision making and VIKOR. Nevertheless, the 
discrepancies among user requirements and the providers were not 
addressed.  

The authors in [19] incorporated the IaaS, PaaS, and SaaS 
service subjective quality attributes based on user preference and 
applied fuzzy rules based on training samples for evaluation of 
cloud services quality. A resource management framework is 
proposed in [20] using a feedback fuzzy logic controller for QoS-
based resource management to dynamically adapt to workload 
needs and abide by SLA constraints. Also, fuzzy logic was adopted 
in [21] to allow for a qualitative specification of elasticity rules in 
cloud-based software for autonomic resource provisioning during 
application execution. A CSP ranking model was proposed in [22] 
based on user experience, and service quality using an intuitionistic 
fuzzy group decision making for both quantifiable and non-
quantifiable quality attributes to help users select the best CSP 
conferring to their requirements. 

Another cloud service recommendation system was presented 
in [23] with a selection based on similarity and clustering 
according to user QoS requirements for SaaS, including cost, 
response time, availability, and throughput. The users are clustered 
according to their QoS requirements and are ranked based on 
multiple aggregation QoS utility functions. Their approach is 
composed of different phases, starting with clustering the 
customers and identifying the QoS features, then mapping them 
onto the QoS space of services, clustering the services, ranking 
them, and finally finding the solution of service composition using 
Mixed Integer Programming technology. 

Additionally, Multiple Criteria Decision Making (MCDM) 
models and fuzzy synthetic decision were commonly used in 
combination for service selection. In [24], fuzzy synthetic decision 
was applied for selecting cloud providers taking into consideration 
user requirements. Furthermore, the authors in [25] adopted fuzzy-
set theory to evaluate cloud providers trust based on quality 
attributes related to IaaS. Also in [26], the authors proposed a 
framework for QoS attributes-based cloud service ranking by 
applying AHP techniques. A case study was presented to evaluate 
their framework. Yet, this work was limited to using the 
measurable QoS attributes of CSMIC rather than including the 
non-measurable QoS criteria as well [17]. Other works used AHP 
approach for coud service selection, such as in [1], where the 
authors adopted MCDM method using AHP to select CPs based 
on real-time IaaS quality of service. Similarly, The authors in [27] 

distributed cloud resource management based on SLA and QoS 
attributes. They adopted AHP to cope with the cloud environment 
changes during the resource selection process. However, both 
works exhibit the limitation of only considering the QoS of the 
cloud services as their selection basis.  

Web services frequently undergo dynamic changes in the 
environment such as overloaded resources. Hence, the authors in 
[28] proposed a multi-dimensional model, named AgFlow, for 
component services selection according to QoS requirements of 
price, availability, reliability, and reputation. The model optimizes 
the composite service QoS required by the user and revises the 
execution plan conforming with resource performance dynamic 
changes. The authors in [29] proposed an SLA renegotiation 
mechanism to support and maintain QoS requirements in cloud-
based systems. They use historical monitoring information 
including service statuses such as availability, performance, and 
scalability to predict SLA violations.  

Few existing cloud federation projects are based on brokering 
technologies for multi-cloud composed services. Hence, more 
research needs to be done towards a standardized methodology for 
handling interoperability and standard interfaces of interconnected 
clouds [30]. Trustworthiness evaluation models among different 
cloud providers were proposed and focus on a fully distributed 
reputation-based trust framework for federated Cloud Computing 
entities in cloud federation. In this model, trust values are 
distributed at each cloud allowing them to make service selection 
independently [31]. Trust modeling was also tackled in federated 
and interconnected cloud environments where both consumers and 
different cloud providers need to trust each other to cooperate [32]. 

 The literature is missing a comprehensive selection model that 
incorporates all cloud service layers, dimensions, and components 
in a multi-dimensional model that satisfies service selection for 
such constrained Big Data applications. Additionally, among the 
several methods used to determine the user’s QoS preference, none 
exhibits the flexibility to make it responsive to the user’s point-of-
view as well as comprehends the specific characteristics related to 
Big Data applications. Accordingly, service selection models are 
to take into consideration the subsequent requirements: 1) 
Transparency for stakeholders (such as, customers, CPs, and 
service brokers), 2) Simple interface that is user friendly, easy to, 
configure, control and integrate 3) Maintainable and self-adapting 
to service layers, such as, SaaS, IaaS, and PaaS, and 4) Require 
low communication overhead by using low number and 
lightweight messages between stakeholders.  

We aim in this work to build a complete, flexible, and QoS 
driven solution to assess different CSPs’ services’ capabilities of 
handling various Big Data tasks. Hence, we develop a three-phase 
cloud service selection scheme that considers the task complexity 
and the dynamicity of cloud resource and services. The first step 
in the selection process consists of apprehending required Big Data 
quality of service, define and endorse these requirements using the 
proposed Big Data Task Profile (BDTP). It adopts three selection 
phases to assess in real-time the CPs QoS and their corresponding 
services and choose only those that match these requirements. 

3. Big Data Task Profile   

We explain in this section the main elements of our Big Data 
specification model as depicted in Figure 1. For every different Big 
Data task, we model the related profile categories. Additionally, 
we model a set of attributes and characteristics classifications for 
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each category. Furthermore, we map the Big Data characteristics 
to its corresponding cloud attribute and services.  

3.1. Big Data Task Profile (BDTP) Specification 

  The BDTP specifies the main Big Data task requirements that 
need to be satisfied, and  it is modeled as a set of triples: R= {DT, 
DO, DL}; where , DT refers to Data Type, and DO refers to Data 
Operation, and DL refers to Data Location. A Big Data request 
profiled based on BDTP, which defines the requirements and the 
most appropriate quality specifications that meet a certain Big Data 
task (such as, Big Data storage). For instance, Storage Profile 
specifies the following requirements: 

Data Types Specifications:  

a) Format: structured, unstructured, semi-structured, or 
stream data. 

b) Domain: government, health, smart cities, etc. 
c) Behavior: volume static vs dynamic scale, and 

velocity. 
Stored Data Possible Operations: 

a) Intensive processing 
b) Intensive access 
c) Extract Transform Load  
d) Analytics and visualization. 
e) Archive and backups only  

Data Storage Location: 

a) Storage Preference 
• Local cloud service provider  
• Geographically disperse site: this involves 

considering the following properties: network 
bandwidth, and security of data. 

b) Data processing location:  
• On site: security and cost requirements (high or 

low).  

• Off site: network, security, cost, and servers 
requirements 
Table 1: Sample Profiles for Big Data Tasks 

TaBig Data Tasks Related Cloud 
Services 

Needed 
Resources 

Cloud 
Services 

Classification 

QoS 
Parameters 

Generation and 
Collection  

PaaS, DaaS A, C d, c, e 1, 2 

Preprocessing LaaS A, B, C, D a, c, e, f 1, 2, 3, 4 

Processing PaaS, SaaS A, B, C, D a, c, e, f 1, 2, 3, 4 

Analytics SaaS C, D i, f 1, 3, 4 

Visualization SaaS C, D i, f 1, 3, 4 

Storage DaaS A, C a, b, c, d, e 1, 2 

Transport LaaS A a, b, c, d, e 2 

A. Networks 
B. Servers 
C. Storage 
D. Applications 
E. Infrastructure 

1. Storage RW Speed (SSD/HDD) 
2. Network Speed Mb/s & Latency 
3. CPU Speed, Core, Count 
4. RAM size 
 

a. Performance 
b. Security 
c. Reliability 
d. Availability 
e. Scalability 
f. Transformation 
g. Hetriogeneity 
h. Privacy 
i. Governance 

Figure 2 illustrates the events issuing succession that deal with a 
Big Data request. Once a request is received, the best suitable 
BDTP is selected from the stored profile, in addition, the 
requirement is normalized to generate a profile R. Then the profile 
is linked with the user’s quality of service requirement to produce 
an updated profile R’ which will assist in the 3-phase selection. In 
the first selection stage we generate a list of CSPs CPList that is 
used for the second selection phase to generate another list of cloud 
services CSList. 
The tipples R= {DT, DO, DL} represent the BDTP-based user 
requirements after mapping the appropriate BDTP profile to be 
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Availability,
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Security

Availability, 
Privacy, 

Reliability

Privacyy, 
Security, 
Reliability

Flexibility,
Scalability

Elastcity, Cost, 
PerformanceServers, CPU, RW response Time
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Figure 1. Profile-based Specification Model for BD Tasks 
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used. Afterwards, the profiled requirement R are translated into 
R’= {QoS0, QoS1,…,QoSi}, for usage in the first selection stage. 
The later produces a list of CSPs fulfilling R’ and noted as: CPList 
= {CP1, CP2,….,CPi}. Moreover, the next selection stage based on 
cloud services is initiated on the same R’ to produce a set of cloud 
services list noted as: CSList = {CS1, CS2,…., CSi}. The third 
selection step, retrieves the CSList from the second selection phase 
and look for other cloud services from different providers that can 
satisfy the request.    

3.2. Big Data Workflow Profile (BDTP) Specification 

In this section, we describe a simple workflow applied in a case 
where a patient needs to be continuously monitored to predict 
epileptic seizures before they actually occur. The monitoring 
process involves placing multi-channel wireless sensors on the 
patient’s scalp to record EEG signals and continuously stream the 
sensory data to a smartphone. This process does not restrict the 
patient’s movements. The continuous recorded sensor data, such 
as 1 GB of data per hour of monitoring is considered a Big Data. 
However, smartphones lack the capabilities to handle this Big 
Data, whereas Cloud Computing technologies can efficiently 
enable acquiring, processing, analyzing, and visualization data 
generated form monitoring. Figure 3 describes the epilepsy 
monitoring workflow, where task t1 is the data acquisition task that 
is responsible for collecting the EEG data is from the scalp by 
sensor electrodes then transfers the signals to be preprocessed to 
computing environment or to temporary storage t2, which is storing 
the raw EEG signals. Task t3 performs data cleansing and filtering 
processes to eliminate undesirable and noisy signals. Task t4, is the 
data analysis task where the EEG data is analyzed to mine 
meaningful information to provision diagnosis and help decision-
making. Finally, t5 is the task responsible for storing the results.  

In this workflow, a task is modeled as a tuple 𝑡𝑡〈 𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜𝑜𝑜〉 , 
where, 𝑡𝑡𝑡𝑡 is the task name and 𝑖𝑖𝑖𝑖 and 𝑜𝑜𝑜𝑜𝑜𝑜 are the input and the 
output data set respectively. Task dependency is modeled in 𝑬𝑬 = 
��𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗�| 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗 ∈ 𝑻𝑻�, where tj is dependent on ti when tj is invoked 
after the ti is completed. The data flow is modeled by tracking the 
task input and output states. For each task ti, we keep information 
about the data parameters, type and format. 

3.3. Matching the BDTP to Cloud Service QoS   

As we define R= {DT, DO, DL} to be a triple including Data 
Types, Data Operations and Data Location, we map each request’s 
parameters from high level task specification to a low-level cloud 

service’s QoS attributes having values and ranges that satisfy each 
requirement of the BDTP. For each selection phase, the matching 
process engenders a predefined profile. The QoS Profile is 
continuously revised to incorporate customer’s request needs even 
after mapping and adjustments of quality attributes. Table 1 
illustrates the matching scheme of Big Data tasks to cloud services 
QoS attributes. 

3.4. Web-based Application for Collecting of Big Data Workflow 
QoS Requirements  

In this section, we describe a web-based application we 
developed for collecting Big Data workflow QoS preferences from 
the user and generating a quality specification profile, which will 
be used as basis for task and workflow quality-based trust 
assessment as shown in Figure 4. This GUI application, collects 
the quality specification that illustrates the main requirements of a 
Big Data workflow and its composed tasks. Some of the workflow 
quality requirements are application domain, data type, operations 
and location. Furthermore, the application collects the required 
quality information for every composed task in the workflow, such 
as quality dimension, quality attributes and the weight values 
required for the overall trust score calculation. In addition, output 
data quality is specified for each task along with the weights 
preferred by the user. Finally, a complete workflow quality profile 
is generated that enumerates the most suitable requirements and 
specifications, which fits each Big Data task, such as Big Data 
preprocessing.  

4. Cloud Service Selection Problem Formulation 

One of the multi-criteria decision making methods is the 
Analytic Hierarchy Process (AHP) which is often used for such 
problems. It adopts a pairwise comparison approach that generates 
a preferences set mapped to different alternatives [33]. The 
advantage of AHP methodology is that it allows converting the 
subjective properties into objective measurements so they can be 
included in the decision-making, and hence permits the 
aggregation of numerical measurements and non-numerical 
evaluation. Additionally, it integrates the user’s preference through 
getting the relative importance of the attributes (criteria) according 
to the user perception [1]. Accordingly, the quality attributes are 
represented as a hierarchal relationship, that matches the decision 
makers form of thinking [34]. Our recommended cloud service 
selection hierarchy is shown in Figure 5. This hierarchy clearly fits 
the mapping structure of Big Data to cloud services.  

The AHP is intended to pairwise compare all different 
alternatives which are the quality attributes in our case. Therefore, 
the more quality attributes are considered, the larger the 
comparison matrix becomes and the higher number of comparison 

 
Figure 2. Two-step CSP selection based on BDTP   

Figure 3. Workflow Example  

t1

Store

t2 t5

Store

t3

Preprocessing Analytics
t4

Data Acquisition 
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will be performed. Hence, we suggest to modify the original AHP 
approach as in [13]. 

The idea is to simplify the techniques to avoid the pairwise 
comparison by normalizing the quality attributes comparison 
matrix using geometric means which will decrease the required 
processing to reach a selection decision. Nevertheless, this 
modification will result in a converged weight matrix as a reason 
for adopting the geometric mean normalization and hence having 
a close attribute weight values. Eventually, the attribute priorities 
will diminish and will not satisfy the objective of this method. To 
solve this problem, we propose using the simple mean instead of 
geometric mean for normalization and calculating the attribute 
weights that matches the user priorities. We followed three steps 
in our selection approach given as: 

4.1. Step1: Hierarchy Model Construction  

We adopt the following definitions in our selection model [35]:  

Definition 1: The goal of decision problem which is the main 
objective and motivation. Here, the goal is the cloud service 
selection that best matches Big Data task profile conferring to the 
customer preference. 

Definition 2: The alternatives which are represented with a set of 
various options open to the users to be considered in the decision. 
In our case, they are the group of available cloud services 
supplied by different cloud providers and matches the 
recommended BDTP. 
Definition 3: The criteria of a decision problem. In this case, they 
are the quality attributes evaluated and upon which the 

comparison between alternatives is based on to eventually reach 
a decision. Specifically, they are the QoS attributes provided by 
the BDTP. The cloud services (alternatives) will be evaluated in 
comparison to the quality attributes (criteria) for measuring the 
matching level of the goal of the problem. 

The  QoS attributes (criteria) for our decision-making problem 
are depicted in Figure 1 where they are quantified and qualified 
using the BDTP by assigning acceptance threshold values or 
ranges of values [35]. 

 

CP = {𝑐𝑐𝑐𝑐𝑖𝑖|𝑖𝑖 = 1,2,3, …𝑛𝑛}                         (1) 

S = {𝑠𝑠𝑖𝑖|𝑖𝑖 = 1,2,3, …𝑛𝑛}           (2) 

where ∀ si ∈ S is offered by one cpi ∈ CP 

A = �𝑎𝑎𝑗𝑗�𝑗𝑗 = 1,2,3, …𝑚𝑚�                              (3) 
 

 P = �
𝑝𝑝11 ⋯ 𝑝𝑝𝑛𝑛1
⋮ ⋱ ⋮

𝑝𝑝1𝑚𝑚 ⋯ 𝑝𝑝nm
�                                (4) 

where s1, s2 … sn are the existing n alternative cloud services 
provided to the user. These services may be offered by various 
providers. a1, a2,..., am are the QoS attributes (criteria) from the 
BDTP mapped to the Big Data task required, for example: storage 
size, processing power, speed, availability, and reliability. pij is the 
performance of the ith alternative s with respect to the jth attribute. 

 
Figure 4. User interface for the collection of Big Data QoCS requirements  
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4.2. Step2: Attributes Weights and Ranking 

AHP scheme consists of mapping each property to a rank or a 
priority level compared to other criteria applied in different 
evaluations. Then, an importance level is given by a user for each 
property opposed to all others [35]. This is performed after 
building a pairwise comparison matrix using a weighbridge of 
level of importance. An attribute can be compared to itself and the 
related importance is set to 1. Therefore, the matrix diagonals are 
all set to 1 [34]. The importance level is within the range between 
1 to 9, where 1 refers to the lowest importance attribute and 9 refers 
to the most important attribute having the highest value. 

For m attributes, our pairwise comparison of attribute i with 
attribute j we get a square matrix AM X M where rij designates the 
comparative importance of attribute i with respect to attribute j. 
This matrix has diagonal values assigned to 1. s.t. rij = 1 when i = 
j. Moreover, it contains reciprocal values across the diagonal, the 
ratio is inverted s.t. rji = 1/rij. 

R = �
1 𝑟𝑟12 … 𝑟𝑟1𝑛𝑛

1 𝑟𝑟12� 1 … 𝑟𝑟2𝑛𝑛
⋮ ⋮ 1

�     (5) 

 
Then, we define a normalized weight wi for each attribute based 

on the geometric mean of the ith row. We choose the geometric 

mean methodology as an extended version of AHP for its 
simplicity, easiness of calculating the maximum Eigen value, and 
for   decreasing  the   inconsistencies  of   judgment   using 𝐺𝐺𝐺𝐺𝑖𝑖 = 

Table 2: Multi-provider cloud service selection m-pcss 

 �∏ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 �

1 𝑚𝑚�  [34]. After that,  the geometric means are 
normalized for all rows in the matrix using 𝑤𝑤𝑖𝑖  = 𝐺𝐺𝐺𝐺𝑖𝑖 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖

𝑚𝑚
𝑖𝑖=1⁄ . 

Nevertheless, we get equal weights which disallow differentiation 
between attributes importance. Thus, we suggest to apply the 
normalized mean values for each row as follows: 

𝑀𝑀𝑖𝑖 = ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1     (6) 

 
𝑤𝑤𝑖𝑖  = 𝑀𝑀𝑖𝑖 ∑ 𝑀𝑀𝑖𝑖

𝑚𝑚
𝑖𝑖=1⁄          (7) 

 

4.1. Step 3: Calculate the Ranking Score of All Alternatives 

To generate the rating scores for each cloud service 
(alternative), we use Simple Additive Weighting method by 
multiplying weights obtained from eq. 7 wj of each attribute j with 
its corresponding performance value in Matrix P from eq. 4. Then 
summing all resulted values as in: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 =  ∑ 𝑤𝑤𝑗𝑗 ×  (𝑚𝑚𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚
𝑗𝑗=1  (8) 

Where (mij)normal is the normalized value of mij and Scorei is the 
overall rating score of the alternative cloud service Si. Finally, we 
select the cloud service (alternative) that has the highest score 
value: 

               Sbestscore = max
1≤𝑖𝑖≤𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖                        (9) 

5. Model for Cloud Service Selection  

We here describe our cloud service selection model to fulfill 
the quality of Big Data workflow over federated clouds. Figure 6 
overviews how various Big Data processes, including storage, 
processing, and analytics can be provisioned with the cloud 
services and resources efficiently and with high quality. It details 
the main components involved in cloud service discovery and 
provisioning for Big Data value chain. Such components used for 
selection include service catalog, service broker, and service 
selector. However, components involved in cloud service 
provisioning in response to cloud service selection requests 
include resource selection, deployment, control, and monitoring.  

 
Figure 5. Cloud service selection hierarchy model 

 
Figure 6. Big Data workflow quality enforcement based on cloud service 

selection  
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5.1. Cloud Service Selection  

As soon as a service request is issued to support Big Data 
processing and storage while guaranteeing certain QoS, cloud 
resources are reserved to deploy and process Big Data workflow 
over the cloud infrastructure. Then, the workflow execution is 
monitored to detect if any performance degradation occurred and 
respond with the appropriate adaptation actions to maintain high 
quality service provisioning. 

Figure 7, describes the selection scheme which is implemented 
in three phases: the first phase involves choosing the most suitable 
CSPs that conform to the Big Data workflow requirements, 
however the second phase involves choosing among CSPs the 
services that fulfill the Big Data Task profile (BDTP). The third 
phase selection consists of conducting further selection strategy to 
choose services from different CSPs that satisfy different tasks of 
a single workflow and maximize the overall quality of the 
workflow. In the following, we describe in detail each of the three 
selection phases:  

CSP selection phase: Big Data workflows described as an 
aggregation of tasks present a set of quality requirements, such as, 
trust, in addition, to extra information known as metadata, such as, 
type of data, and its characteristics. The Big Data task profile 
selection component takes as input the metadata and the Big Data 
quality specification to find and retrieve the closest suitable profile 
from the Big Data profile repository that responds to the task(s) 
quality requirements. Both selected profile and published cloud 
provider’s competencies are used to trigger the execution of the 
CP-Profile matching algorithm which matches the BDTP profile 
to the CSP published competencies. A list containing scored CSPs 
is generated by this algorithm. A score granted to each provider 
refers the ratio of which the CSP is capable to accomplish the Big 
Data task(s) given the set of quality requirements.  

CS selection phase with single provider: the second selection 
phase is initiated to choose the corresponding cloud services from 
the list of phase 1 selected CSPs according to two stages:  

Stage 1: A single provider cloud service selection algorithm 
(S_PCSS) is performed if a specific cloud provider completely 
matches the QoS of the Big Data task. The output of this algorithm 
is a list of CSPs with their measured scores. Here, we provide an 
extension of the AHP Method to use a simple mean instead of 
geometric mean to measure the attribute weight. This leads to 
variation in the generated weight values for each attribute that 
matches the pairwise importance levels given by the user.  

Stage 2: A process of decomposing Big Data workflow into 
tasks is triggered if no single CSP is able to fulfil the QoS of the 
BDTP. Tasks of the workflow should be independent and can be 
processed impartially. If a workflow cannot be decomposed into 
undependably executable tasks, a loopback to previous phase will 
allow reviewing the profile specification to meet the selection 
measures.       

CS selection phase with multiple providers: the third selection 
phase. Once a workflow can be decomposed into a set of tasks, the 
multi-provider cloud service selection algorithm is implemented to 
cope with multiple service selection from various cloud providers 
to maintain the quality of aggregated workflow tasks. Table II 
depicts an example of BDTP decomposition into three independent 
profiles for storage, pre-processing, and analytics. A score is 
calculated for each CSP with regards to each profile and cloud 
providers that have the highest score are selected to handle each 
profile independently.  

5.2. Selection Algorithms  

According to the scheme described in Figure 7, we have 
developed three consecutive algorithms to support the three phases 
selection as follows:  

The BDTP-CSPC algorithm: maps the BDTP with each CSP 
Capabilities (CSPC), for example, availability and cost. The 
selection is performed according to the providers’ capabilities 
satisfaction without considering customer favoured priorities. 
Figure 8 describes the algorithm which requires the list of CSPs, 
the list of required quality attributes (profile) and the list of 
published quality attributes for each cloud provider. Then performs 
one-to-one matching of each pair of attributes (profile-published) 
and outputs a list of scored CSPs which completely match the 
BDTP. Each CSP is linked to a set of provided quality 
characteristics. The algorithm performs an evaluation of each CSP 
matching score based on the percentage of fulfilled quality 
attributes required by the BDTP. The BDTP-CSPC matching 

 
Figure 7. Three phases cloud service selection model 

 
Figure 8. BDTP-CSPC matching algorithm  
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algorithm is scalable with the proliferation of cloud providers and 
quality attributes considered. 

The S_PCSS algorithm: handles the second stage selection 
mechanism that considers thorough information about the 
attributes described in the BDTP to provide ranking values of the 
cloud services offered by the selected CSPs by the BDTP-CSPC 
algorithm. We adopted AHP and MADM to implement our 
selection strategy of cloud services. Figure 9 explains the single 
selection algorithm that uses a list of cloud services, the list of 
required quality attributes (BDTP), and the list of published quality 
attributes for each cloud service. Then, it generates a comparative 
matrix identifying the priority level of each published quality 
attribute in comparison to other quality attributes existing in the 

BDTP. Afterwards, this matrix is used to calculate and return a list 
of ranked cloud services with the highest scores and satisfy the Big 
Data task profile. 

The M_PCSS algorithm: this algorithm handles the third stage 
selection where none of the CSPs fully supporting the Big Data 
workflow. In this situation, the workflow is decomposed into 
single independent tasks which will be processed by different 
cloud providers. Figure 10 describes the M_PCSS algorithm, the 
later takes as input the list of cloud providers, their offered cloud 
services and their calculated scores as well as the list of required 
quality attributes (BDTP), and the list of published quality 
attributes for each cloud service. It first applies the S_PCSS 
algorithm to receive the cloud service scores within each cloud 
provider. Then it finds the best matching services having the 
highest score among all cloud providers. Additionally, this 
algorithm favors the cloud provider that provides more services to 
minimize the communication and cost overhead due to data 
transfer and processing distribution. This is achieved by 
multiplying the cloud provider score to the service score to reach 
a final cloud service score.    

6. Evaluation of Cloud Service Selection  

This section details the experiments we conducted to assess the 
three-phase selection approach using various experimental 
scenarios.  

6.1. Environment Setting  

The setting and the simulation parameters we have used to 
conduct the experiments are described hereafter:   

Setting and simulation parameters  

Desktop: CPU Intel Core TM i7-3770K @ 3.40 GHz and Turbo 
Boost, DDR3 RAM 32GB, HD 1TB, and OS 64-bit.  

Number of CSPs: 1 - 100. 

Number of services provided by each CSP: 1 - 100. 

QoS attributes: data size, distance, cost, response time, 
availability, and scalability. 

6.2. Simulator  

Figure 11 depicts the main modules of the JAVA simulator we 
have developed to implement the selection algorithms we have 
developed to support the three selection phases of cloud service 
providers and their related cloud services based on the BDTP and 

 
Figure 9. Cloud Service Slection Algorithm - Single Provider 

 
Figure 10. Cloud Service Slection Algorithm - Multi- Provider 

 

Figure 11. Simulator Components 
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the AHP method. The simulator comprises five main components 
as follows:   
BDTP component: this module classifies the Big Data task 
requests  into three categories: data type, data operation and data 
location. It also sets the acceptance level (minimum, maximum, 
threshold), for each quality property and eventually normalizes the 
performance scores.  

BDTP-CSPC component: integrates the full implementation of 
BDTP-CSPC selection algorithm we described above. This 
module measures a score for each cloud provider that matches the 
BDTP. CSPs scoring 100% are nominated to the second phase 
selection Engine.   
 
Selection Engine: integrates the implementation of the S_PCSS 
algorithm. The later uses the BDTP and the selected CSPs 
nominated in the first phase, then implements AHP to rank and 
retrieve the set of cloud services from the list of CSPs that fulfil 
Big Data task. Moreover, the selection engine implements the 
M_PCSS selection algorithm to incorporate the implementation of 
selecting cloud services from different CSPs while calculating 
cloud services scores for each cloud provider. Afterwards, it 
selects the best matching cloud service with the highest score 
among all cloud providers.  
  
Big Data QoS specification: it supports and guides users through 
an interface to specify the Big Data task quality attributes as 
depicted in Figure 4 above. 
 
Big Data profile repository: serves as repository of Big Data task 
profiles. It is accessed to retrieve the appropriate profile when a 
Big Data task request is issued and a selection of suitable CSP and 
services need to take place to respond to the initiated request. 

In addition, to the above implemented entities, the simulator 
generates multiple CSPs offering multiple cloud services having 
various QoS attributes performance levels to produce a CSP list 
that serves the selection algorithms. Other implemented modules 
include, communication interfaces, scoring schemes 
implementation, invocation interfaces, and storage management 
interfaces.  

6.3. Experimental Scenarios 

In this sub-section, we detail the various scenarios we have chosen 
to assess our 3-phase selection model and the related implemented 
algorithms. Scenarios were selected to validate three main 
properties: CSP selection accuracy, model scalability, and 
communication overhead.  
 
In the following, we explain the developed scenarios to help 
evaluating our 3-Phase selection model.  

 
Scenario 1: evaluates the accuracy of the the first phase selection 
in terms of retrieving different Big Data task profiles while fixing 
the number of cloud providers to 20 CSPs. Figure 12 demonstrates 
that the less the number of selected CSPs the more the BDTP  
becomes constrained (e.g. includes extensive quality constraint to 
consider and evaluate).  
 
Scenario 2: evaluates the accuracy of the the second phase 
selection based AHP while varying profiles and fixing the number 
of cloud providers. This will also retroactively validate the first 
selection results. Figure 13, demonstrates that the more 
constrained the BDTP is, which will add more weight on the cost 
quality attribute, the more the recommended CS provides a better 
cost. In the same manner, Figure 14, stresses the same results but 

now with the response time quality attribute. 

 
Figure 12. CSP profile-based matching with different constrains levels 

 
Figure 13. CSP selected with different levels of BDTP strictness (Cost)  

 
Figure 14. CSP selected with different levels of BDTP strictness (Response 

Time) 

 
Figure 15. Cost of selected CSP with an increasing number of available 

CSPs 

 
Figure 16. Response Time of selected CSP with an increasing number of 

available CSPs 
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Scenario 3: evaluates the scalability of the selection model while 
increasing the number of CSPs and measuring the QoS cost and 
response time of the selected CSs after executing the 3-Phase 
selections respectively. Figure 15 and Figure 16, demonstrate that 
our 3-phase selection scheme scales perfectly as elucidated 
through a decrease in the cost and the response time respectively 
as the number of cloud providers increase. This is because more 
options are available to select among them which leads to better 
QoS fulfilment.  
 
Scenario 4: we compare our 3-phase selection scheme with other 
MADM selection schemes. Our model used the simplified AHP 
using mean values of pairwise comparison matrix (MAHP). 
However, the other models used are Weighted Product Method 
(WPM), Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS), and the modified Geometric Means AHP 
(GMAHP) to make cloud service selection. Comparison was 
conducted based on the response time quality attribute. Figure 17 
demonstrates that MAHP gives better results compared to all other 
models, it provisions lower response times for all levels of selected 
quality attribute weights.  
 
Scenario 5: we compare our 3-phase selection algorithm to other 
MADM selection methods by showing the cost and response time 
for each task composed in the workflow. As depicted in Figure 18 
and Figure 19, the (MAHP) provisions lower task cost and 
response time respectively, and gives similar results as (GMAHP) 
and (TOPSIS). However, our modified AHP (MAHP_M) method 
provisions higher cost and response time per task than the (MAHP) 
since it gives higher preferences to selection of services from an 
existing cloud provider to minimize the communication and data 
transfer overhead.  
 
Scenario 6: we compare the average response time of the 
workflow composed services using different selection schemes. 
The measured response time includes the communication and 
transfer overhead due to using services from different CSPs. As 
depicted in Figure 20, our (MAHP_M) method has the lowest 
response time because it minimizes the number of CSP among 
which services are selected, hence, minimizes the time wasted in 
communication overhead. In addition, Figure 21, shows the 
number of different CSPs providing the selected services and it 
shows that our (MAHP_M) method has the lowest number of CSPs 
and hence has the lowest overhead. 

 
Figure 17. MAHP model behavior with different QoS attribute weight values 

benchmarked with other models. 

 
Figure 18. Cost of selected task per algorithm. 

 

 
Figure 19. Response time of selected task per algorithm. 

 
Figure 20. Average response time of selected services using (MAHP) and 

(MAHP_M) benchmarked with other models. 

 
Figure 21. Number of differnet CSPs using (MAHP) and (MAHP_M) 

benchmarked with other models . 
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Scenario 7: we compare the communication and data transfer 
overhead due to using different cloud providers. In this scenario, 
we used 100 CSPs and measured the total workflow execution time 
and the overhead time when using different selection methods. As 
shown in Figure 22, our (MAHP_M) method has the least 
overhead and accordingly total time amongst the rest of the 
methods. This is because our (MAHP_M) favors services that 
belong to already selected CSPs to minimize the overhead. 

7. Conclusion  

Big Data has emerged as a new paradigm for handling gigantic 
data and get valuable insights out of it. The special characteristics 
of Big Data reveals new requirements in terms of guaranteeing 
high performance and high quality of various Big Data processes 
(e.g. processing, storage, and analytics). The cloud infrastructure 
and resources are considered a perfect source of resources and 
services to support Big Data specific quality requirements. 
Selecting among myriad of cloud service providers the appropriate 
services and resources that meet these requirements is challenging 
given the diversity and the complexity of Big Data workflows.   

In this paper, we proposed an efficient federated cloud service 
selection to support workflow Big Data requirements. It is a 3-
phase selection scheme which is implemented through three 
phases. In the first selection phase, it captured the Big Data QoS 
requirements through the BDTP. However, in the second selection 
phase, a scored list of cloud services that satisfies the BDTP is 
generated. Finally, the third selection phase goes further and 
scored cloud services from different CSPs to better match the 
workflow quality requirements.    

The main contributions of our selection scheme is the 
integration of a BDTP that ensures the QoS of Big Data tasks and 
is considered as a reference model for the three successive 
selection phases. In addition, revising the profile is advisable to 
have an efficient selection decision. We proposed a further 
contribution by extending the AHP method by adopting the mean 
values of pairwise comparison matrix alternative than using the 
geometric mean. The later shown weakness in producing a weight 
matrix with equal values of weights for all attributes. The last 
contribution is supporting workflow key requirements through the 
selection of multiple cloud services form multiple CSPs which 
maximized the Big Data complex workflow requirement 
fulfilment.   

We conducted extensive experimentation to evaluate different 
properties of our 3-phase selection scheme. The results we have 

obtained proved that our selection model: integrated well the 
BDTP and guaranteed Big Data QoS requirements, scaled with the 
growing number of CSPs, performed better than the other MADM 
schemes such as TOPSIS, WPM, and the SAW, and enforced QoS 
requirement of Big Data workflows through varying cloud services 
from multiple CSPs.   

For future work, we plan to have an extension for our selection 
scheme with more scenarios and complex Big Data workflows 
where other properties such as data security and privacy can also 
be considered. Furthermore, we are considering to assess our 
selection scheme against various selection techniques where we 
use an existing cloud environment. 
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