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 This paper is an extension of work originally presented in the 19th International Conference 
on Computer Supported Education and Information Technology. This paper identifies 
motivational factors that ensure the initiation and effective implementation of mathematical 
activity. These factors are in subordination to each other, forming a hierarchical 
dependence. At the heart of this hierarchy is the practical need for solving problems from 
real-life practice. In order to actualize this need, a number of approaches are proposed, each 
of which manifests itself differently at various stages of teaching mathematics at school. At 
the first stage, the task material is intended, in the main, only to stimulate the consideration 
of certain mathematical problems. It also initiates to some extent the activity procedures 
inherent in reality through observation and experiment. At the same time, the emphasis in 
teaching is on solving problems of calculation, measurement, tracing, construction, cutting, 
etc. At the next stage, the main emphasis is on the possibility of using a mathematical tools 
in the study of related disciplines. It introduces elements of mathematical modelling of real-
life states and processes, which can be carried out on the basis of solving various textual 
problems. At the final stage, the dominant focus the vocational guidance function of practice, 
the mathematical knowledge for successful implementation of future professional activity. 
Such awareness can be provided, in particular, with the help of pseudo-real applications 
from the relevant professional field. In this paper the authors also provides examples 
supporting each stage. 
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1. Introduction  

Successful motivation to learn mathematics cannot be achieved 
by a simplistic and monolithic approach, since mathematical 
activity is an innately multidimensional phenomenon. It requires 
the discriminate attention to a range of motivational factors-
namely practical need, creative need, adequate and accurate 
language facilities, the need for proof, and aesthetic satisfaction. 

These can be shown as a triangular hierarchy, mirroring the 
classic triangle of needs first conceptualised by A. Maslow Figure 
1. 

At the base of this triangle lies the practical need for solving 
pressing problems within the realm of day to day human activity. 
The solution of each of these tasks presupposes the need to 
generalize the empirical material accumulated in the course of each 
practical activity, a generalised extraction of certain characteristics 

common to many objects and phenomena. This is not possible 
without a definitive leap in the development of human thinking, 
which marks the emergence of a creative need for the discovery of 
new facts and patterns that do not belong to the sphere of 
immediate utility. 

 
Figure 1 Hierarchical model of mathematical activity needs 
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The historical accumulation of schemes and decision 
algorithms available for an elementary study of problems 
necessitated the clarification of terminology and the development 
of more precise and, at the same time, more symbolic means of 
presenting these problems than could be achieved using natural 
language. This encouraged the logical organization of 
mathematical knowledge in the form of a harmonious deductive 
theory. At the same time, there was a reassessment of the means 
for checking the discovered regularities, which, in turn, led to the 
emergence of the need for their proof using system predetermined 
postulates and axioms.  

Further improvement of mathematical education was achieved 
through, in particular, attempts to minimize the set of initial 
assumptions and interpretations of various mathematical theories 
in such a way that the derivation of new regularities would be seen 
as elegantly simple, unforced and economical. These attempts 
were a manifestation of a new aesthetic need to create the perfect 
expression of the hitherto ad hoc description of motivational 
factors. 

The transition to more advanced levels of the described 
hierarchy does not invalidate the discrete functioning of the "lower 
order" needs. On the contrary, these needs are also improved and 
enriched by entering into productive interaction with the "higher" 
motivational factors. 

These factors are simultaneously present in any mathematical 
activity. This is especially true for creative needs, which are ideally 
realized at the initial stage of posing the problem, and then at the 
subsequent stages of choosing the path of the solution and its 
justification. The need for proof is clearly expressed at the stage of 
justifying the decision, and the need for effective language 
facilities is needed at the stage of formalizing the initial problem. 
Practical need is especially evident at the stage of problem 
selection and at the stage of correlating the already obtained result 
with the limitations provided by the specifics of this problem. 
Finally, the aesthetic need can potentially be actualized at all these 
stages, even after solving the initial real situation, by seeking the 
possibilities of expanding derived and valid mathematical 
regularity.  

The presence of a particular need of the researcher is only a 
necessary condition for the productive course of mathematical 
activity. What is also required is the possibility of "objectifying" 
and internalising this need into consciously understood motivated 
activity. This in turn increases practical capacity which in turn can 
increase conceptual understanding in a virtuous circle. 

2. Practice as a source of mathematical creativity 

The practical need for the realization of mathematical activity 
stems from the specific nature of the subject of mathematics as 
distinct from other scientific disciplines and is embodied in the 
nature of the interaction of this discipline with reality and public 
practice. Most scientific disciplines clearly relate to some form of 
the movement of matter, or to the sphere of individual and social 
practice, which they study with the help of a variety of methods 
(including mathematical ones), but, as a rule, remain within their 
subject area. Mathematics does not set as its immediate goal the 
analysis of any specific phenomena and processes, but as its raison 
d’ etre specifically distinguishes the quantitative relations and 

spatial forms inherent in all subjects and phenomena without 
exception, and considers them as the purpose and object of its 
research. Such research is always carried out on the basis of formal 
approaches "potentially admitting the most diverse material 
incarnations, and consequently, applications". In other words, 
mathematics can be seen as a "universally applicable scientific 
method", a kind of generalized "working scheme" for research, 
description and cognition of nature [1, 2]. 

This approach has always been associated by specialists in the 
field of the methodology of science with the general philosophical 
question of the reasons for the effective value and universality of 
mathematical theories in solving problems arising in the course of 
human interaction with the environment. Regular dependencies, 
expressed by mathematical laws, can be embodied in the intrinsic 
nature of the objective external world, and we only discover these 
dependencies through experience and experiment. At the same 
time, the deductive, speculative nature of mathematical knowledge 
can reflect its relative isolation from other spheres of human 
activity. In this latter case the applicability of mathematics to 
practice can seem bafflingly remote. The first perspective brings 
to the forefront the external source of the moving forces of 
mathematics, while the second focuses its attention on the internal 
needs of the development of this science and its systemic 
representation. 

In actual mathematical activity, both tendencies are almost 
never presented in isolation. The practice of pure mathematics can 
subsequently find important practical applications, while results 
initially assumed to be solely applied do not in fact find any 
practical applications. So, for example, mathematical logic, which 
previously mattered only to the persons dealing with the problems 
of justification, have in recent decades begun to be regarded as an 
applied science closely connected with computational 
mathematics. The set-theoretical concept, traditionally perceived 
as the theoretical foundation of all modern mathematics, is now 
directly used for the analysis of phenomena of the most diverse 
sciences - from biology to linguistics [3]. 

At the same time, it is possible to give examples of so called 
applied theories, such as the "paint brush theory", which have no 
value from either a practical or a theoretical point of view. An 
interesting example of this nature is suggested by J. Stuart. This 
author tells about a man who, from general mathematical 
considerations, derived a very complex formula, filled with 
constants e, c, h for calculating the radius of the universe. And it 
was only after many years that scientists decided to obtain by using 
this formula a specific value of the radius. It turned out that it is 
equal to 10 centimeters [1].  

R. Courant and G. Robbins emphasized that discoveries which 
simultaneously meet theoretical and practical needs are of 
particular importance for the further improvement of mathematical 
knowledge [4]. Thus, for example, the transition from natural to 
rational numbers served a theoretical need to remove restrictions 
on the performance of the corresponding arithmetic operations, 
and also the practical necessity for numbers suitable for the results 
of measurements of quantities.  

In actual mathematical activity, external and internal stimuli, 
as a rule, are difficult to distinguish. Practice itself often influences 
mathematics, not only because it immediately requires extensive 
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and profound mathematical knowledge, but also because it can 
create insights into the unraveling of the mysteries of nature and of 
the properties and activities of otherwise mysterious 
configurations. In addition, it is the development of practice 
certainty, and the need for unambiguous, consistent and correct 
interpretation of certain natural patterns which has been one of the 
main motives for developing relatively uniform principles for the 
systematization and organization of mathematical knowledge, 
which in turn led to their qualitative transformation and to the 
formulation of the deductive method. 

Let us consider in more detail the manifestation of the 
stimulating role of practice in relation to mathematical science. 
The most transparent role is manifested when developing special 
mathematical methods for solving specific problems that arise in 
peoples’ real life activities. Among such problems in the early 
stages of the development of mathematics are the problems of land 
surveying, the calculation of the volume of vessels, the practical 
calculation, the calculation of time and the prediction of natural 
phenomena. Somewhat later, practical changes and developments 
in, for example, trade, construction and agriculture, combined with 
new challenges in areas such as astronomy, geography, mechanics, 
and optics-accelerated the predominant development of 
computational methods. 

A general description of the realization of the relationship 
between mathematics and practice in similar cases presupposes a 
sequence of steps, as reflected in Figure 2 below. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The realization of the relationship between mathematics and practice 

In accordance with the above Figure 2, a person's activity in 
the investigation of one or another side of the real world begins 
with a meaningful analysis of the initial general problem situation, 
leading to the formulation of a more specific concrete practical 
problem. This analysis includes a refinement of the meaning of 
initially insufficiently defined input parameters; checking the 
completeness of the initial information and introducing, if 
necessary, missing data; choosing the range of accuracy and 

numerical data corresponding to the nature of the problem, and 
making a preliminary assessment of the value of the problem being 
solved in relation to the initial problem situation [5]. 

At the next stage, a mathematical model of the problem is 
constructed, reproducing the features of the structure and 
properties of the original in the language of mathematical terms 
and symbols. Next, the model is transformed, with the aim of 
obtaining specific numerical values. After correlating these values 
with the initial situation, a conclusion is made about the 
plausibility of a given result and the possibility of using the method 
of obtaining it in solving problems of a similar nature. As an 
example of this possibility, one can indicate the application in 
electromagnetism and optics of mathematical methods originally 
intended for the theory of elasticity [2]. 

The dominant motivational factor in any considered case is the 
urgent need to obtain a solution of this particular practical problem 
irrespective of other possible areas of application of the 
constructed mathematical model. In such a situation, the effect of 
this motive essentially ends with the result. A relatively recent 
example of such a "direct" impact of practice on the development 
of mathematics is that of linear programming, which arose on the 
basis of a number of particular problems (optimization of material 
consumption, organization of transport, etc.) [3, 5, 6, 7]. 

It should be noted that in the course of the historical 
development of mathematics, the limiting scope imposed by the 
way a task was framed has often had a negative effect on the 
improvement of mathematical knowledge. For example, ancient 
scientists, in solving the problem of "incommensurable" values, 
could not overcome the Pythagorean numerical traditions and 
build mathematics on the basis of pure axiomatic geometry. This 
resulted, in the words of R. Courant, in one of the "strange 
wanderings in the history of science", which for two millennia 
delayed the "evolution of the idea of number and alphabetic 
calculus" [1]. 

A more positive effect of practice on the development of 
mathematics occurs when mathematical thinking goes far beyond 
what the posed practical task directly demands, passing 
successively through a series of steps of abstraction of the concepts 
and methods from their originally concrete and material 
prototypes. At the same time, the increasing abstracted purity of 
mathematical theories simultaneously increases their applicability, 
so that the range of problems under consideration is broadened and 
generalized, which, in turn, facilitates the transition of any given 
theory to a new stage of abstraction. This regularity can be 
represented schematically in the form of a system of "embedded" 
plane figures embodying the corresponding levels of abstraction of 
the practical problems (Figure 3).  

 
 
 
 
 
 

Figure 3 The levels of abstraction 

We will consider this Figure 3 on the basis of one of the key 
directions in the development of mathematical science. 
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In solving the problem of the listing of any objects, each of the 
individual properties that are available for each of these objects can 
begin to play the role of a "unit". A search of these "units" leads to 
the establishment of a certain sequential order and the emergence 
of the concept of the ordinal, and then of the quantitative number. 
The implementation of the simplest operations on numbers 
convinces us of the need to extend the notion of a number, which 
has as its final result the creation of a single logical concept of 
arithmetic. 

At the next level of abstraction, it is appropriate to introduce 
symbols, which imply any quantitative numbers. Thus, we move 
from arithmetic to algebra and then to mathematical analysis, 
which unlike algebra studies variables not only in discrete but also 
in continuous form [8]. 

The rapid development of theoretical natural science in the late 
19th century meant mathematics had also to develop to a new, 
higher stage of abstraction. In addition to matters of quantitative 
symbolic content, the mathematical operations themselves are 
considered to be variables. 

The highest level of abstraction of modern mathematics, as 
already noted above, does not mean its separation from practice. 
On the contrary, abstract mathematics, operating with such 
abstract concepts as a group, a set, an abstract space, has managed 
to explain and express the most complex processes and phenomena 
of ‘reality’. The application of mathematics to practice is at this 
level generally realized directly in indirect conjunction with 
natural science disciplines. As an example, the practice and 
development of topology produced changes in differential 
geometry, enriched the theory of relativity and, through the theory 
of critical points in the calculus of variations stimulated the 
development of homological algebra, and, through the theory of 
sheaves and cohomology, algebraic geometry. Thus topology has 
moved from an esoteric category of mathematics to one of its 
central unifying and basic facets [3]. 

During the transition through levels of abstraction, 
mathematics extracts additional information hitherto implicit in its 
structures, while providing itself with the possibility of continuing 
applicability to pressing practical demands and also strengthening 
its internal potential. It should be noted that the initial practical 
need does not disappear without a trace in the course of its 
immediate satisfaction. It implicitly participates in the construction 
of a chain of internal motives for the improvement of mathematical 
knowledge, reinforced from time to time by direct external 
impulses. These impulses are due to the classical and ongoing 
tensions within science between the newly obtained results of 
experience and observations and the basic laws underlying the 
corresponding theoretical concept. The solution of these 
contradictions assumes either the search for new, still unknown 
methods, or the amendment of the already adopted basic 
provisions with the aim of increasing the accuracy of their wording 
through the use of second, third, etc. degrees of approximation. For 
example, in the early 20th century mathematicians realized that the 
theory of quadratic forms developed by D. Hilbert was not entirely 
suitable for solving the problems of rapidly developing quantum 
mechanics. Awareness of this fact served as a stimulus for J. von 
Neumann to improve this theory. By refusing the traditional 
"binding" of a quadratic form to a specific algebraic record, 

Neumann was able to produce a more general definition which 
avoided the limitations of the Hilbert approach. This improved 
theory of quadratic forms was able to provide answers to the very 
real and specific demands of modern physics [3, 5]. 

Another possibility of the stimulating effect of practice on 
mathematics is the transfer of concepts, representations and modes 
of activity which are characteristic of natural and humanitarian 
disciplines, to the field of "pure" mathematical science. This 
possibility stems either from the absence of concepts in 
mathematics, yet in which language one can describe certain real 
processes and phenomena, or from the presence of certain 
discrepancies in the interpretations of "related" objects of study in 
mathematics and corresponding fields of human knowledge. A 
change in the viewpoint of mathematical methods makes it 
possible, in a number of cases, to stimulate the development of a 
corresponding section of mathematical content. For example, the 
use of a rigorous definition of the limiting transition in the sense of 
Augustin-Louis Cauchy in the study of real processes seems at first 
sight to be impossible, since the consideration of any physical 
quantities reduced "beyond some reasonable boundaries" is 
completely meaningless. In connection with this, in physics, the 
so-called "practical infinitesimal quantities" are considered, and 
treated as actually infinitesimal. The apparent contradiction is 
resolved on the basis of a scientifically grounded possibility of 
using the definition of a limit transition not only for infinite 
continuous processes, but also for particular cases on bounded sets. 
Despite this possibility, the practical treatment of infinitesimal 
quantities has found its application in the concept of nonstandard 
analysis that goes back to Leibniz, which in a number of cases 
substantially simplifies the classical exposition of it [4, 6, 9]. 

Among the existing "channels of influence" of practice on 
mathematical activity, one more should be mentioned. As we 
know, practice is the source of plausible reasoning based on 
intuition, experiment, analogy and constructive induction. These 
arguments, unlike the proofs, do not provide the reliability of the 
mathematical theory. However, in them, according to R. Courant 
and G. Robbins, can be found the real essence of any mathematical 
discovery, even if it belongs to its most abstract areas [1]. Many 
examples of how plausible reasoning can lead to the discovery of 
certain mathematical regularities are given in the well-known work 
of G. Polya [10]. It is important to note that this author directly 
relates the application of these arguments to motives that are 
starting points for the promotion of relevant hypotheses and their 
proofs. 

3. The motivational role of practice for mathematical 
education in school 

The assimilation of a mathematical theory requires 
consideration of empirical concepts directly related to practical 
activity. These concepts can also be fully understood, refined and 
used in practice as meaningful interpretations of abstract 
theoretical concepts. It is necessary in this respect tо know about 
the stages in the assimilation of educational material. At the first 
stage, following observation and experiment, a basis of 
understanding of a fragment of the mathematical theory is formed. 
Then, in the course of understanding the whole system of empirical 
concepts and interrelations between them, knowledge ascends to 
the theoretical level. Finally, mathematical concepts and methods 
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of activity produce some concrete, meaningful interpretations that 
make it possible to intensify the students' desire to apply the 
acquired theoretical information in practice. This process must of 
course take into account the overall (and especially age related) 
context of school based mathematical education. 

At the earliest stage, practical activity mainly performs a 
stimulating function in the study of mathematical content, resulting 
from the tendency inherent in the child's initial consciousness to 
"cling" to specific and directly "tangible" facts and situations [4, 
5]. At the same time, the study of mathematics is a process of 
empirical cognition, in which observation and experiment 
(calculation, measurement, drawing, construction, etc.) play a 
major role. The main motivational factor here is the inherent desire 
of any person to connect the acquired material with their own life 
and practical experience. 

In the following stages of training, the stimulating role of 
practice, although it ceases to be dominant, nevertheless retains its 
role as an important means of motivating consideration of a 
fragment of content and the sparking of initial interest. At the same 
time, the mathematical fact begins to act not so much as a 
straightforward step of generalization of empirical material 
realized by direct teacher guidance, but rather as a result of solving 
a purely mathematical problem, specially formulated during the 
consideration of the corresponding practical problem. The 
possibilities for such work are significantly increased when 
connecting the material of related subjects, especially physics. 
Thus, for example, the study of the propagation of light reflected 
from a specially placed mirror in its path leads to the question of 
choosing the path by which light travels the shortest distance. An 
attempt to answer this question leads to the formulation of a purely 
geometric problem. The solution of this problem is realized, as is 
well known, on the basis of the symmetry method. Thus, the 
physical problem appears here as a carrier of motivation for the 
application of the symmetry method in solving geometric 
problems. 

In another case, observations of sunset followed by plotting the 
time dependence of the moment of sunset from the date of 
observation can be used to motivate the introduction of the 
trigonometric function y=sin x and to reveal some of its features, 
making it easier for schoolchildren to assimilate such concepts as 
the domain of function, monotonicity, zeros and the periodicity of 
the functions [11]. Here, empirical activity does not end with the 
very introduction of the concept of trigonometric function, but 
"permeates" the entire content of the topic, periodically providing 
additional support to the motivational mechanism involved in the 
initial situation. The main didactic condition for the effective 
implementation of such situations is the provision during the 
educational process of the possibility of their detection, awareness 
and successful resolution. 

The participation of schoolchildren in the process of the 
emergence of new concepts by abstracting and generalizing the 
phenomena of the real world, significant though it is, by no means 
exhausts the stimulating potential of practice in the study of 
mathematical material. In particular, an essential role in the 
realization of this potential is played by an emerging awareness 
that knowing a particular fact for solving an important problem, 
whilst complete in itself, can also lead to the further development 

of the problem or to proving the theorem. The proposed problem 
or theorem should always be linked to students’ previous, 
empirically based experience. 

For example, at the primary level students meet challenges to 
find the sum of certain numbers in a number sequence: 

1+2+3+…+99+100 

To find the sum students change the order of numbers in the 
sequence and group them accordingly: 

50502
100101

2
)1100(...)992()1001( =×=++++++

 
At the senior level, students can apply this fact using geometric 

material. Here students must find out the number of lines 
connecting a certain number of points. After some practical actions 
with two, three, four points, students determine how many lines 
can be drawn through 100 points. As a result of discussions, 
students establish that the 100th point can be connected with 
another point by 99 lines, the 99th point by 98 lines, the 98th point 
by 97 lines, and so on. This allows a transition from a geometrical 
problem to an algebraic problem. Further analysis helps to find the 
number of lines passing through n points. To solve this problem 
students need to find the sum of the first n natural numbers, i.e. 
finding the sum of arithmetic progression corresponding to a 
number sequence. 

In the given example, students were stimulated to learn the 
progression from manipulating geometric objects to formulating a 
geometrical problems and then converting it into algebraic 
problem. The use of geometric material gives pupils a subjective 
feeling of novelty. At the same time it allows them to engage in 
practical activities. 

At the next stage of mathematical preparation, the motivational 
role of practice is expressed in the realization of its worldview 
function. Such an implementation is possible through the 
demonstration of the application of the studied mathematical 
content in related courses and other school disciplines and 
consideration of the history of the emergence and evolution of 
scientific concepts and methods. It also develops familiarity with 
the elements of mathematical modeling of real states and 
processes, underlying the mastery of applied mathematical 
ideology [7, 11, 13]. In addition, an understanding of the role of 
mathematical knowledge as an important component of human 
culture becomes one of the leading motivational factors, creating a 
conscious desire by students to use the acquired material in related 
subjects and real life practice. 

Textual problems are a traditional means of demonstrating the 
practical importance of mathematics as it is studied in school. In 
solving them, students become acquainted with the basic l method 
of cognition of reality via the concept of mathematical modeling 
of the initial real life situation. They learn to choose which model 
and how to construct and apply it. They thus also learn how to 
analyse and interpret the quantitative, graphical or qualitative 
results they obtain. 

Textual problems form part of the very first mathematics 
lessons, thereby implicitly preparing junior students for a future 
explicit understanding of the concept of modeling. As a rule, here 
they act as ‘pseudo-real ‘problems, presupposing exactly as much 
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data as necessary for the solution, and providing for an 
unambiguous and exact answer. The process of solving such 
problems is, as it were, "monologic". It does not require the distinct 
special definitions and refinements which characterise applied 
problems of a tangibly external nature [12, 14]. Accordingly, the 
motivational effect of such tasks is mainly determined by the 
artificial actualization of problematic situations, often of an 
entertaining nature, the plot of which to some extent correlates 
with the real non-mathematical experience of students. The 
presence of such an effect implies compliance with the following 
minimum set of requirements. 

1. The given tasks must correspond to the real characteristics 
of the non-mathematical objects described. 

2. The task plot should be relatively "close in spirit" to the 
student, reflecting the significant aspects of his or her experience. 

3. The set of mathematical tools mastered by schoolchildren 
should be sufficient to solve the problem at a level corresponding 
to this stage of mathematical preparation. 

As student mathematical understanding develops, so the 
possibilities of realizing the worldview function of practice are 
substantially increased. This is primarily because the set of the 
subject tools (the types of equations studied, the functional 
dependencies, algebraic expressions, etc.) are substantially 
enriched by each of them having the potential to be understood as 
a mathematical model of some real phenomenon or process. The 
study of related disciplines (physics, chemistry, geography and 
others) provides the school mathematics curriculum with a 
significant number of practical applications and motivations. 
Mastery of the intrinsic conceptual qualities of mathematical 
modeling of real processes, studied in related fields of knowledge, 
provides an understanding of the general possibility of applying 
mathematical knowledge and skills, and thereby develops 
enthusiasm for such application. At the same time it becomes the 
basis for the formation of educationally cognitive motivation both 
in relation to mathematics itself and in relation to other affected 
disciplines [15]. 

It is important to identify a number of conditions for the 
effective implementation of this ‘worldview‘ function of practice, 
which apply to all stages of the school based mathematics 
curriculum. 

1. Maximum correlation between the mathematics curriculum 
and other school disciplines, with close consideration of real life 
practice. This correlation depends on careful planning and timing, 
a unity of approach to the formation of concepts common to these 
courses; consistency of terminology, notation, systems of units of 
measurement, and also the correspondence of operational 
structures to the solution of typical problems.  

2. Purposeful development of mathematical intuition, implying 
the introduction of features specific to applied activity in the 
teaching of mathematics [15, 16]. This includes the basic skills and 
techniques used in solving practical problems (selection of the 
necessary data, estimation of the result, methods of approximate 
calculations, etc.), and the cohesive consistency of the steps 
characteristic of applied activity (analysis of the real situation, 
formulation of the problem, choice and construction of its 

mathematical model, interpretation of the real meaning of the 
result). 

3. Clear demonstration of the origin and development of 
mathematical concepts and methods because of related knowledge 
and real life needs and experience. 

All this is best achieved within a common ethos and a culture 
of dialogue within each and across all parts of curriculum. This 
produces mutually enriching learning within and across 
disciplines. It is also a matter of positive and sensitive approach. 
Factors such as emotional tone, confidence in the cognitive 
abilities of the interlocutor, and mutual support are important 
examples. Tasks of a practical nature provide great opportunities 
for developing an iterative dialogue of learning because of their 
initial empirical uncertainty. The process brings clarity, relevance 
and priority. Students create a virtuous circle of learning and 
motivation.  

As an example, let us consider a practical problem depicting a 
real situation associated with the construction of a cottage. 

Problem 1. 

The cottage has width a = 5 m and length b = 8 m. What is the 
size of the mansard  if the distance from the attic flooring to the 
top of the mansard is h = 3 m? 

After discussing the meaning of the terms related to the given 
situation (mansard, attic flooring, top of mansard) students find out 
that the length of the mansard is the length of the cottage. To find 
other sizes students analyze the situation and answer the following 
questions. 

1) What geometric shapes correspond to the images of the 
façade of the cottage and the cross section of the mansard? The 
answer is a rectangle inscribed in a triangle. 

2) When drawing variants of the specified geometrical 
configuration, when does the mansard becomes the most spacious? 
Check your answer by calculation. The answer is the rectangle 
sides are slightly different from each other. 

3) How to mathematically characterize the most rational form 
of the cross section of a mansard? Its area is maximum. 

4) What problem can you formulate using this fact? You need 
to find the maximum cross-section of the mansard. 

The problem requirements are not imposed on students by the 
teacher. They are requirements which develop as an intellectual 
acquisition as a result of discussion.  

Next, some preliminary quantitative estimation of an expected 
result should be carried out. The estimated value of this result 
should be determined. Rough approximation shows that the result 
is equal to the area of the cross section of the mansard which has a 
triangular shape (15 m2). More precisely, this value is determined 
through a drawing using students’ visual and intuitive reasoning. 
This value equals half the cross-sectional area of the mansard 
approximately (7.5 m2). This process allows students to control the 
progress of the search.  

At the next stage of solving the problem, students’ constructive 
team work continues. They build a mathematical model. Using the 

http://www.astesj.com/


M. Rodionov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 258-266 (2018) 

www.astesj.com     264 

geometrical drawing students formulate a mathematical analog of 
the practical problem: 

Find the sides of a rectangle inscribed in the biggest triangle. 
The triangle has base a and height h, (Figure 4). Introduce the 
notation: LD=y; CE= h; DM=LG=x; NK=a 

Then students construct an analytical model of this practical 
problem using similarity of the triangles NCK and LCD: 

,)( xxh
h

а
S ×−=

 
Where S is the area of the rectangle LDMG. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 The mansard 

 
An investigation of the relationship between the area of the 

rectangle and the second and the third factors (a/h constant) leads 
to the mathematical question: at what value of x is the product of 
(h–x)x a maximum (x<h)? This product can be presented in the 
form  –x2 +hx and corresponds to the quadratic function 

f(x) = –x2 + hx.    (1) 
 

Figure 5 Graphical model 

In this case only a graphical method is possible. Students 
construct a new graphical model of this practical problem. This 
model  is  a  part of   the  parabola   which  opens  downward  
(Figure 5). It leads to the next mathematical question. At what 
argument value is the function f(x) = –x2+hx a maximum? 

Clearly the argument value corresponds to the abscissa of the 
parabola vertex. From the concept of symmetry or the formula this 
value is 𝑥𝑥0 = ℎ

2
= 1,5 

We come to different interpretations of the results. 

1. An initial situation. 
The maximum cross-section of the mansard is when the height 

of the mansard is equal to half the distance from the attic flooring 
to the top, i.e. 1.5 m. The area of the cross-section is  

𝑆𝑆 =
𝑎𝑎
ℎ

× (ℎ − 𝑥𝑥) × 𝑥𝑥 = 3,75𝑚𝑚2(𝑆𝑆 < 7.5𝑚𝑚2) 

Maximum mansard capacity is 𝑉𝑉 = 𝑆𝑆 × 𝑏𝑏 = 30𝑚𝑚3 
2. A geometrical model. 

The side of the rectangle inscribed in the biggest triangle is the 
middle line of this triangle. 
3. An analytical model. 

The product of two positive factors has maximum value if they 
are equal (the sum of these factors is constant). 
4. A consequence. 

Among all rectangles with the same perimeter, a square has the 
maximum area. 
5. A graphical model. 

The relationship between an area of a rectangle inscribed in a 
triangle and its side is a part of a parabola. The abscissa at the top 
of the parabola corresponds to the side when an area is maximum. 
The abscissa of the points of intersection of the parabolas and the 
coordinate axes corresponds to the side when an area is minimal, 
etc. 

As a result of this work a teachers inform the students that the 
practical problem considered is one from a wide range of 
problems where one needs to find maximum and minimum. These 
problems are of great practical importance. It is useful to give 
students homework: choose similar problems from their life 
experience. 

This example illustrates all the major stages of solving practical 
problems. 

Among these stages the key element is the choice of the basic 
model of the studied situation. Practice shows that students have 
challenges in choosing this model without prompted training 
activity organized by the teacher. For this to be effective, the 
teacher must help students develop particular skills. For example, 
students must establish the similarity between various 
explanations, to estimate the outcome of each of them in a specific 
situation, whilst evaluating different approaches. This kind of 
work can be organized through specially chosen sets of practical 
problems.  

Problem 2 

What kind of measuring instruments do you need to determine 
the area of the steel plate in the form of an equilateral triangle 
measuring a cm? 

Most students propose to use the formula: 𝑆𝑆 = 𝑎𝑎2√3
2

 for the area 
of the triangle. It is sufficient to measure the side of a triangle with 
a ruler. The content of the school physics course allows them to 
determine the area through the volume and density of the material 
of the steel plate:  𝑆𝑆 = 𝑉𝑉

𝑛𝑛
= 𝑚𝑚

𝑝𝑝×ℎ
. 

Students should weigh this steel plate and find the appropriate 
value of density in a table. After this activity students get identical 
results using different formulas and different measuring 
instruments. The relationship between mathematical and physical 
reasoning then becomes clear to them. 

L 

N G E M K 

D 

C 

h 

x 

У 

Х Х0 0 h 
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Students can see that those two approaches produce an 
approximate measurement. Then they have to explain the equality: 
𝑚𝑚
𝑝𝑝×ℎ

= 𝑎𝑎2√3
2

. The obtained "motivational impulse" can be used by 
the teacher to clarify the range of possibilities of the methods used. 
A teacher gives students steel plates of different forms (a circle, a 
rectangle, ellipse etc.) and discusses the benefit of different 
approaches to solve practical problems. The practical approach is 
optimal for any given activity. Students may see plates of various 
shapes. Also, they can use the weighing method to determine the 
characteristics of geometric shapes. This method was successfully 
applied by Archimedes for the volume of a sphere. During this 
activity students recognize how a practical method relates to a 
mathematical method. This method allows students to consider 
from a given problem how to find areas and volumes of 
geometrical shapes in general. As a result of this activity students 
will have long-term motivation in learning future mathematical 
analysis. It is important to note that in the above (and indeed other) 
practical problems mathematical activity is not a closed and 
separated structure; it is a natural component of the universal 
system of knowledge about the world [9]. 

4. Students’ orientation in the modern world through 
solving practical problems 

At the last stage of teaching, the role of practice in providing 
mathematical orientation becomes dominant. Practice gives 
students a new motivation and understanding of how 
mathematical skills are needed to fully participate in the modern 
world and for the successful implementation of future 
professional activity. However, this is not always easy. One 
challenge is that many modern scientific fields operate in such a 
way that their types of models do not smoothly integrate with the 
traditional mathematics curriculum. More subtle approaches 
might be then needed to impart an understanding of the practical 
application of mathematical knowledge to future professional 
development and in relation to environmental and other 
extracurricular activities.  

Let us consider an example from the field of medicine. In 
studying the exponential function in the school, students' attention 
is drawn to the traditional formula expressing the laws of growth 
(y=ekx) and decay (y=e–kx). At the beginning of the 20th century 
American scientists revealed the law related to the latter formula. 

It reflects the approximate dependence of the area of protracting 
wounds from the time when the wound becomes sterile. This 
dependence can be traced with a special device, a planimeter. A 
planimeter is used for approximate measurement of the surface 
area bounded by lines. The perfect curve of wound healing is 
described by the formula: S=S1e–kt, where S1 is the wound area 
at the initial time. The perfect curve is also called the prediction 
curve. A prediction curve is compared with an actual curve 
(Figure 6). The wound is infected if the observed wound area is 
larger than the area defined by the perfect curve. If a wound heals 
faster than the perfect curve shows, this indicates the appearance 
of secondary ulcers. A wound is healing well if the prediction 
curve is the same as the actual curve. 

Such examples, as shown in our monitoring of the teaching-
learning process, significantly enhance the general attractiveness 
of mathematics for students and across disciplines. 

 

 

Based on the previous discussion, the motivational 
characteristics of practical problems can be presented in a 
systematic form in Table I. 

Table 1: Systematic form of practical problems 

Stage 
Role of 
practical 
problem 

Motivating factor Objective Instructional techniques Students’ activity 

1 
Stimulate 
students' 
interest 

Intention to link learning 
material with their own life 
experiences 

Deriving of mathematical 
relations; understanding 
concepts, theorems, 
algorithms and their 
application 

Organization of 
empirical support for 
students’ activity 

Using students' life experience, 
applying it to solve non-standard 
word problems 

2 
Develop 
students' 
world outlook 

Intention to apply mathematical 
material which was studied in 
other related school disciplines 
and real-life practice 

Demonstration of practical 
application of mathematics in 
various branches of human 
knowledge 

Forming of modeling 
method 

Using plausible reasoning to solve 
practical problems related to other 
school disciplines 

3 

Students' 
orientation in 
the modern 
world 

Intention to apply mathematical 
tools for association to their 
environment 

Awareness of importance of 
mathematical knowledge and 
skills for further education 
and profession 

Understanding of the 
features of mathematical 
models and their use for 
practical activity 

The development of research with 
the involvement of the 
appropriate mathematical tools 
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This table demonstrates the implementation of the 
motivational role of practice and instructional techniques related 
to students’ activity. The majority of the characteristics reflected 
in Table I are not tied to a particular stage of the teaching process. 
Mathematical knowledge and skills are enriched when students 
move to the next stage, which reinforces the stability and depth of 
their motivation. 

5. Conclusion 

The study of the nature of mathematical activity identifies a 
number of key factors which help to creatively regulate and 
stimulate motivational processes. These include capacious and 
precise ‘linguistic’ means of expressing mathematical 
regularities, the need for their justification and the development 
of a mathematical apparatus that enables a solution to any given 
problem of an applied nature. These factors can be described in 
hierarchical sequence [17, 18]. 

The initial link in this sequence is the practical need for solving 
specific pressing problems from the field of real human activity 
by the application of tailor made mathematical activity. In 
particular, it is expressed in the fact that any given practical task 
can stimulate the development of certain mathematical methods 
which in turn facilitate useful generalizations that would later 
extend those methods to a whole range of practical problems. This 
can itself become the starting point for relatively long-term 
mathematical research and open up the possibility of applying the 
developed mathematical theories to as yet unsolved practical 
problems. It can also help specify the prerequisites for the 
application of the developed mathematical tools to future stages 
of the development of science.  

All these aspects should be taken into account when studying 
the school based mathematics curriculum. They offer a rich set of 
motivational opportunities. The particular motivational 
mechanisms which are applied will always initially be mindful of 
age range. In the initial stage of teaching mathematics, practical 
activity is basically a directly stimulating function in which the 
main role belongs to observation and experiment (real tasks for 
computing, measuring, plotting, constructing, etc.). 

Motivational potential is then enhanced by demonstrating how 
a specific method for solving a specific problem can be used as 
the launching pad for the further development of the problem and 
for proving a theorem. The intention in so doing is to correlate this 
activity with the students’ previous real life experience. Later, the 
motivational role of practice is realized through the recognition of 
the role of the studied mathematical content in the deployment of 
related courses and also through consideration of the history of 
the emergence and evolution of scientific concepts and methods. 
Further it develops understanding of the various elements of 
mathematical modeling of real states and processes which 
underpin the mastery of applied mathematical ideology. Textual 
tasks are at the core of the mechanism for such an implementation. 
All this continues at the most senior levels, but this is now 
combined with a growing awareness of ecological orientation – of 
the importance of the mathematic repertoire for general 
involvement in the world and in particular for the successful 
implementation of future professional activity. This function can 
be performed using real-world applications using a sufficiently 

serious mathematical tools. 
The implementation of these mechanisms, reflecting the 

specifics of the implementation of the motivational role of 
practice in relation to mathematics, requires careful and precise 
correlation with each student’s educational activity. The relevant 
material is presented in detail in our textbooks and articles. 
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