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The physically-based environmental model is a crucial tool used in many
scientific inquiries. With physical modeling, different models are used to
simulate real world phenomena and most environmental scientists use
their own devices to execute the models. A complex simulation can be
time-consuming with limited computing power. Also, sharing a scientific
model with other researchers can difficult, which means the same model
is rebuilt multiple times for similar problems. A web-service-based frame-
work to expose models as services is proposed in this paper to address
these problems. The main functions of the framework include model exe-
cutions in cloud environments, NetCDF file format transmission, model
resource management with various web services. As proof of concept,
a prototype is introduced,implemented and compared against existing
similar software packages. Through a feature comparison with equiva-
lent software, we demonstrate that the Virtual Watershed System (VWS)
provides superior customization through its APIs. We also indicate that
the VWS uniquely provides friendly, usable UIs enabling researchers to
execute models.

1 Introduction

Modeling has become an indispensable tool in grow-
ing environmental scientists’ understanding of how
natural systems react to changing conditions. It sheds
light on complex environmental mysteries and helps
researchers in formulating policies and decisions on
future scenarios. Environmental modeling is highly
challenging as it involves complex mathematical com-
putations, rigorous data processing, and convoluted
correlations between numerous parameters. Three
commonly-used and important scientific software qual-
ity measures are maintainability, quality, and scalabil-
ity. Issues like data storage, coupling models, retrieval,
and running are hard problems and need to be ad-
dressed with extra efforts from software engineering
perspective. It is a challenging job to design integrated
systems that can address all these issues.

It is essential to build high-quality software tools
and design efficient frameworks for scientific research.
Abundant scientific model data are generated and col-

lected in recent years. Software engineering can as-
sist this emergence through the creation of distributed
software systems and frameworks enabling scientific
collaboration with previously disparate data and mod-
els. It is challenging to implement software tools for
interdisciplinary research because of the problem of
communication and team building among different sci-
entific communities. For example, the same terminol-
ogy can have different meanings in different domains.
This increases difficulties in comprehending software
requirements when a project involves stakeholders (e.g.
researchers) from different fields.

Most work described in this paper is for Watershed
Analysis, Visualization, and Exploration (WC-WAVE),
which is a NSF EPSCoR-supported project and initi-
ated by jurisdictions of EPSCoR of Nevada, Idaho and
New Mexico. The WC-WAVE project includes three
principal components: watershed science, data cyber-
infrastructure and data visualization [1]. The project
main goal is to implement VWS with the collaborations
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between cyberinfrastructure team members and hy-
drologists. The platform is able to store, share, model
and visualize data on-demand through an integrated
system. These features are crucial for hydrologic re-
search.

Different hydrologic models, such as ISNOBAL and
PRMS, are commonly used by WC-WAVE hydrologists.
These models are leveraged to predict or examine hy-
drologic processes of Lehman Creek in Nevada, Dry
Creek and Reynolds Creek in Idaho, and Jemez Creek
in New Mexico. We propose a framework for repre-
senting model data in a standardized format called
the “Network Common Data Format” (NetCDF) and
exposing these hydrologic models through web ser-
vices. This framework is based on our previous work
introduced in [2]. To improve on our prior work we
have implemented some new Docker APIs to control
system components wrapped in docker containers. To
simplify data extraction, modification, and storage,
NetCDF data format [3] is used in the system for grid-
organized scientific data. Most parts of the system
framework can be reused for data-intensive purpose
because it is designed with the blueprint and template
concepts. ISNOBAL and PRMS are physically-based
models which can produce very accurate results. How-
ever, these two models require abundant computing
power. To solve the challenge, we leverage a cluster
to execute models in parallel. ISNOBAL and PRMS
are used in this paper to demonstrate the ideas and
functionality of the proposed framework. Throughout
the remainder of this paper, we refer to this prototype
system as the VWS.

ISNOBAL is a grid-based DEM (Digital Elevation
Model) and created to model the seasonal snow cover
melting and development. The model author is Marks
et al. [4] and it is initially developed for Utah, Califor-
nia, and Idaho mountain basins. The model determines
runoff and snowmelt based on terrain, precipitation,
region characteristics, climate, and snow properties
[4].

PRMS is short for Precipitation-Runoff Modeling
System and is initially written with FORTRAN in 1983.
PRMS is prevalent physical process based distributed-
parameter hydrologic model and the main function
of a PRMS model is to evaluate a watershed response
to different climate and land usage cases [5, 6, 7]. It
composed of algorithms describing various physical
processes as subroutines. The model, now in its fourth
version, has become more mature over the years of de-
velopment. Different hydrology applications, such as
measurement of groundwater and surface water inter-
action, the interaction of climate and atmosphere with
surface water, water and natural resource management,
have been done with the PRMS model [5, 6, 7].

This paper is organized as follows in its remaining
sections: Section 2 introduces background and related
work; Section 3 describes the system design; Section 4
describes the prototype system and how the software
was built using RESTful APIs; Section 5 compares our
work with related tools; and Section 6 contains the
papers conclusions and outlines planned future work.

2 Background and Related Work

”How to implement software for interdisciplinary re-
search?” is an interesting question and there exists
some successful work on environments and frame-
works which seek to answet this question. In this sec-
tion, relevant, popular earth science applications and
frameworks are introduced.

Community Surface Dynamics Modeling System
(CSDMS) was a project started in 1999 to conduct expe-
ditious research of earth surface modelers by creating a
community driven software platform. CSDMS applies
a component-based software engineering approach in
the integration of plug-and-play components, as the
development of complex scientific modeling system
requires the coupling of multiple, independently de-
veloped models [8]. CSDMS allows users to write their
components in any popular language. Also they can
use components created by others in the community
for their simulations. CSDMS treats components as
pre-compiled units which can be replaced, added to,
or deleted from an application at runtime via dynamic
linking. Many key requirements drove the design of
CSDMS, including the support for multiple operat-
ing systems, language interoperability across both pro-
cedural and object-oriented programming languages,
platform independent graphical user interfaces, use of
established software standards, interoperability with
other coupling frameworks and use of HPC tools to
integrate parallel tools and models into the ecosystem.

A leading hydrologic research organization is
CUAHSI. ”CUAHSI” , and acronym for ”Consortium
of Universities for the Advancement of Hydrologic Sci-
ence Inc.,” represents universities and international
water science-related organizations. One of most
highly esteemed products is HydroShare, which is
a hydrologic data and model sharing web applica-
tion. Hydrologists can easily access different model
datasets and share their own data. Besides this, this
platform offers many distributed data analysis tools.
A model instance can be deployed in a grid, cloud or
high-performance computing cluster with HydroShare.
Also, a hydrologist is able to publish outcomes of their
research, such as a dataset or a model. In this way, sci-
entists use the system as a collaboration platform for
sharing information. HydroShare exposes its function-
ality with Application Programming Interfaces (APIs),
which means its web application interface layer and
service layer are separated. This enables interoperabil-
ity with other systems and direct client access [9].

Model as a Service is proposed by Li et al. [10] for
Geoscience Modeling. It is a cloud-based solution and
[10] has implemented a prototype system to execute
high CPU and memory usage models remotely as a ser-
vice with third party platform, such as AWS (Amazon
Web Service) and Microsoft Azure.

The key idea of MaaS is that model executions can
be done through a web interface with user inputs. Com-
puter resources are provisioned with a cloud provider,
such as Microsoft Azure. The model registration is
done in the framework with a virtual machine image
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repository. If a model is registered and placed in the
repository, it can be shared by other users and multiple
model instances can be executed in parallel based on
demand.

McGuire and Roberge designed a social network to
promote collaboration between watershed scientists.
Despite being highly available, the collaboration be-
tween the general public, scientists, and citizen has not
been leveraged. Also, hydrologic data is not integrated
in any system. The main goal of this work is to design
a collaborative social network for multiple watershed
scientific and hydrologic user groups [11]. However,
more efforts need to be done.

The Demeter Framework by Fritzinger et al. [12]
represents another attempt to utilize software frame-
works as a scientific aid in the area of climate change
research. A software framework named “The Demeter
Framework” is introduced in the paper and one of the
key ideas is a component-based approach to integrate
different components into the system for the “model
coupling problem.” “The model coupling problem”
refers to using a model’s outputs as another model’s
inputs to solve a problem.

Walker and Chapra proposed a web-based client-
server approach for solving the problem of environ-
mental modeling compared to the traditional desktop-
based approach. The authors assert that, with the im-
provement in modern day web browsers, client-side
approaches offer improved user interfaces compared
to traditional desktop software. In addition, power-
ful servers enable users to perform simulations and
visualizations within the browser [13].

The University of New Mexico has implemented
a data engine named GSToRE (Geographic Storage,
Transformation and Retrieval Engine). The engine is
designed for earth scientific research and the main
functions of the engine are data delivery, documenta-
tion, and discovery. It follows the combination of com-
munity and open standards and implemented based
on service oriented architecture. [14].

2.1 Service Oriented Architecture

Industry has shown more and more interests on Service
Oriented Architecture (SOA) to implement software
systems. [15]. The main idea of SOA is to have busi-
ness logic decomposed into different units (or services).
These units are self-contained and can be easily de-
ployed with container techniques, such as Docker.

Representational State Transfer Protocol (REST) is
primarily an architectural style for distributed hyper-
media systems introduced by Fielding, Roy Thomas in
his Ph.D. dissertation [16]. REST defines a way for a
client-server architecture on how a client and a server
should interact, by using a set of principles. REST has
been adopted for building the main architecture of
the proposed system. Statelessness, uniform Interface,
and cache are the main characteristics of a REST client-
server architecture [16]. It is for these characteristics
that REST is leveraged in our proposed system.

Statelessness Statelessness is the most important
property or constraint for a client-server architecture
to be RESTful. The communication between the client
and the server must be stateless, which means the
server is not responsible for keeping the state of the
communication. It is the client’s responsibility. A re-
quest from the client must contain all the necessary
information for the server to understand the request
[16, 17]. Two subsequent requests to the server will not
have any interdependence between each other. Intro-
ducing this property on the client-server architecture
presents several benefits regarding visibility, reliability,
and scalability [16, 17]. For example, as the server is
not responsible for keeping the state and two subse-
quent requests are not interrelated, multiple servers
can be distributed across a load-balanced system where
different servers can be responsible for responding to
different requests by a client.

Uniform Interface Another important property of a
RESTful architecture is it provides a uniform interface
for the client to interact with a server. Instead of an
application’s particular implementation, it forces the
system to follow a standardized form. For example
HTTP 1.1 which is a RESTful protocol provides a set
of verbs (e.g., GET, POST, PUT, DELETE, etc.) for the
client to communicate with the server. The verbs, such
as “GET” and “POST”, work as an interface making
the client-server communication generic[16].

Cache REST architecture introduces cache constraint
to improve network efficiency [16]. A server can allow
a client to reuse data by enabling explicitly for label-
ing some data cacheable or non-cacheable. A server
can serve data that will not change in the future as
cached content, allowing the client to eliminate partial
interaction with that data in a series of requests.

2.2 REST Components

The main components of REST architecture include
resources, representations, and resource identifiers.

Resources The resource is the main abstract repre-
sentation of data in REST architecture [16]. Any piece
of data in a server can be represented as a resource to a
client. A document, an image, data on today’s weather,
a social profile, everything is considered a resource in
the server. Formally, a resource is a temporarily vary-
ing function of MR(t) that maps to a set of entities for
time t [16].

Representations A resource is the abstract building
block of the data in a web server. For a client to con-
sume the resource it needs to be presented in a way the
client can understand. This is called representation.
A representation is a presentation format for repre-
senting the current state of a resource to a consumer.
Some commonly used resource representation format
in the current standard are HTML (Hypertext Markup
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Language), XML (Extensible Markup Language), JSON
(JavaScript Object Notation), etc. A server can expose
data content in different representations so that con-
sumer can access the resources through resource iden-
tifiers (discussed in Section 2.2) in the desired format.

Resource Identifiers A resource is uniquely identi-
fied through a resource identifier in a RESTful archi-
tecture. For example, in HTTP Uniform Resource Iden-
tifier (URI) is used to identify a resource in a server. A
URI can be thought as the address of a resource in the
server [18]. A resource identifier is the key for a client
to access and manipulate a resource in the server.

2.3 Microservice Architecture

Software as a Service (SaaS), as a new software delivery
architecture, has emerged to leverage the widely-used
REST standard for processing in addition to data trans-
fer. The main advantage of SaaS is that it does not
require local installation and this is a significant IT
trend based on industry analysis [19].

Similarly, “microservice” decomposes an applica-
tion into small components (or services) and these com-
ponents communicate with each other through APIs.
“Microservice” is a solution to monolithic architecture
relevant problems. [20]. Because of the “microservice”
characteristics, an application can be easily scaled and
the deployment risks have been reduced without inter-
rupting other services.

Traditional monolithic applications are built as a
single unit using a single language stack and often
composed of three parts, a front end client, a back-
end database and an application server sitting in the
middle that contains the business logic. Here, the ap-
plication server is a monolith that serves as a single
executable. A monolithic application can be scaled
horizontally by replicating the application server be-
hind a load balancer to serve the clients at scale. The
biggest issue with monolithic architecture is that, as
the application grows, the deployment cycle becomes
longer as a small change in the codebase requires the
whole monolith to be rebuilt and deployed [20]. It
leads to higher risk for maintenance as the application
grows. These pitfalls have lead to the idea of decom-
posing the business capabilities of an application into
self-contained services.

Being a relatively new idea, researchers have at-
tempted to formalize a definition and characteristics
of Microservices. [20] [20] has put together a few essen-
tial characteristics of a microservice architecture that
are described in brief in the following sections.

Componentization via Services The most impor-
tant characteristic of a microservice architecture is that
service functionalities need to be componentized. In-
stead of thinking of components as libraries that use
in-memory function calls for inter-component commu-
nication, we can think of components in terms out-of-
process services that communicate over the network,

quite often through a web service or a remote proce-
dure call. A service has to be atomic, doing one thing
and doing one thing well [21].

Figure 1: High-level diagram of VWS: clients and VWS
communicate through REST Web Services. Possible
clients include a script and applications. VWP provide
data service, auth service, and model execution service.

Organized Around Business Capabilities Mono-
lithic applications are typically organized around tech-
nology layers. For example, a typical multi-tiered ap-
plication might be split logically into persistence layer,
application layer and UI layer and teams are also orga-
nized around the technologies. This logical separation
creates the need for inter-team communication even
for a simple change. In microservices, the product is
organized around business capabilities where a service
is concentrated on one single business need and owned
by a small team of cross-domain members.

Decentralized Governance In a monolithic applica-
tion, the product is governed in a centralized manner,
meaning it restricts the product to a specific platform
or language stack. But in microservices, as each service
is responsible implementing an independent business
capability, it allows for building different services with
different technologies. As a result, the team gets to
choose the tools that are best suited for each of the
services.

[21], in his book Building Microservices [21], has
discussed several concrete benefits of using microser-
vices over a monolith. Several important benefits are
discussed below in brief:
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Figure 2: System-level diagram of VWS: two main
system components are VW-MODEL and VW. VW-
MODEL contains components relative to model exe-
cution and VW contains components relative to the
platform.

Technology Heterogeneity When independent ser-
vices are built separately, it allows adoption of differ-
ent technology stacks for different services. This gives
a team multiple advantages: liberty to choose a tech-
nology that best suits the need and adopt technology
quickly for the needs.

Scaling Monolithic applications are hard to deal
with when it comes to scaling. One big problem with
monolithic applications is that everything needs to be
scaled together as a piece. But microservice allows hav-
ing control over the scaling application by allowing to
scale the services independently.

Ease of Deployment Applying changes for a mono-
lithic application requires the whole application to be
re-deployed even for a minor change in the codebase.
It poses a high risk as unsuccessful re-deployments
even with minor changes can take down the software.
Microservices, on the other hand, allow low-risk de-
ployments without interrupting the rest of the services.
They also allow having faster development process
with small and incremental re-deployments.

3 Proposed Method

Here we introduce detailed design documentation for
the VMS. We present the design using many common
diagrams used in software engineering, including sys-
tem diagrams and workflow diagrams. The VWS aims
to create a software ecosystem named the Virtual Water-
shed by integrating cyberinfrastructure and visualiza-
tion tools to advance watershed science research. Fig. 1
shows a general high-level diagram of components
of the ecosystem. The envisioned system is centered

around services comprised of data, modeling, and vi-
sualization components. A high-level description of
each depicted component is provided in Fig. 1.

3.1 Data Service and Modeling Service

To create a scalable and maintainable ecosystem of
services, a robust data backend is crucial. The en-
visioned data service exposes a RESTful web service
to allow easy storage and management of watershed
modeling data. It allows retrieval of data in various
OGC (Open Geospatial Consortium) standards like
WCS, WMS to allow OGC compliant clients to retrieve
data automatically. This feature is very important for
data-intensive hydrologic research and is essential for
a scientific modeling tool.

Hydrologists often use different modeling tools to
simulate and investigate the change of different hydro-
logic variables around watersheds. The modeling tools
are often complex to setup in local environments and
takes up a good amount of time setting up [10]. Besides
these modeling tools may require high computational
and storage resources that make them hard to run in
local environments. The proposed modeling service
aims to solve these issues by allowing users to submit
model execution tasks through simple RESTful web
service API. This approach of allowing model-runs
through a generic API solves multiple problems:

• It allows the users to run models on demand
without having to worry about setting up envi-
ronments.

• It allows modelers to accelerate the process of
running models with different input parameters
by submitting multiple model-runs to be run
in parallel which might not be feasible in local
environment due to lack of computational and
storage resources.

• It opens the door for other services and clients
to take advantage of the API to automate the
process of running models in their workflow.

The primary goal of this Virtual Watershed system
is to allow watershed modelers to share their data re-
sources and execute relevant models through web ser-
vices without having to install the models locally. The
system is designed as a collection of RESTful microser-
vices that communicate internally. The web service
sits on top of an extensible backend that allows easy
integration of models and scalability over model runs
and number of users connected to the service.

The system provides a mechanism for integrating
new models by conforming with a simple event driven
architecture that allows registering a model in the sys-
tem by wrapping it with a schema driven adaptor.

As model execution is a CPU intensive process, scal-
ing the server with growing number of parallel model
execution is an important issue. The proposed architec-
ture aims to solve this problem by introducing a simple
database-oriented job queue that provides options for
adding more machines as the system grows.
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3.2 System Level Design

Several different submodules comprise The Virtual
Watershed system. Each module provides different
functionalities to the entire framework. This relation-
ship between modules is described with Figure 2. The
following paragraphs will explain each submodule in
detail.

VW-PY: Using the VW-PY module, users can de-
fine adapters to configure compatibility between differ-
ent models and the VWS. An adaptor is python code
which encapsulates a model and that allows for it to be
run programmatically. VW-PY handles many aspects
of model ”wrapping” with this python code through
an interface. Through this API, an user can define
the code which handles converting between data for-
mats, executing models, and model-progress-based
event triggering. This event triggering system pro-
vides model-wrapper developers with the tools to emit
model execution progress.

VW-MODEL: The VW-MODEL submodule,
through a web service, exposes a RESTful API to
the user/client. Users can upload, query, and retrieve
model run packages using this API.

VW-WORKER: The VW-WORKER is a service
which encapsulates model adaptors in a worker ser-
vice that is organized in a queue data structure. This
component communicates with the VW-MODEL com-
ponent using a redis data-backend.

VW-STORAGE: The VW-STORAGE module pro-
vides an interface for object storage for the VW-
MODEL component. Developed as a generic wrapper,
sysadmins can configure this interface to work with
local or cloud-hosted storage providers.

VW-AUTH: The VW-AUTH module provides au-
thentication services for users/clients connecting to
the VWS framework. This service provides clients
with a JWT token enabling them to securely utilize the
other services described in this section.

VW-SESSION: The VW-SESSION sub module coor-
dinates different components in the VWS to provide a
common session backend for a single user. Data about
each session is maintained and managed with a Redis
data store shared between services.

VW-WEB: This is the web-application front-end
which provides users with APIs to interact with the
model processing modules described above. In a stan-
dard use case of this module, users will get access to
a session after logging into this system with the VW-
AUTH component. Once given a session, users can use
this interface to access resources, run models, track
progress and upload/download model run resources.

3.3 Detailed Design

The VWS is comprised of many distinct services
and web applications which communicate with one-
another to facilitate model runs. We are able to provide
secure and centralized communications with the aid of
a common authentication gateway. VW-AUTH was de-
veloped as a micro service to provide this functionality.

It aggregates functionality for registration, authentica-
tion, and authorization for system users.

Figure 3: Workflow for accessing secure REST endpoint
with JWT token

The Authentication component itself exposes REST-
ful endpoints that provide user access to different ser-
vices, in addition to endpoints for authentication and
registration. To enable the verification of a client’s
authentication by other services, a JSON Web Token
(JWT) based authorization scheme is utilized. As an
RFC standard for exchanging information securely be-
tween a client and a server, the using JWT ensures a
high level of security in this system. A standard work-
flow for user authorization is depicted in Figure 3.

Users can manage uploaded models via a RESTful
API endpoint provided by the Model Web Service. Us-
ing this endpoint, a properly authenticated user is able
to request a model run, upload necessary input files
needed by the model and start model execution. Model
run data is stored by the VWS in a dedicated database
located on a server operating out of the University of
New Mexico [1].

Available models in the system are self-describing
with schema that indicates necessary input files, for-
mats, and execution policies. The schema also shows
the mapping between user facing and model adaptor
parameters. A user/client can use this schema to under-
stand the necessary resources required to run a given
model. The a typical model run from the perspective
of the clinent side application involves six steps: 1)
retrieve the server-side model schema; 2) instantiate
a model run session on the server; 3) upload model
inputs; 4) run the model; 5) track model run progress;
and finally, 6) download outputs.

Figure 4 shows a simple workflow chart from a user
or client’s perspective. This workflow offers many ad-
vantages this workflow and sever-client architecture
compared to traditional approaches to model running:

• Users do not need to know internal specifics of
the model. Setup details and dependencies are
hidden from the user, which provides a more
seamless experience.

• Users don’t need to worry about installing model
dependencies.
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• Users can easily initiate multiple parallel model
runs on a server, expediting research.

• Users have ubiquitous access to server-side data
via provided RESTful APIs.

Figure 4: Workflow from user’s perspective to run a
model

The first step in creating the architecture for expos-
ing “models as services” is enabling the programmatic

running of models. A hurdle to accomplishing this is
that a model can have many different dependencies re-
quired to run. Programmatic running is accomplished
in this program by providing developers the tools to
create python wrappers around models. These wrap-
pers expose dependencies to model through container
images.

In creating this system we had to strongly consider
problems of data format heterogeneity with model in-
puts and outputs. Different models commonly accept
and output data in different file formats. To achieve
facilitate greater data interoperability between these
models, we provided an option for developers to write
NetCDF adapters for each models. A model adaptor is
a Python program that handles data format conversion,
model execution and progress notification. Adaptor
developers must provide converters which define the
method of conversion and deconversion between the
native formats used by the model and netCDF. An ex-
ecution function must also be implemented for the
model. In this method, resource conversion and model
execution occurs. The wrapper reports on model exe-
cution events via a provided ”event emitter.” An event
listener can catch these events as they are reported by
the emitter. This listener provides a bridge between
the internal progress of the model and the user with
the aid of a REST endpoint.

Through an adaptor, models can be encapsulated
for programmatic execution. However, to bridge fron-
tends with actual model execution a process is required
from the model worker module. Utilizing a messaging
queue, we create a bridge between the client frontend
and worker backend. When a run task is submitted
through from the client side, it is placed into the queue
and assigned a unique id. The consumer/worker pro-
cess listens to the queue through a common protocol
for new jobs.

The worker service is a server-side python mod-
ule that has access to a model’s executable code and
installed dependencies. The worker resides in an iso-
lated server instance that contains the dependencies
and libraries of the model installed. This module uses
Linux containerization to facilitate easy deployment of
model workers.
3.4 Deployment Workflow

A Linux-container-based deployment workflow has
been devised for the for many different components
of VWS. We utilized the containerization software,
Docker, to enable our implementation of this work-
flow [22]. Docker containers have advantages over
traditional virtual machines because they use fewer
resources. This workflow allows for iterative deploy-
ment, simple scaling of the containerized components,
and provides a strategy to register new models in the
system.

Every VWS component is containerized with
Docker. We have a set up a central repository of docker
images which contain images for each component in
this system. A docker ”image” describes a template
that provides Docker with the OS, dependencies of an
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application and the application itself. Docker uses this
template to build a working container. Each repos-
itory in the Virtual Watershed has a Dockerfile that
describes how the component should be built and de-
ployed into a query-able container. The repositories
use webhooks to automate the building of docker con-
tainers.

Figure 5: Registration page of Virtual Watershed Sys-
tem

It is easy to register new models in this system us-
ing this containerization workflow. Using our system,
a user may register a model with the creation of docker
image describing the model. With this image users can
declare the OS, libraries and other dependencies for a
model. A typical registration of a model requires the
following steps: 1) create a repository for the model; 2)
develop the wrapper; 3) specify dependencies within
the dockerfile; and finally, 5) create a docker image in
the image repository.

4 System Prototype and Testing

The project re-used some code and similar structures
to those introduced in [23, 24]. The web service fron-
tends were built using a Python micro-service frame-
work called Flask, with various extensions [25]. Some
key libraries used were: 1) Flask-Restless, used to im-
plement the RESTful API endpoints; 2) SQLAlchemy,
to map the python data objects with the database
schema [26]; 3) PostgreSQL as the database [27]; and,

4) Flask-Security with Flask-JWT which provides the
utilities used for security and authentication. Celery
was used to implement the task queue for model work-
ers [28]. Redis worked as a repository for model results
output by Celery. A REST specification library called
Swagger was used to create the specification for the
REST APIs. For the web front end, HTML5, CSS, Boot-
strap, and Javascript (with ReactsJS) were used.

Figure 6: Dynamically generated upload form

To efficiently develop the VWS, an MVC design pat-
tern was used to structure the code. The primary repos-
itory used to manage and distribute code was Github.
Source code for this project is made publicly available
through the Virtual Watersheds GitHub repository [28].
Dockerhub [29] is used for image management, which
can automatically update images when Github code is
changed.

The prototype system is comprised of two main
components 1) the authentication module and 2) the
modeling module. First, activities related to the VWS
are handled by the authentication module. All stan-
dard user management functionality is handled by
this module: registration, logins, verification, pass-
word management, and authentication token genera-
tion. Figure 5 shows the registration page of Virtual
Watershed system. In addition to this interface, the
VWS also provides endpoints for registration and au-
thentication from user constructed scripts.

Modeling is necessary and commonly used in hy-
drologic research. Modification of the existing model
simulations is a complex activity that hydrologists of-
ten have to deal with while analyzing complicated en-
vironmental scenarios. Modelers must make frequent
modifications to underlying input files followed by
lengthy re-runs. Programming languages could help
significantly with this easily automated and repetitious
task. However, it is complex and time consuming for
hydrologists to write their own programs to handle
file modifications for scenario based studies. To solve
this challenge, the modeling module provides an in-
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tuitive user interface where users can create, upload,
run and delete models. The UI informs users about the
progress of the model run with a bar that displays a
percentage of completion. The module also includes a
dashboard where users can view the models being run,
the finished model runs, and also download the model
run files. A user can execute multiple PRMS models in
parallel by uploading the three input resources needed
for PRMS model. The upload interface as shown in Fig-
ure 6 is generated dynamically from the model schema
defined for each of the models.

Figure 7: Scenario creation interface for PRMS model
that uses Modeling REST API to execute model

The modeling interface displays peak utility when
users use it to programmatically run a bundle of mod-
els in parallel without having to worry about resource
management. In the prototype system, the client is
used to adjust input parameters for models and for
model execution.

Model calibration can be a time consuming process

for many hydrologists. It often requires that the mod-
eler re-run and re-run a model many time with slightly
varied input parameters. For many modelers this is a
manual process. They will edit input files with a text
editor and execute the model from a command line on
their local machine.

Understanding that it was crucial to address this
issue, the virtual watershed protoype system was de-
veloped with a web-based scenario design tool. This
tool provides a handy interface which enables for the
rapid adjustment and calibration of PRMS model in-
put variables. It also provides the tools to execute the
tweaked models via the modeling web service, and
visually compare outputs from differently calibrated
runs. Figure 7 shows the interface developed which
provides visually oriented tools for data manipulation.
This interface abstracts away technical model data rep-
resentations and allows users to model in intuitive
ways. Figure 8 shows the output visualization after a
the modeling web service has finished executing the
model run.

Figure 8: Comparing the results of the scenarios cre-
ated using the modeling service

We developed multiple IPython [30] notebooks to
demonstrate the programmatic approach to running
an ensemble of models in parallel by using the mod-
eling API by Matthew Tuner, who is a PhD Student
in Cognitive and Information Sciences at University
of California, Merced. Figure 9, shows an important
step of modeling with the PRMS model. By using the
modeling API, an user can execute multiple models
in parallel, programmatically. Users can use server
resources to run a model many, many times without
concerning themselves about limited time and CPU
resources.
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Figure 9: Example of tuning a hundred model through
an IPython notebook with different parameters

5 Comparison with Related Tools

A feature based comparison is made between similar
software tools focused on hydrologic and environmen-
tal modeling in Table 1. The tools discussed in Sec-
tion 2 are CSDMS [8], Hydroshare [9] and MAAS [10].
Though each of these tools were designed and devel-
oped with different goals in mind, all of them are a
demonstration of work to assist environmental model-
ing in general. Each of these tools has their pros and
cons from different users perspectives.

CSDMS is a community driver system where model-
ers can submit their models to CSDMS by implement-
ing model interfaces provided by them. The model
gets evaluated and added into the system by the CS-
DMS committee. CSDMS uses a language interoper-
ability tool called Babel to handle language heterogene-
ity. From the user’s perspective, CSDMS provides a
web and desktop based client where users access mod-
els and run them using different configurations from
within the client. On the server side, CSDMS main-
tains an HPC cluster where they have all the models
and relevant dependencies installed.

Hydroshare [9], on the other hand, is a project

started to accommodate data sharing and modeling for
hydrologists. The platform is in active development
and frequently adds new features. The current ver-
sion of Hydroshare is more concentrated towards data
sharing and discovery for hydrology researchers [31].
Hydroshare also provides programmatic access to its
REST API which makes it a good candidate for a data
discovery backend for any other similar system.

The MaaS [10] is the most similar project to the
Virtual Watershed modeling tool. The main advantage
our work has over MaaS is resource management. Dr.
Li et al. proposed MaaS, but they use Virtual Machine
techniques in their framework. In our system, Docker
containers are used, which require fewer resources.
Also, we implemented APIs to check and stop a docker
container based on model execution status. Existing
container orchestration tools, like Docker Swarm, are
limited in thier ability to manage containers in this
way. Though the approach and implementation of this
work differ in various ways, the end goal is similar
to what we are trying to achieve. MaaS introduced
models as services by creating an infrastructure using
cloud platforms. The framework provides users with a
web application to submit jobs. The backend that takes
care of on-demand provisioning of virtual machines
that containing model execution environment setup.
MaaS achieves model registration by encapsulating a
model as a virtual machine image in an image hub. It
provides an FTP based database backend to store the
model results.

6 Conclusion and Future Work

A hydrologic model execution web service platform
named VWS is described in this paper. The key idea of
the proposed platform is to expose model relevant ser-
vices through python wrapper. This wrapper enables
representation of model resources with a common data
format (e.g., NetCDF), increasing inseparability. Also,
it requires NetCDF format resources, which simpli-
fies model execution on a server node. A user can
login once and access all services of the VWS with
the authentication/authorization component. Each
VWS Component is wrapped in a docker container,
which requires less resources than a traditional Vir-
tual Machine. Docker container APIs, including the
container termination API, are also implemented to
autonomously manage the dynamic resource needs of
this system.

This software has significant room to be expanded
upon with furutre work. For example, the system
currently only provides the option to integrate with
GSToRE data backend. This can be improved through
implementation of a generic data backend which en-
ables integration with other existing data providers
like DataONE, Hydroshare, and CUHASI. This, in turn,
could provide better access to data for modeling au-
tomation. Developing a pricing component for service
usage would be considered for future development.
This aspect can help system manager to sustainably
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Table 1: Feature Comparison with Related Hydrologic and Environmental Modeling tools

Feature
Tool

CSDMS HYDRO-SHARE MAAS VW-MODEL

Open source Yes Yes No Yes
Provides REST API No Yes No Yes
Provides interface for model implementation Yes No No Yes
Allows model coupling Yes No No No
Allows model registration Yes No Yes Yes
Data storage No Yes Yes Yes
Data sharing and discovery No Yes No No

maintain the server and hire software developers to
implement other useful features.
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