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 This paper presents the input-output feedback linearization and decoupling algorithm for 
control of nonlinear Multi-input Multi-output MIMO systems. The studied analysis was 
motivated through its application to a robot manipulator with six degrees of freedom. The 
nonlinear MIMO system was transformed into six independent single-input single-output 
SISO linear local systems. We added PD linear controller to each subsystem for purposes 
of stabilization and tracking reference trajectories, the obtained results in different 
simulations shown that this technique has been successfully implemented. 
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1. Introduction 

In recent years, Feedback linearization has been attracted a 
great deal of interesting research. It's an approach designed to the 
nonlinear control systems, which based on the idea of 
transforming nonlinear dynamics into a linear form. The base idea 
of this technique is to algebraically transform a nonlinear 
dynamics system into a totally or partially linear one, so that linear 
control techniques can be applied. This notion can be used for 
both stabilization and tracking control objectives of SISO or 
MIMO systems, and has been successfully applied to a number of 
practical nonlinear control problems such as [1-4]. 

    In fact, this technique has been successfully implemented in 
several faisable applications of control, such as industrial robots, 
high performance aircraft, helicopters and biomedical dispositifs, 
more tasks used the methodology are being now well advanced in 
industry [5-6]. 

In this case, we applied this technique to lead the control for 
each joint of a robot manipulator that is has six degrees of freedom, 
which the equations of motion form a nonlinear, complex 
dynamic and multivariable system, then, we elaborated a PD 
linear controller for each decoupled linear subsystem to control 

the angular position of each joint of this robot arm for stabilization 
and tracking purposes. The obtained results in different 
simulations shown the efficiency of the derived approach [7]. 

   This paper is organized as follows: It is divided into five 
sections. In Section 2, a description of the input-output feedback 
linearization approach is detailed. In Section 3, a simplified 
dynamic model of a robot manipulator with six degrees of 
freedom is presented, the input-output feedback linearization 
method is applicated to the above robot and the construction of 
linear PD controller is derived. In Section 4, the simulation results 
are presented. Finally, the conclusion was elaborated in Section 5. 

2. Input-Output feedback linearization for MIMO 
nonlinear system. 

In this section, we discussed the approach of input-output 
feedback linearization of nonlinear systems, the central goal of 
feedback-linearization is to design a nonlinear-control-law as 
assumed that the inner-loop control is, in the most suitable case, 
precisely linearizes the nonlinear system after appropriate state 
space modification of coordinates [1]. The developer can then 
build an outer-loop-control in the new coordinates to obtain a 
linear relation between the output Y and the input V and to satisfy 
the traditional control design specifications such as tracking, 
disturbance rejection, as shown in Figure 1.  
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Figure 1. Structure of Input-Output Feedback Linearization Approach. 

     The basic condition for using feedback linearization method is 
nonlinear dynamic MIMO of n -order with p number of inputs and 
outputs described in the affine form; 

⎩
⎪
⎨

⎪
⎧𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓�𝑋𝑋(𝑡𝑡)� + �𝑔𝑔𝑖𝑖�𝑋𝑋(𝑡𝑡)�𝑈𝑈𝑖𝑖(𝑡𝑡)

𝑝𝑝

𝑖𝑖=1

 

𝑌𝑌𝑖𝑖(𝑡𝑡) = ℎ𝑖𝑖�𝑋𝑋(𝑡𝑡)�
𝑖𝑖 = 1,2, …𝑝𝑝

                   (1) 

Where, 

𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛: is the state vector.  

𝑈𝑈 = �𝑢𝑢1,𝑢𝑢2 … 𝑢𝑢𝑝𝑝�
𝑇𝑇 ∈ 𝑅𝑅𝑝𝑝: is the control input vector. 

 𝑌𝑌 = �𝑦𝑦1,𝑦𝑦2 … 𝑦𝑦𝑝𝑝�
𝑇𝑇 ∈ 𝑅𝑅𝑝𝑝: is the output vector, 𝑓𝑓(𝑋𝑋),𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑖𝑖(𝑋𝑋): 

are n-dimentional smooth vector fields. 

ℎ𝑖𝑖(𝑋𝑋): 𝑖𝑖𝑖𝑖 smooth nonlinear functions,with i=1,2...n. 

Theorem1:  

Let f: ℛn → ℛn represent a smooth vector field on ℛn and let  

h : ℛn → ℛn represent a scalar function. The Lie Derivative of h, 
with respect to f, denoted Lfh,  is defined as [1-2].  

 𝐿𝐿𝑓𝑓ℎ =
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

𝑓𝑓(𝑥𝑥) = �
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥)                                (2)
𝑝𝑝

𝑖𝑖=1

 

The Lie derivative is the directional derivative of h in the direction 
of f(x), in an equivalent way, the inner product of the gradient of 
h and f. We defined by Lf2h the Lie Derivative of  Lfh  with 
respect to f: 

𝐿𝐿𝑓𝑓2ℎ = 𝐿𝐿𝑓𝑓  ( 𝐿𝐿𝑓𝑓ℎ)                                     (3) 

In general we define: 

𝐿𝐿𝑓𝑓𝑘𝑘ℎ =  𝐿𝐿𝑓𝑓(𝐿𝐿𝑓𝑓
𝑘𝑘−1ℎ)    𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 =  1, . . . , 𝑝𝑝            (4) 

with  𝐿𝐿𝑓𝑓0ℎ = ℎ 

Theorem2:  

The function Φ:ℛn → ℛn  defined in a region Ω ⊂ ℛn  he is 
called difeomorphisme if it checks the following conditions: 

Firstly, a diffeomorphism is a differentiable function whose 
inverse exists and is also differentiable. Second, we should 
assume that both the function and its inverse to be infinitely 
differentiable, such functions are usually referred to as ℂ∞ 
diffeomorphisms [3-4]. 

The diffeomorphism is used to transform one nonlinear system in 
another nonlinear system by making a change of variables of the 
form:  

𝑧𝑧 = 𝛷𝛷(𝑥𝑥)                                           (5) 

Where Φ(x) represents n variables; 

   𝛷𝛷(𝑥𝑥) = �

𝛷𝛷1
𝛷𝛷2
⋮
𝛷𝛷𝑛𝑛

� = �
�ℎ1 𝐿𝐿𝑓𝑓ℎ1 … 𝐿𝐿𝑓𝑓𝑟𝑟1−1ℎ1�

𝑇𝑇

⋮
�ℎ𝑝𝑝 𝐿𝐿𝑓𝑓ℎ𝑝𝑝 … 𝐿𝐿𝑓𝑓𝑟𝑟𝑝𝑝−1ℎ𝑝𝑝�

𝑇𝑇
� ,      (6) 

𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛]𝑇𝑇  

The goal is to obtain a linear relation between the inputs and 
the outputs by differentiating the outputs 𝑦𝑦𝑗𝑗 until the inputs appear. 
Suppose that 𝑟𝑟𝑗𝑗 is the smallest integer such that fully one of the 
inputs appears in 𝑦𝑦𝑗𝑗(𝑟𝑟𝑗𝑗) using this expression: 

yj(rj) = Lfrjhj(x) + � Lgi(Lf
(rj−1)hj(x))ui 

p

i=1

        (7) 

i, j = 1,2, … p 

Where, 𝐿𝐿𝑓𝑓𝑖𝑖ℎ𝑗𝑗  and  𝐿𝐿𝑔𝑔𝑖𝑖ℎ𝑗𝑗 : Are the 𝑖𝑖𝑡𝑡ℎ Lie derivatives of hj(x) 
respectively in the direction of f and g. 

 𝐿𝐿𝑓𝑓ℎ𝑗𝑗(𝑥𝑥) =
𝜕𝜕ℎ𝑗𝑗
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥),  𝐿𝐿𝑔𝑔ℎ𝑗𝑗(𝑥𝑥) =
𝜕𝜕ℎ𝑗𝑗
𝜕𝜕𝜕𝜕

𝑔𝑔𝑖𝑖(𝑥𝑥)           (8) 

rj: is the relative degree corresponding to the yj  output, it's the 
number of necessary derivatives so that at least one of the inputs 
appear in the expression [5].  

If expression  𝐿𝐿𝑔𝑔ℎ𝑗𝑗(𝑥𝑥) = 0 , for all i, then the inputs have not 
appeared in the derivation and it's necessary to continu the 
derivation of the output yj. 

The system (1) has the relative degree (r) if it satisfies: 

�
 𝐿𝐿𝑔𝑔𝑖𝑖𝐿𝐿𝑓𝑓

𝑘𝑘ℎ𝑗𝑗 = 0    0 < 𝑘𝑘 < 𝑟𝑟𝑗𝑗−1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛      (9)
  𝐿𝐿𝑔𝑔𝑖𝑖𝐿𝐿𝑓𝑓

𝑘𝑘ℎ𝑗𝑗 ≠ 0            𝑘𝑘 = 𝑟𝑟𝑗𝑗−1                        
 

The total relative degree (r) was considered as the sum of all 
the relative degrees obtained using (7) and must be less than or 
equal to the order of the system (10): 

 𝑟𝑟 = �𝑟𝑟𝑗𝑗 ≤ 𝑛𝑛
𝑛𝑛

𝑗𝑗=1

                                      (10) 

To find the expression of the nonlinear control law U that 
allows to make the relationship linear between the input and the 
output [6], the expression (2) is rewritten in matrix form as: 

http://www.astesj.com/
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�𝑦𝑦1𝑟𝑟1 … 𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝�
𝑇𝑇 =∝ (𝑥𝑥) + 𝛽𝛽(𝑥𝑥).𝑈𝑈                     (11) 

𝑉𝑉 = �𝑣𝑣1 𝑣𝑣2 … 𝑣𝑣𝑝𝑝�
𝑇𝑇 = �𝑦𝑦1𝑟𝑟1 …𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝�

𝑇𝑇
                  (12) 

Where: 

∝ (𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐿𝐿𝑓𝑓

𝑟𝑟1ℎ1(𝑥𝑥)
.
.
.

𝐿𝐿𝑓𝑓𝑟𝑟𝑝𝑝ℎ𝑝𝑝(𝑥𝑥)

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                              (13) 

𝛽𝛽(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐿𝐿𝑔𝑔1(𝐿𝐿𝑓𝑓

(𝑟𝑟1−1)ℎ1(𝑥𝑥)) 𝐿𝐿𝑔𝑔2(𝐿𝐿𝑓𝑓
(𝑟𝑟1−1)ℎ1(𝑥𝑥))     … 𝐿𝐿𝑔𝑔𝑝𝑝(𝐿𝐿𝑓𝑓

(𝑟𝑟1−1)ℎ1(𝑥𝑥))

𝐿𝐿𝑔𝑔1(𝐿𝐿𝑓𝑓
(𝑟𝑟2−1)ℎ2(𝑥𝑥))

.

.

.

𝐿𝐿𝑔𝑔2(𝐿𝐿𝑓𝑓
(𝑟𝑟2−1)ℎ2(𝑥𝑥))  …

.

.

.

  …
𝐿𝐿𝑔𝑔𝑝𝑝(𝐿𝐿𝑓𝑓

(𝑟𝑟2−1)ℎ2(𝑥𝑥))
.
.
.

𝐿𝐿𝑔𝑔1(𝐿𝐿𝑓𝑓
(𝑟𝑟𝑝𝑝−1)ℎ𝑝𝑝(𝑥𝑥)) 𝐿𝐿𝑔𝑔2(𝐿𝐿𝑓𝑓

(𝑟𝑟𝑝𝑝−1)ℎ𝑝𝑝(𝑥𝑥))   … 𝐿𝐿𝑔𝑔𝑝𝑝(𝐿𝐿𝑓𝑓
(𝑟𝑟𝑝𝑝−1)ℎ𝑝𝑝(𝑥𝑥))⎦

⎥
⎥
⎥
⎥
⎥
⎤

(14) 

If β (x) is not singular, then it is possible to define the input 
transformation "the nonlinear control law " which has this form: 

𝑈𝑈 = 𝛽𝛽(𝑥𝑥)−1. (−∝ (𝑥𝑥) + 𝑉𝑉)                        (15) 

𝑉𝑉 = �𝑣𝑣1 𝑣𝑣2 … 𝑣𝑣𝑝𝑝�
𝑇𝑇
 

𝑈𝑈 = �𝑢𝑢1 𝑢𝑢2 …𝑢𝑢𝑝𝑝�
𝑇𝑇
 

𝑦𝑦𝑗𝑗𝑟𝑟𝑗𝑗 = 𝑣𝑣𝑗𝑗  

where 

V: Is the new input vector. is called a decoupling control law 

β(x):Is the invertible (pxp) matrix. Is called a decoupling matrix 
of the system. 

2.1. Non-linear coordinate transformation: 

𝑍𝑍 = �

z1
z2
⋮

z𝑛𝑛

� = �

Φ1
Φ2
⋮

Φ𝑛𝑛

� = �
�ℎ1 𝐿𝐿𝑓𝑓ℎ1 … 𝐿𝐿𝑓𝑓𝑟𝑟1−1ℎ1�

𝑇𝑇

⋮
�ℎ𝑝𝑝 𝐿𝐿𝑓𝑓ℎ𝑝𝑝 … 𝐿𝐿𝑓𝑓𝑟𝑟𝑝𝑝−1ℎ𝑝𝑝�

𝑇𝑇
�       (16)  

By applying the linearizing law to the system,we can transforme 
the nonlinear system into linear form [7-8]: 

�Ż = Az + BV
Y = CZ

                                      (17) 

With, 

A = �
Ar1 … 0
… … …
0 … Arp

� , B = �
Br1 … 0
… … …
0 … Brp

�, 

C = �
Cr1 … 0
… … …
0 … Crp

� 

And, 

 Ari = �

0 1 … 0
0 0 … 0…
0
0

…
0
0

…
…
…

…
1
0

� ∈ ℛri×ri ;  Bri = �
0
⋮
1
� ∈ ℛri ; 

 
Cri = [1 0 … 0] ∈ ℛri  

2.2. Design of the new control vector V: 

    The vector v is designed to according the control objectives, for 
the tracking problem considered, it must satisfy: 
 

vj = ydj
rj + Krj−1 �ydj

rj−1 − yjrj−1� + ⋯

+ K1 �ydj − yj� ;                                              (18) 
1 ≤ 𝑗𝑗 ≤ 𝑝𝑝 

where, 
 �ydj , ydj

2, … . , ydj
rj−1 , ydj

rj�  denote the imposed reference 
trajectories for the different outputs. If the 𝐾𝐾𝑖𝑖  are chosen so that 
the polynomial [9-10]; 
𝑠𝑠𝑟𝑟𝑗𝑗 + 𝐾𝐾𝑟𝑟𝑗𝑗−1𝑠𝑠

𝑟𝑟𝑗𝑗−1 + ⋯+ 𝐾𝐾2𝑠𝑠 + 𝐾𝐾1 = 0  are Hurwitz (has roots 
with negative real parts). Then it can be shown that the error 
𝑒𝑒𝑗𝑗(𝑡𝑡) = 𝑦𝑦𝑑𝑑𝑗𝑗(𝑡𝑡) − 𝑦𝑦𝑗𝑗(𝑡𝑡), satisfied lim

𝑡𝑡→∞
𝑒𝑒𝑗𝑗(𝑡𝑡) = 0. 

3. Input-Output feedback linearization approach applied 
to a robot manipulator with six degrees of freedom 

3.1. Dynamic modeling of a robot manipulator 

   In this section, we have applied the proposed approach to a 
dynamic multivariable system which represent a robot arm with 
six degrees of freedom "EPSON C4". This is an open chain 
kinematic manipulator robot consisting of seven rigid bodies 
interconnected by six revolute joints n = 6 as [11]. So, deriving 
the motion of robot is a complex task due to the nonlinearities 
present in this system and the large number of degrees of freedom 
[12-13]. Then, it is essential to understand exactly the dynamics 
of this interconnected chain of rigid bodies, to detemine the 
inverse dynamics model such as relation (19), we analyzed the 
evolution of motion of this mechanical non linear system by using 
the Euler-Lagrange equations, which is represented by the 
equation (20).  

Γ =  f(q, q̇, q̈ , fe)                                   (19) 

Γi = ∑ d
�
∂Lj
∂qı̇

�

dt
−

∂Lj
∂qi

n
j=1    i, j = 1, … , n                    (20)     

where Γ, q, q̇, q̈ and fe depicting Torques, articular positions, 
velocities, accelerations and the external force. 

 𝐿𝐿𝑗𝑗: Defines the lagrangian of the 𝑗𝑗th link, which is the difference 
of the kinetic and potential energy, equal to 𝐸𝐸𝑗𝑗 - 𝑈𝑈𝑗𝑗. 

𝐸𝐸𝑗𝑗and 𝑈𝑈𝑗𝑗: Define the kinetic and the potential energies of the 𝑗𝑗th 
link. 
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The calculation of the kinetic energy; 

In this section, we have calculated the total kinetic energy of the 
system which depends on the configuration and joint velocities, 
such that [13], then, it was described by the equation (21). 

E = ∑ Ejn
j=1                                         (21) 

𝐸𝐸𝑗𝑗 : means the kinetic energy of the link 𝐶𝐶𝑗𝑗 , which can be 
formulated such that (24). Firstly, we have calcuated the linear 
velocity and the angular velocity using the equations (22) and (23). 
 

𝑉𝑉𝑗𝑗
𝑗𝑗 = 𝐴𝐴𝑗𝑗−1

𝑗𝑗 ( 𝑉𝑉𝑗𝑗−1
𝑗𝑗−1 + 𝑊𝑊𝑗𝑗−1

𝑗𝑗−1 × 𝑃𝑃𝑗𝑗
𝑗𝑗−1) + 𝜎𝜎𝑗𝑗𝑞̇𝑞𝑗𝑗𝑎𝑎𝑗𝑗              (22) 

𝑊𝑊𝑗𝑗
𝑗𝑗 = 𝐴𝐴𝑗𝑗−1

𝑗𝑗 × 𝑊𝑊𝑗𝑗−1
𝑗𝑗−1 + 𝜎𝜎�𝑗𝑗 × 𝑞̇𝑞𝑗𝑗 × 𝑎𝑎𝑗𝑗                     (23) 

 𝑉𝑉𝑗𝑗−1
𝑗𝑗−1 : The linear velocity, it is the derivative of the position 

vector 𝑃𝑃𝑗𝑗
𝑗𝑗−1. 

𝑊𝑊𝑗𝑗−1
𝑗𝑗−1 : The angular velocity. 
The initial conditions for a robot which the base is fixed, are 

𝑉𝑉00  = 0 and 𝑊𝑊00  = 0. 

Then,we have expressed these relations (22) and (23) in Equation 
(24) as. 
 

𝐸𝐸𝑗𝑗 = 1
2
� 𝑊𝑊𝑗𝑗
𝑗𝑗 𝑇𝑇 𝐽𝐽𝑗𝑗

𝑗𝑗 𝑊𝑊𝑗𝑗
𝑗𝑗 + 𝑀𝑀𝑗𝑗 𝑉𝑉𝑗𝑗

𝑗𝑗 𝑇𝑇 𝑉𝑉𝑗𝑗
𝑗𝑗 + 2𝑀𝑀𝑀𝑀𝑗𝑗𝑇𝑇( 𝑉𝑉𝑗𝑗

𝑗𝑗 ∧ 𝑊𝑊𝑗𝑗
𝑗𝑗 )�         (24) 

where 

𝑎𝑎𝑗𝑗 :is the unit vector along axis 𝑧𝑧𝑗𝑗. 

Mj, MSj
j  et Jj

j :are the inertial standard parameters. 

Mj : is the mass of link 𝐶𝐶𝑗𝑗. 

MSj
j  :design the first moments of inertia of link 𝐶𝐶𝑗𝑗 about the 

origin of the frame 𝑅𝑅𝑗𝑗 It is equal to MSj
j  =[ MXj MYj MZj ]T. 

Jj
j : is the inertial tensor matrix (3x3) of link Cj with respect to the 
frame 𝑅𝑅𝑗𝑗, it is expressed by the matrix (25). 

 Jj
j == �

IXXj IXYj IXZj
IXZj IYYj IYZj
IXZj IYZj IZZj

�                             (25) 

IXXj ,  IXYj ,  IXZj ,  IYYj ,  IYZj  and  IZZj  represent the elements of the 

inertial tensor the symetric matrix Jj
j  of each link 𝐶𝐶𝑗𝑗  which is 

expressed by the matrix (25), we have defined all these inertial 
parameters values in our recent work [14]. 

The calculation of the potential energy; 

  In this section, we have represented the potential energy for 
a manipulator arm [14], which is written by the equation (26). 

U = ∑ Uj
n
j=1                                      (26) 

Uj: Defines the potential energy of the link 𝐶𝐶𝑗𝑗, which is expressed 
by the equation (27): 
 

Uj = −g0T�Mj × Pj0 + Aj0 × MSj�

= −[g0T   0] × T0j × �
MSj
Mj

�                             (27) 

Then, we have followed the Euler-Lagrange formalism such 
that equation (20), we obtained the following relation (28): 

 
Γ = A(q)q̈ + C(q, q ̇ )q̇ + Q(q)                       (28)  

where 

A(q): Represents the matrix of kinetic energy (n × n), these 
elements are calculated as follows: 
−𝐴𝐴𝑖𝑖𝑖𝑖  is equal to the coefficient of q̇i

2

2
 located in the expression 

of the kinetic energy. 
-𝐴𝐴𝑖𝑖𝑖𝑖  is equal to the coefficient of 𝑞̇𝑞𝑖𝑖𝑞̇𝑞𝑗𝑗 
𝐶𝐶(𝑞𝑞, 𝑞𝑞 ̇ )𝑞̇𝑞 : Defines the vector of coriolis and centrifugal 

forces/torques (n × 1), these elements are calculated from the 
Christoffel symbol 𝑐𝑐𝑖𝑖,𝑗𝑗𝑗𝑗 such as system (29): 

 

�
cij = ∑ ci,jkq̇kn

k=1

ci,jk = 1
2
�
∂Aij
∂qk

+ ∂Aik
∂qj

−
∂Ajk
∂qi

�
                          (29) 

Q(q): Represents the vector of torques/forces of gravity, these 
elements are calculated as: 𝑄𝑄𝑖𝑖 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
 

   The elements of A, C and Q are according to the geometric and 
inertial parameters of the mechanism. The dynamic equations of 
the robot form a system of n differential equations of the second 
order, coupled and nonlinear. Then, since the inertia matrix A is 
invertible for q ∈ ℛ𝑛𝑛 we may solve for the acceleration q̈ of the 
manipulator as [14]. 

q̈ = f(q, q̇, Γ)                                   (30) 

q̈ = −A(q)−1[C(q, q ̇ )q̇ + Q(q) − Γ]       (31) 

With,  
q = [q1 q2 q3 q4 q5 q6]T: The angular position vector (6x1). 

𝑞̇𝑞 = [𝑞̇𝑞1 𝑞̇𝑞2 𝑞̇𝑞3 𝑞̇𝑞4 𝑞̇𝑞5 𝑞̇𝑞6]𝑇𝑇: The angular velocity vector (6x1). 
𝑞̈𝑞 = [𝑞̈𝑞1 𝑞̈𝑞2 𝑞̈𝑞3 𝑞̈𝑞4 𝑞̈𝑞5 𝑞̈𝑞6]𝑇𝑇: The angular acceleration vector (6x1). 
 𝛤𝛤 = [𝛤𝛤1 𝛤𝛤2 𝛤𝛤3 𝛤𝛤4 𝛤𝛤5 𝛤𝛤6]𝑇𝑇: The input torques vector(6x1). 

3.2. Application of the input-output feedback linearization 
approach to a robot manipulator with six degrees of 
freedom: 

In this section, after we dermined the inverse dynamic model 
of the system [15-16], we used the equation of motion of the six-
link of the rigid manipulator robot "EPSONC4" which 
represented by the relation (31) and we considered the state 
variables of the system defined in state space as; 
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x1 = q1, x2 = q̇1, x3 = q2 , x4 = q̇2, x5 = q3, x6 = q̇3, 
x7 = q4 , x8 = q̇4, x9 = q5, x10 = q̇5, x11 = q6, x12 = q̇6, 

 

After derivation of the above state variables, we written the 
obtained system as; 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

x1̇ = x2
x2̇ = q̈1 = −A(x1)−1[C(x1, x2)x2 + Q(x1) − Γ1]

x3̇ = x4
x4̇ = q̈2 = −A(x3)−1[C(x3, x4)x4 + Q(x3) − Γ2]

x5̇ = x6
x6̇ = q̈3 = −A(x5)−1[C(x5, x6)x6 + Q(x5) − Γ3]

x7̇ = x8
x8̇ = q̈4 = −A(x7)−1[C(x7, x8)x8 + Q(x7) − Γ4]

x9̇ = x10
x10̇ = q̈5 = −A(x9)−1[C(x9, x10)x10 + Q(x9) − Γ5]

x11̇ = x12
x12̇ = q̈6 = −A(x11)−1[C(x11, x12)x12 + Q(x11) − Γ6]

(32) 

Then, the affine form of nonlinear, multivariable and dynamic 
model of the robot manipulator is appeared which given by the 
following system (33): 

⎩
⎪
⎨

⎪
⎧Ẋ(t) = f�X(t)� + � gi�X(t)�Ui(t)

p

i=1

Yi(t) = hi�X(t)�
i = 1,2, … 6

               (33) 

where, 

𝑓𝑓(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥2
−𝐴𝐴(𝑥𝑥1)−1[𝐶𝐶(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 + 𝑄𝑄(𝑥𝑥1)]

𝑥𝑥4
−𝐴𝐴(𝑥𝑥3)−1[𝐶𝐶(𝑥𝑥3, 𝑥𝑥4)𝑥𝑥4 + 𝑄𝑄(𝑥𝑥3)]

𝑥𝑥6
−𝐴𝐴(𝑥𝑥5)−1[𝐶𝐶(𝑥𝑥5, 𝑥𝑥6)𝑥𝑥6 + 𝑄𝑄(𝑥𝑥5)]

𝑥𝑥8
−𝐴𝐴(𝑥𝑥7)−1[𝐶𝐶(𝑥𝑥7, 𝑥𝑥8)𝑥𝑥8 + 𝑄𝑄(𝑥𝑥7)]

𝑥𝑥10
−𝐴𝐴(𝑥𝑥9)−1[𝐶𝐶(𝑥𝑥9, 𝑥𝑥10)𝑥𝑥10 + 𝑄𝑄(𝑥𝑥9)]

𝑥𝑥12
−𝐴𝐴(𝑥𝑥11)−1[𝐶𝐶(𝑥𝑥11, 𝑥𝑥12)𝑥𝑥12 + 𝑄𝑄(𝑥𝑥11)]⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;  

𝑔𝑔1(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
𝐴𝐴(𝑥𝑥1)−1

0
0
0
0
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;𝑔𝑔2(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0

𝐴𝐴(𝑥𝑥3)−1
0
0
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;𝑔𝑔3(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0

𝐴𝐴(𝑥𝑥5)−1
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑔𝑔4(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
0

𝐴𝐴(𝑥𝑥7)−1
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;𝑔𝑔5(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
0
0
0

𝐴𝐴(𝑥𝑥9)−1
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;𝑔𝑔6(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
0
0
0
0
0

𝐴𝐴(𝑥𝑥11)−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

And, 

𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10, 𝑥𝑥11, 𝑥𝑥12]𝑇𝑇; 
𝑋̇𝑋 = [𝑥̇𝑥1, 𝑥̇𝑥2, 𝑥̇𝑥3, 𝑥̇𝑥4, 𝑥̇𝑥5, 𝑥̇𝑥6𝑥̇𝑥7, 𝑥̇𝑥8, 𝑥̇𝑥9, 𝑥̇𝑥10, 𝑥̇𝑥11, 𝑥̇𝑥12]𝑇𝑇; 
𝑈𝑈 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6]𝑇𝑇 = [𝛤𝛤1,𝛤𝛤2,𝛤𝛤3,𝛤𝛤4 ,𝛤𝛤5 ,𝛤𝛤6]𝑇𝑇; 
 

Links positions   

⎩
⎪
⎨

⎪
⎧
𝑦𝑦1 = ℎ1(𝑥𝑥) = 𝑥𝑥1 = 𝑞𝑞1;
𝑦𝑦2 = ℎ2(𝑥𝑥) = 𝑥𝑥3 = 𝑞𝑞2;
𝑦𝑦3 = ℎ3(𝑥𝑥) = 𝑥𝑥5 = 𝑞𝑞3;
𝑦𝑦4 = ℎ4(𝑥𝑥) = 𝑥𝑥7 = 𝑞𝑞4;
𝑦𝑦5 = ℎ5(𝑥𝑥) = 𝑥𝑥9 = 𝑞𝑞5;
𝑦𝑦6 = ℎ6(𝑥𝑥) = 𝑥𝑥11 = 𝑞𝑞6;

         (34) 

So, we made the derivation of each output 𝑦𝑦𝑖𝑖  intel the inputs 
appeared in the expression and we computed the relative degrees 
𝑟𝑟𝑖𝑖 for each joint of the robot as follows [17-18]; 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑦𝑦1 = ℎ1(𝑥𝑥) = 𝑥𝑥1
𝑦̇𝑦1 =  𝐿𝐿𝑓𝑓ℎ1(𝑥𝑥) = 𝑥̇𝑥1 = 𝑥𝑥2

𝑦𝑦1(2) =  𝐿𝐿𝑓𝑓2ℎ1(𝑥𝑥) +  𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ1(𝑥𝑥)𝑢𝑢
𝑟𝑟1 = 2

𝑦𝑦2 = ℎ2(𝑥𝑥) = 𝑥𝑥3
𝑦̇𝑦2 =  𝐿𝐿𝑓𝑓ℎ2(𝑥𝑥) = 𝑥̇𝑥3 = 𝑥𝑥4

𝑦𝑦2(2) =  𝐿𝐿𝑓𝑓2ℎ2(𝑥𝑥) +  𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ2(𝑥𝑥)𝑢𝑢
𝑟𝑟2 = 2
⋮

𝑦𝑦6 = ℎ6(𝑥𝑥) = 𝑥𝑥11

              (35)

𝑦̇𝑦6 =  𝐿𝐿𝑓𝑓ℎ6(𝑥𝑥)𝑥̇𝑥11 = 𝑥𝑥12
𝑦𝑦6(2) =  𝐿𝐿𝑓𝑓2ℎ6(𝑥𝑥) +  𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ6(𝑥𝑥)𝑢𝑢

𝑟𝑟6 = 2

 

Therefore, the relative degree of each joint 𝑟𝑟𝑖𝑖 is well defined and 
is equal to 2, so we computed the nonlinear control law 𝑢𝑢𝑖𝑖(𝑡𝑡)of 
each joint of the system as this relation (36); 

𝑢𝑢𝑖𝑖�𝑥𝑥(𝑡𝑡)� = −
 𝐿𝐿𝑓𝑓𝑟𝑟𝑖𝑖ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�

 𝐿𝐿𝑔𝑔𝑟𝑟𝑖𝑖−1𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�
+

𝑣𝑣𝑖𝑖(𝑡𝑡)
 𝐿𝐿𝑔𝑔𝑟𝑟𝑖𝑖−1𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�

 (36)

𝑖𝑖 = 1 … 6
 

By using the nonlinear control law and diffeomorphic 
transformation given above, the nonlinear dynamic system with 
six degrees of freedom is converted into the following 
Brunovesky canonical form and simultaneously output decoupled 
[19]. 
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�𝑍̇𝑍 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵
𝑌𝑌 = 𝐶𝐶𝐶𝐶

                            (37) 

where, 
 

𝑍𝑍 = �

𝑧𝑧1
𝑧𝑧2
⋮
𝑧𝑧12

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ℎ1
𝐿𝐿𝑓𝑓ℎ1
ℎ2
𝐿𝐿𝑓𝑓ℎ2

.

..
ℎ6
𝐿𝐿𝑓𝑓ℎ6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥12

� ; 𝑍̇𝑍 = �

𝑧̇𝑧1
𝑧̇𝑧2
⋮
𝑧̇𝑧12

� = �

𝑥̇𝑥1
𝑥̇𝑥2
⋮
𝑥̇𝑥12

� ; V = �

v1
v2
⋮

v6

� 

 

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1
0 0
⋱

⋯ 0

⋮
⋱ ⋯

⋯
0 1
0 0
⋱

⋮

⋮
⋮
0

⋯

⋱ ⋮
⋱ ⋱ ⋮

⋱ ⋮
⋯ 0 1

0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 

 

B =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
1 ⋯ 0

⋮
⋱ ⋯
⋯ 0

1
⋮

⋮
⋮
0

⋯
⋱ ⋮
⋯ 0
0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

; C =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0

0 ⋯ 0

⋮
⋱ ⋯
⋯ 1 0

⋱
⋮

⋮
⋮
0

⋯
⋱ ⋮
⋱ ⋱

0 1 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
The above matrices A,B and C are of dimension respectively : 
(12 × 12), (12 × 6) 𝑎𝑎𝑎𝑎𝑎𝑎 (6 × 12). 
We note that, the obtained linear system (37) definied by six 
decoupled and linear subsystems that is has the following form 
(38), and i=1...6; 
 
 

�𝑧̇𝑧𝑖𝑖 = �0 1
0 0� 𝑧𝑧𝑖𝑖 + �01� 𝑣𝑣𝑖𝑖

𝑦𝑦𝑖𝑖 = [1 0]𝑧𝑧𝑖𝑖
                         (38) 

 
where,  

𝑧𝑧𝑖𝑖 = �
𝑧𝑧2𝑖𝑖−1
𝑧𝑧2𝑖𝑖 � 

For the objective of linear control, we added to each subsystem a 
linear PD controller which has represented equation (39) as; 

𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑖𝑖�1 + 𝐾𝐾𝑑𝑑𝑖𝑖𝑠𝑠�𝑒𝑒𝑖𝑖(𝑡𝑡)  ; 𝑖𝑖 = 1 … 6                (39) 

𝑒𝑒𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑑𝑑𝑖𝑖(𝑡𝑡) − 𝑦𝑦𝑖𝑖(𝑡𝑡)                             (40) 

𝑣𝑣𝑖𝑖 = 𝑦𝑦𝑖𝑖
𝑟𝑟𝑖𝑖                                        (41) 

we obtained the relative degree for each subsystem as : 𝑟𝑟𝑖𝑖 = 2 

𝑣𝑣𝑖𝑖 = 𝐾𝐾𝑑𝑑𝑖𝑖�𝑦𝑦𝑑𝑑𝑖𝑖
(𝑟𝑟𝑖𝑖−1) − 𝑦𝑦𝑖𝑖(𝑟𝑟𝑖𝑖−1)� + 𝐾𝐾𝑝𝑝𝑖𝑖�𝑦𝑦𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖�         (42) 

𝑣𝑣𝑖𝑖(𝑡𝑡) = �𝐾𝐾𝑝𝑝𝑖𝑖 𝐾𝐾𝑑𝑑𝑖𝑖 � �
𝑦𝑦𝑑𝑑𝑖𝑖(𝑡𝑡) − 𝑦𝑦𝑖𝑖(𝑡𝑡)

𝑦𝑦𝑑𝑑𝑖𝑖
(𝑟𝑟𝑖𝑖−1)(𝑡𝑡) − 𝑦𝑦𝑖𝑖(𝑟𝑟𝑖𝑖−1)(𝑡𝑡)

�           (43)  

Then, we used the diffeomorphic transformation (16) presented 
above, we considered these relations for each SISO subsystem: 

�
𝑧𝑧1𝑖𝑖 = ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦𝑦𝑑𝑑𝑖𝑖
𝑧𝑧2𝑖𝑖 =  𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦̇𝑦𝑑𝑑𝑖𝑖

                         (44) 

 

That is leads to the non-linear coordinate transformation given 
by: 

 

�
𝑧̇𝑧1𝑖𝑖 = 𝑧𝑧2𝑖𝑖 =  𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦̇𝑦𝑑𝑑𝑖𝑖

𝑧̇𝑧2𝑖𝑖 =  𝐿𝐿𝑓𝑓2ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� +  𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�𝑢𝑢𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦̈𝑦𝑑𝑑𝑖𝑖
     (45) 

𝑣𝑣𝑖𝑖(𝑡𝑡) = −∑ 𝐾𝐾𝑗𝑗𝑍𝑍𝑖𝑖
𝑟𝑟𝑖𝑖−1
𝑗𝑗=0 = −∑ 𝐾𝐾𝑗𝑗[𝐿𝐿𝑓𝑓

(𝑗𝑗)ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦𝑦𝑑𝑑𝑖𝑖
(𝑗𝑗)(𝑡𝑡)]𝑟𝑟𝑖𝑖−1

𝑗𝑗=0   (46) 

 

So, we expressed the relation (46) in equation (36),we obtained: 

𝑢𝑢𝑖𝑖�𝑥𝑥(𝑡𝑡)� = −
 𝐿𝐿𝑓𝑓𝑟𝑟𝑖𝑖ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�

 𝐿𝐿𝑔𝑔𝑟𝑟𝑖𝑖−1𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�
+
−∑ 𝐾𝐾𝑗𝑗[𝐿𝐿𝑓𝑓

(𝑗𝑗)ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� − 𝑦𝑦𝑑𝑑𝑖𝑖
(𝑗𝑗)(𝑡𝑡)]𝑟𝑟𝑖𝑖−1

𝑗𝑗=0

 𝐿𝐿𝑔𝑔𝑟𝑟𝑖𝑖−1𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)�
 (47)

𝑖𝑖 = 1 … 6

 

Next, we expressed the equation (47) in the subsystem (45), the 
non linear subsystem (45) was transformed to a linear subsystem 
which expressed as relation (48): 

�𝑧̇𝑧1
𝑖𝑖

𝑧̇𝑧2𝑖𝑖
� = �

0 1
𝐾𝐾𝑝𝑝𝑖𝑖 𝐾𝐾𝑑𝑑𝑖𝑖

� �𝑧𝑧1
𝑖𝑖

𝑧𝑧2𝑖𝑖
�

𝑖𝑖 = 1 … 6
                        (48) 

The obtained linear subsystem consists of a second order 
system with linear output, that is can be computed the poles of the 
above subsystem as; 

𝑠𝑠1,2 = −𝜉𝜉𝜔𝜔𝑛𝑛 ∓ 𝜔𝜔𝑛𝑛�1 − 𝜉𝜉2                           (49) 

Where, 𝜉𝜉: means damping ratio, 𝜔𝜔𝑛𝑛:means natural frequency, for 
goal of stability we chosed the parameters of each PD controller 
applied to each subsystem as [19]: 

�
𝐾𝐾𝑝𝑝
𝑗𝑗 = 𝜔𝜔𝑛𝑛2

𝐾𝐾𝑑𝑑
𝑗𝑗 =  𝜉𝜉𝜔𝜔𝑛𝑛

  𝑗𝑗 = 1 … 6                                (50) 

 

4. Simulation Results 

    In order to improve the efficiency of the proposed approach, we 
applied the above method of linearization to a robot manipulator 
which represent a non linear, decoupled and multivariable system. 
We imposed the sinusoidal signals as 𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑦̇𝑦𝑖𝑖𝑖𝑖(𝑡𝑡) and 𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) 
which are represented inputs desired trajectories to each joint of 
the studied system. Therefore, the relative degrees 𝑟𝑟𝑖𝑖  is well 
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defined, we presented the simulation results depicting the output 
𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡)of each joint i=1...6 as shown in Figures 2,3,4,5,6,7,8-9. 

 
Figure 2. The outputs 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of each joint, the relative degrees 𝑟𝑟𝑖𝑖 = 0, 

i=1...6. 

    Firstly, we made the simulation of the outputs of each joint of 
the robot,  𝑦𝑦𝑖𝑖(𝑡𝑡) = ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� = 𝑥𝑥𝑖𝑖(𝑡𝑡),  the results are therefore 
given in Figure 2, we can see the non linearity of each subsystem. 
Second, we applied the Lie derivation to each output we shown 
the results presented in Figure 3 as.  

 
Figure 3. The outputs 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of each joint, the relative degrees 𝑟𝑟𝑖𝑖 = 1, 

i=1...6. 

    In this case, the relative degrees equal to 𝑟𝑟𝑖𝑖 =
1 ,   𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ𝑖𝑖�𝑥𝑥(𝑡𝑡)� = 0 , so no one input has been appeared, as 
shown in Figure 3, the system still non linear. Finally, we made 
the derivation again of each recent output 𝑦𝑦𝚤̇𝚤 the inputs appeared 
in the expression and we computed the final relative degrees 𝑟𝑟𝑖𝑖 =
2  for each joint of the robot,  𝑦𝑦𝑖𝑖(2) =  𝐿𝐿𝑓𝑓2ℎ𝑖𝑖(𝑥𝑥) +
 𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ𝑖𝑖(𝑥𝑥)𝑢𝑢,  𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓ℎ𝑖𝑖(𝑥𝑥) ≠ 0, the results was illustrated in these 
Figures 4,5,6,7,8-9. 

 

Figure 4. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 1, the relative degree 𝑟𝑟1 = 2. 

 

Figure 5. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 2, the relative degree 𝑟𝑟2 = 2. 

 

Figure 6. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 3, the relative degree 𝑟𝑟3 = 2. 

 
Figure 7. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 4, the relative degree 𝑟𝑟4 = 2. 

 
Figure 8. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 5, the relative degree 𝑟𝑟5 = 2. 

 
Figure 9. The output 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖(𝑡𝑡) plot of the joint 6, the relative degree 𝑟𝑟6 = 2. 

These Figures 4,5,6,7,8-9 shown that the output of each SISO 
subsystem asymptotically tracks the sinusoidal input trajectory 
with minimum of oscillation and the efficiency of the studied 
approach.  

5. Conclusion 

   In this paper, the input-output feedback linearization 
approach is presented which is a way of algebraically 
transforming nonlinear, multivaribles, complex and dynamics 
systems into linear ones, so we can be applied linear control, this 
technique has attracted lots of research in recent years. For that 
we applied this proposed approach to derive the control of a robot 
manipulator with six degrees of freedom which followed two 
major steps. Firstly, by using the above approach and 
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diffeomorphic transformation, we converted the non linear and 
decoupled dynamics model of the robot to linear system. Then, 
we designed a linear PD control law for each decoupled 
subsystem to control the angular position of each joint of this 
robot for tracking purposes. Finally, the obtained results in 
different simulations illustrated the accuracy of the proposed 
approach.  
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