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 There are high expectations for commercial cloud services as an economical computation 
resource when executing scientific computing workflows, for which the computation is 
increasing on a daily basis. However, no method has been developed for determining 
whether a scientific computing workflow can be executed at a low usage cost, and thus 
scientists have difficulty in selecting from the diverse range of computational resources. 
The aim of this study is to provide clear criteria for selecting a computational resource 
while executing a scientific computing workflow. This study focuses on the performance of 
application execution for one such commercial cloud service, Amazon EC2, and proposes 
a method for selecting the optimal resource showing high similarity to a target application 
in execution time and usage cost. The novelty of this study is its approach of employing 
application similarity in resource selection, which enables us to apply our method to 
unknown applications. The contributions of this work include (1) formularizing 
performance values of computational resources, as well as similarity values of applications, 
and (2) demonstrating the effectiveness of using these values for resource selection.  
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1. Introduction  
This paper is an extension of work originally presented in 

ICBDA2018 [1]. Scientific computing workflows [2] are 
applications that performs a sequence of processes by dividing 
applications handling scientific computing into small tasks and, by 
executing these tasks in stages. Figure 1 shows an overview of 
scientific computing workflows of Epigenomics and Motage. 
Characteristically, scientific computing workflows can deal with 
large amount of data, and the work quantity differs for each task. 
Here, as examples, we introduce three types of scientific 
computing workflows. Montage is an application developed by 
NASA that processes celestial images. A feature of Motage is that, 
since it handles large-sized images, it requires high levels of I/O 
performance. Broadband is an application that generates a 
vibration record diagram from multiple earthquake simulations, 
and requires high levels of memory performance. Epigenomics is 
an application dealing with DNA, and requires high levels of 
processing ability based on CPU performance. Thus far, scientific 
research has mainly consisted of experiments and theories. 
However, with developments in hardware, advanced calculation 
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Figure 1. Scientific Workflow 
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has become possible, and computer-based simulations have 
become an essential new research method. The importance of 
scientific computing workflows are only expected to grow for 
future science. Many scientific computing workflows have been 
developed based on distributed processing using high performance 
computers (HPC) with grids, PC clusters, and supercomputers, and 
scientists have used their own PC clusters and grid computing, 
such as Open Science Grid [3], when executing scientific 
computing workflows. However, through the development of 
hardware, the data quantity that can be operated is increasing on a 
daily basis, and the processing capabilities of computation sources 
and the storage capacity required are expanding in the same way.  

When executing scientific computing workflows, for which the 
computational data is increasing on a daily basis, the use of 
commercial sloud services as a computation resource, in place of 
PC clusters and Open Science Grid, has attracted attention. The 
commercial cloud service is a service in which scientists can use 
servers on the network by paying usage fees. Features of such 
services are that computational sources and storage can be swiftly 
added, and computational sources of various performance 
(instances) are prepared. Scientific computing workflows are 
designed based on distributed processing, and it is possible to 
execute these in the cloud in which distributed processing is 
performed through distributed computing. Additionally, as a wide 
variety of performance instances are prepared, tasks with different 
processing can be performed in respectively optimized 
environments. It also has the characteristics of being a measured 
rate system in which you only pay for the time you use, the fact 
that maintenance costs are not required, and initial investment for 
constructing facilities is not necessary. It promises to be applicable 
to scientific computing workflows, and is to be used as a highly-
economical computation source. In this study, we use the 
commercial cloud service Amazon Elastic Compute Cloud (EC2) 
[4] used in the preceding research [5]. EC2 is a web service 
provided by Amazon. The users can select virtual machines, called 

instances, according to various purposes. With EC2, five types of 
roles and multiple respective processing resources are prepared. A 
list of the instances is shown in Table 1. 

One of the important problems with using EC2 is that it is 
difficult to select the instance and the application to execute with 
the instance performance table. If the instance performance does 
not satisfy the performance requirements of the application, 
execution will be impossible, or the execution time will increase, 
leading to an increase in usage costs. On the other hand, if the 
instance performance is higher than necessary, the cost per unit 
time will be higher, and even if the execution time is shorter, the 
costs would increase. Currently, when selecting the instance to 
execute the application, specialized knowledge about applications 
and cloud or user experience are required. This stiuation makes it 
difficult to select a suitable computational resource from a large 
number of computation resources when considering execution 
time and usage costs, and this is the problem for scientists using 
commercial cloud services. 

To solve the problem, this study aims to provide a clear 
criterion for selecting instances for executing scientific computing 
workflows. Using the provided selection criteria, it will be possible 
for scientists to casually engage in cloud services, and to perform 
experiments using advanced computing resources for low research 
fees. The novelty of this study is its approach of employing 
application similarity in resource selection, which enables us to 
apply our method to unknown applications. The contributions of 
this work include (1) formularizing performance values of 
computational resources, as well as similarity values of 
applications, and  (2) demonstrating the effectiveness of using 
these values for resource selection.  

2. Current Issues 
There are four main issues in executing scientific computation 

workflow using the cloud, as follows: 

Table 1. List of Instances 

(a) Role list       (b) Performance list 

 

Table 2. Instance Performance 

 vCPU ECU memory (GB) storage (GB) cost ($/h) 
t2.micro 1 variable 1 8 0.013 
c4.large 2 8 3.75 8 0.105 
m4.large 2 6.5 8 8 0.12 

m4.xlarge 4 13 16 8 0.239 
r3.large 2 6.5 15.25 32 0.166 
i2.xlarge 4 14 30.5 800 0.853 

 

role instance name 
General purpose t2 m4 
CPU optimized c4  

Memory optimized r3 x1 
Storage optimized i2 d2 

GPU instance g2  
GPU computing p2  

 

 

 

performance 
nano micro small medium 
large xlarge 2xlarge 4xlarge 

10xlarge 16xlarge 32xlarge  
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1) Virtualization overhead 

2) Low throughput in shared/parallel file systems 

3) Low network performance 

4) Unclear usage costs  

Issue 1 appears in a significant way when CPU performance is 
required. Additionally, 2 and 3 clearly have an impact on 
applications requiring I/O performance [6]. Based on the above 
features, the current commercial cloud services cannot achieve 
HPC-equivalent performance. It is expected that issues 1 to 3 shall 
be resolved on the hardware front, through the development of 
commercial cloud services. However, this will not solve 4, which 
occurs when scientists use commercial cloud services. Scientists 
need to select the computation resources satisfying the processing 
ability required for the application based on uncertain factors such 
as their own knowledge and experience. A cause of issue 4 not 
being satisfied is that there are no criteria for selecting 
computational resources that consider the necessity of applications 
[7]. 

This study focuses on the issue of usage cost. The issue is how 
to select instances that will satisfy computing performance 
requirements and have the lowest user cost when executing a 
scientific workflow on a commercial cloud service. In EC2, the 
performance of each instance is published, and users can determine 
the computation resources based on the performance table values. 
Table 2 shows part of the published performance table. vCPU 
expresses the number of virtual Server cores, and ECU (EC2 
Computing Unit) is a numerical representation of the total 
processing performance for the instants. In case of an instance 
where ECU is 8 and vCPU is 2, the CPU processing ability per 
core is 4. EBS (Elastic Block Storage) is the block unit storage 
provided by Amazon, and a total of four types are prepared, 
comprising two types of SSD and two types of HDD [8]. For all 
instances in this study, the versatile SSD type found in the default 
settings is used. 

Currently, the user selects the instance using their experience, 
based on the performance capability required for the executed 
applications and the values of the instance performance table, and 
it is possible that the instance with the shortest execution time or 
the lowest usage costs may not be selected.  

We explain this situation using the example of a prime number 
calculation application. Prime number calculation applications are 
applications that mainly require CPU processing ability. For this 
reason, it is predicted that the user will select the c4 interface, 

which has enhanced CPU performance. However, at that time, they 
need to decide whether to choose the c4.large with 8 ECU, or the 
c4.xlarge with 16 ECU. The result of actually executing this was 
that the execution time was shorter for c4.xlarge, but the usage 
costs were lower with c4.large. Due to this, until we actually 
execute the application, it is unclear which instance has the shortest 
execution time or which has a lower usage costs. Additionally, the 
processing ability used for prime number calculation examples is 
virtually CPU only, but with the actual application, memory and 
I/O processing ability are required at the same time. When 
selecting the instance, it is important to have a proper 
understanding of the processing ability required by the application. 

To execute the application with a short execution time or a low 
usage cost, it is necessary to quantitatively grasp the performance 
ability required by the application and the instance performance 
and clarify these relationships. Therefore, in the next section, we 
will quantitatively demonstrate the instance performance and the 
processing ability required by the application and perform 
preliminary experiments to provide clear selection criteria. 

Very few studies have been made to quantitatively grasp the 
performance required by the application or the instance. Tovar et 
al. [9] classified tasks in scientific workflows and proposed an 
estimation method for the tasks. They showed that the execution 
time can be estimated and that CPU, memory and I/O performance 
indexes are important for this estimation. Sfiligoi et al. [10] 
showed the characteristics of scientific workflows statistically, and 
the results were effective for their experiment’s applications. 
However, these studies are useful only for known applications 
whose behavior information can be given well in advance of 
instance selection. Consequently, if such information is 
insufficient, these studies cannot be applied. Thus, the current 
study employs several values to achieve resource selection for 
unknown applications. Furthermore, previous studies assumed that 
their target instance was a single type and thus did not consider the 
various types of instances in commercial cloud services. 

3. Preliminary Experiment 

We perform preliminary experiments to quantitatively show 
the instance performance and processing ability required by the 
application.  

3.1. Instance Performance Value 

We describe the instance performance as numerical values. We 
focus on instance performance in terms of CPU, memory, and I/O. 
This is because CPU, memory, and storage are enhanced 
respectively in EC2, and because the instances are mainly prepared 
in relation to these, it is assumed that these will have the greatest 
impact on execution time and usage cost. The CPU processing 
ability uses ECU, published by Amazon. In this study, memory 
and I/O processing ability are defined respectively as EMU and 
EFU, and these are measured and expressed numerically in these 
preliminary experiments. In these preliminary experiments, the 
versatile instances m4.large and m4.xlarge，the CPU optimization 
instances c4.large and c4.xlarge，and the memory optimization 
instances r3.large and r3.xlarge are used. The performance of each 
of these is shown, respectively, in Table 3. 

Table 3. Instance Performance Values 

 ECU EMU EFU 

m4.large 6.50 9.30 9.50 

m4.xlarge 13.0 9.62 9.25 

c4.large 8.00 8.00 8.00 

c4.xlarge 16.0 8.04 9.08 

r3.large 6.50 8.48 9.05 

r3.xlarge 13.0 8.45 9.05 
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Measurements are performed using a program prepared for the 

purpose of measuring performance evaluations. Memory 
performance evaluations involve reading and writing memory 
multiple times, whereas I/O performance is assessed by reading 
and writing a text file multiple times. The respective execution 
times are measured, with the ratio with the c4.large value and 8, 
which is the same as ECU, to discover the EMU and EFU of each 
instance. The respective instance performance is shown in Table 
4. 

3.2. Execution Performance Value 

In this experiment, the processing ability required by the 
application expressed as a numerical value is used as the execution 
performance value. The execution performance value shows the 
effect of the CPU, memory, and IO required for the application on 
the execution time. As an example, we shall show a formula for 
obtaining the execution performance value based on CPU 
performance. The performance values based on memory or I/O 
performance can be calculated by making the respective ECU 
values the EMU and EFU values according to the following 
formula. 

Here, as an example, we shall seek the two application 
execution performance values of memory performance evaluation 
and I/O performance evaluation used when evaluating instance 
performance. The execution performance values need to actually 
be executed with the instances. In this preliminary experiment, 
measurement was performed using the versatile instance m4.large. 
The execution time and execution performance values based on the 
CPU, memory, and I/O performance are as follows. 

 From the results, we can see that the size of the execution 
performance values changes depending on the execution time, and 
that differences appear in the execution performance value ratios 
based on the processing content. The two applications used in this 
preliminary inspection have high execution performance values 
based on CPU performance and, as with the instance performance 
evaluation, the execution time for both applications was shorter 
with the c4 instance optimized for CPU performance, by 
referencing the execution performance values, it is possible to 
grasp the processing capability required by the application. 

4. Proposed Method 

We propose a method for selecting resources that uses an 
application with similar execution performance to select the 
instance that can run an application in the lowest time or with 
lowest usage cost. In the past, the run time and usage cost were 
unknown before actually running an application, and there was a 
risk of costs increasing when the application was run several times. 
The proposed method enables a resource to be selected, running 

the application a minimum number of times, by considering the 
application execution performance values and instance 
performance.  

We expect that if the performance required by two applications 
is the same, the computing resources required for the shortest 
execution time or lowest usage cost will be the same for them as 
well. The proposed method selects an application with similar 
execution performance values as the application in question from 
among several that have been run in the past, and selects the 
computing resource able to execute the application in question in 
the shortest time or at lowest cost. The method is comprised of the 
following four steps. 

1) Standardization Step: Measure the execution performance of 
the sample applications 

2) Measurement Step: Measure the execution performance of the 
application in question 

3) Comparison Step: Select a sample application with similar 
execution performance values 

4) Selection Step: Select the instance with shortest execution time 
or with lowest usage cost 

Details of each step are described below. 

Standardization Step: The sample applications are executed on 
each instance, and the instances producing the shortest run time 
and lowest usage cost are selected. The execution performance is 
also computed using an arbitrarily selected instance. Several 
applications performing different processes are used as sample 
applications for the proposed method. 

Measurement Step: This step deals with the application for 
which a computing resource is being selected. The application is 
executed on an instance selected in the standardization step to 
measure its execution performance values. 

Comparison Step: In this step, the execution performance 
values of all sample applications measured in the standardization 
step are compared with the execution performance values of the 
application in question, as measured in the measurement step. For 
this method, a similarity level is used for this comparison. The 
similarity level is expressed as a distance between the execution 
performance values of the two applications. The normalized 
execution performance values of CPU, memory and I/O of 
application A are denoted 𝐸𝐸𝐴𝐴𝐴𝐴 ,𝐸𝐸𝐴𝐴𝐴𝐴 , and 𝐸𝐸𝐴𝐴𝐴𝐴 , respectively. These 
execution peformance values, are obitained by the preliminary 
experiment described in Section 3. Similarly, the execution 
performance values for application B are denoted 
𝐸𝐸𝐵𝐵𝐴𝐴 ,𝐸𝐸𝐵𝐵𝐴𝐴 , and 𝐸𝐸𝐵𝐵𝐴𝐴 . The similarity, 𝐷𝐷𝐴𝐴𝐵𝐵 , is given by the following 
equation (1). This equation uses Euclidean Distance between 
applications A and B. If the similarity value is sufficiently high, 
they are considered similar applications. The highest similarity 
value is thus used to select the most similar application. To select 
a resource, the target application A is fixed while application B 
varies. That is, the distances to application A from all other 
applications are calculated. The distance is determined by the 
values of execution time, memory, and I/O described in the 
previous section. More details can be seen in an earlier work [11].  

Table 4. Execution Performance Values  
(partial result only for two applications in [11]) 

 execution 
time [sec] CPU memory I/O 

Memory       
bound apl. 291.6 44.9 31.4 30.7 

I/O 
bound apl. 25.6 3.94 2.75 2.70 
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𝐷𝐷𝐴𝐴𝐵𝐵 = �(𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2 + (𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2 + (𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2      (1) 

Selection Step: In the selection step, the similarity of the 
application with each of the sample applications is computed. The 
sample application with the smallest similarity level is selected as 
the one that is most similar to the application in question. The 
instance able to execute this most-similar sample application with 
the shortest execution time or lowest cost is then selected as the 
instance to run the application in question. 

5. Evaluation 

To show that instances can be selected based on similarity of 
execution performance values, we conducted experiments to 
evaluate the effect of similarity on the execution time and usage 
cost.  

5.1. Experiment Overview 

Using the same instances as in the preliminary experiments, the 
execution time, usage cost and similarity were measured for 
multiple applications. If the instances running the applications with 
the lowest execution time and usage cost are the same for 
applications that are similar, the proposed method will select 
resources correctly. The instances used were the same as those 
used in the preliminary experiments. The test procedure was as 
follows: 

1) Run applications 

2) Calculate execution performance values 

3) Calculate similarities 

4) Select similar applications. 

Each of these steps is described in more detail below. 

Run applications: Multiple applications were run on each 
instance, and the execution time was measured. From the 
execution times for each instance, the instances producing the 
shortest execution time and lowest usage cost were selected for 
each.  

Calculate execution performance values: Each application was 
run on an arbitrarily selected instance and the execution 
performance values were measured. For these tests, we used the 
m4.large general-purpose instance. 

Calculate similarities: Here, the computed execution 
performance values were normalized, and the similarity to all of 
the other applications was computed for each application. 

Select similar applications: For each application, the one with 
the lowest similarity level was selected as the most similar 
application. Each application was compared with the other 
application most similar to it, and we checked whether the 
instances producing the shortest execution time and usage cost 
were the same.  

5.2. Applications 

The applications used here include Sysbench [12] and 
UnixBench [13], which are comprehensive benchmark 
applications, and Hadoop [14], which is a distributed framework. 
These are described in more detail below. 

Sysbench is a general benchmark application for Linux/Unix 
operating systems. Sysbench has six types of evaluation (e.g. CPU 
or memory) and enables each of them to execute with adjusting 
application parameters such as the number of CPUs or the file size. 
For our experiments, we performed CPU, memory and I/O tests. 
Prime numbers are computed for the CPU test, reading and writing 
to memory is done for the memory test, and reading and writing 
files to storage is done for the I/O test. Each test was done 
repeatedly and the execution times were measured. The term of 
test means a specific execution to perform one type of evaluation.  

UnixBench is a benchmark application used with Unix-type 
operating systems. The test covers a variety of tasks from integer 
arithmetic through to OS system calls. In these experiments, 
benchmarks for integer computation (Dhrystone), floating-point 
computation (Whetstone), and file copying (fsdisk) were 
performed. Results are given in terms of processing capability per 
unit time. These were converted to results in terms of a time 
required to complete a fixed-size process for these experiments. 

Hadoop is a distributed framework that enables multiple 
computers to be treated as a single computer with improved 
performance. Hadoop can be used in any of three modes: stand-
alone mode, which runs on a single CPU, pseudo-distributed 
mode, which virtualizes use of two machines on a single machine, 
and fully-distributed mode, which uses multiple computers. For 
these experiments, we used pseudo-distributed mode, measuring 
execution time for standard sample processes including computing 
pi, counting words, and sorting files. 

5.3. Results 

Each application was executed on each of the instances. For 
some of the applications, such as Dhrystone in UnixBench, the 
results are given in number of loops per second rather than total 
execution time. In such cases, the results were converted to a time 
required to perform a set number of loops. Execution times and 
usage costs are given in Tables 4 and 5, and execution performance 
values, as discussed previously, are given in Table 6.  

Instance c4.xlarge had the shortest execution time, and instance 
c4.large had the lowest usage cost in most cases. Execution 
performance values were calculated using the execution times and 
the ECU, EMU, and EFU performance values for m4.large, and 
these were then normalized.  

Similarities were then computed using these values. Below, we 
give an example of computing the similarity, 𝐷𝐷𝑝𝑝𝑝𝑝 , is given by 
equation (2) using the execution performance values from the 
prime number computation in Sysbench and the word count 
process on Hadoop.  

𝐷𝐷𝑝𝑝𝑝𝑝 =  �(0.038− 0.020)2+(0.047− 0.025)2+(0.047− 0.025)2  (2) 

Similarities were computed for all process pairs, and that with 
the smallest similarity value was designated as the similar 
application for each application. Table 8 shows whether the 
instances producing the shortest execution time and lowest usage 
cost were the same for these similar applications. 

The process most similar to the prime number computation on 
Sysbench was word count on Hadoop. The instance with the 
shortest execution time for the prime number process in Sysbench 
was c4.xlarge, which was the same as for the Hadoop word count,   
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Table 5. Execution Times [sec]  

application execution time 
m4.large m4.xlarge c4.large c4.xlarge r3.large r3.xlarge 

Sysbench 

prime number 157.51  78.99  128.68  64.32  153.31  76.47  
memory read 42.55  38.61  35.79  33.72  40.62  36.39  
memory write 52.32  41.82  43.63  36.96  49.90  40.09  

random read/write 2.07  0.42  1.71  0.78  1.51  1.00  
sequential read/write 34.42  22.90  34.36  22.90  38.14  24.60  

hadoop 
pi 3328.29  1692.45  2828.35  1438.95  3339.85  1698.05  

word count 83.14  54.62  77.71  50.90  88.76  56.86  
file sort 40.86  36.68  40.00  36.36  42.82  36.55  

UnixBench 
Dhrystone 0.76  0.85  0.64  0.32  0.74  0.37  
Whetstone 0.34  0.73  0.35  0.17  0.41  0.20  

fsdisk 0.71  0.76  0.68  0.83  0.95  1.14  
Table 6. Usage Costs [$] 

application usage cost 
m4.large m4.xlarge c4.large c4.xlarge r3.large r3.xlarge 

Sysbench 

prime number 21.89  21.96  16.21  16.21  30.66  30.51  
memory read 5.91  10.73  4.51  8.50  8.12  14.52  
memory write 7.27  11.63  5.50  9.31  9.98  15.99  

random read/write 0.29  0.12  0.22  0.20  0.30  0.40  
sequential read/write 4.78  6.37  4.33  5.77  7.63  9.81  

Hadoop 
pi 462.63  470.50  356.37  362.62  667.97  677.52  

word count 11.56  15.18  9.79  12.83  17.75  22.69  
file sort 5.68  10.20  5.04  9.16  8.56  14.58  

UnixBench 
Dhrystone 0.11  0.24  0.08  0.08  0.15  0.15  
Whetstone 0.05  0.20  0.04  0.04  0.08  0.08  

fsdisk 0.10  0.21  0.09  0.21  0.19  0.46  
Table 7. Execution Performance Value 

application performance value 
CPU memory I/O 

Sysbench 

prime number 0.03837  0.04725  0.04725  
memory read 0.01030  0.01270  0.01270  
memory write 0.01269  0.01564  0.01564  

random read/write 0.00042  0.00054  0.00054  
sequential read/write 0.00832  0.01026  0.01026  

Hadoop 
pi 0.81248  1.00000  1.00000  

word count 0.02021  0.02490  0.02490  
file sort 0.00989  0.01220  0.01220  

UnixBench 
Dhrystone 0.00010  0.00015  0.00015  
Whetstone 0.00000  0.00002  0.00002  

fsdisk 0.00009  0.00013  0.00013  
Table 8. Matching Instance and  Result of Similarity-based method 

application best time best cost similarity 
application best time instance best cost instance 

Sysbench 

prime number c4.xlarge c4.xlarge word count Same Different 
memory read c4.xlarge c4.large file sort Same Same 
memory write c4.xlarge c4.large memory read Same Same 

random read/write m4.xlarge m4.xlarge Dhrystone Different Different 
sequential read/write m4.xlarge c4.large file sort Different Same 

Hadoop 
pi c4.xlarge c4.large prime number Same Different 

word count c4.xlarge c4.large memory write Same Same 
file sort c4.xlarge c4.large memory read Same Same 

UnixBench 
Dhrystone c4.xlarge c4.xlarge fsdisk Different Different 
Whetstone c4.xlarge c4.large fsdisk Different Same 

fsdisk c4.large c4.large Dhrystone Different Different 
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so the instances with the shortest execution time matched. On the 
other hand, the instance able to run the Sysbench prime number 
process at lowest cost was c4.xlarge, while for Hadoop word count, 
it was c4.large, so the lowest cost instances did not match. This 
result appears on the first row of data in Table 7. From left to right, 
it indicates that for the prime number process in Sysbench, the 
similar application was Hadoop word count, that the instances with 
shortest execution time matched, and that the instances with lowest 
usage cost did not match. 

6. Discussion 

We now discuss the results of these evaluation experiments.  
Instances for which execution with short execution time and low 
usage charges are possible tended to be c4.xlarge and c4.large, 
respectively. The cause of this is that many of the applications used 
in this experiment were CPU-bound, and this is considered to have 
had a major impact on the match rate. In particular, the prime 
number calculation by Sysbench and the performance required for 
Dhrystone in UnixBench is biased toward the CPU. As the 
processing for these had the shortest execution time and lowest 
usage costs in c4.xlarge, which is optimized for the CPU, this is a 
result compatible with the published ECU values. For the scientific 
computing workflow, processing differs depending on the task, 
and there are tasks that require a lot of non-CPU processing. For 
that reason, in the reading and writing of memory for Sysbench, 
which is an application that requires not only CPU, but also 
memory and I/O processing performance, and file sorting by 
Hadoop, execution time became shorter due to CPU performance. 
CPU performance is important even for applications requiring 
memory and I/O processing performance; therefore, creating a 
calculation formula that is weighted in consideration of the impact 
of each on execution time and usage cost is effective when 
selecting resources.  

 To apply this method to the scientific computing workflows 
carrying out a variety of processing, it is necessary to increase the 
number of sample applications handled and support a more diverse 
range of processing. Additionally, as the sample applications used 
in this test have a low computational volume, there is a concern 
that it cannot support scientific computing workflows handling 
huge volumes of processing. A greater diversity of sample 
applications is required to realize this method and enable the 
selection of computational resources in scientific computing 
workflows. 

7.  Conclusion 

The objective of this experiment is to achieve a method of 
selecting resources based on execution time and usage costs when 
using commercial cloud services for scientific computing 
workflows. By using instance performance and the execution 
performance values required for the application, we measured the 
features of the application for a certain instance. The aim is to 
propose a method for selecting instances that can be executed in 
the shortest execution time with the lowest usage costs, by 
referencing similar applications for the measured execution 
performance values. In the evaluation experiment, we verified the 
effectiveness of selecting resources based on similarity. The 
match rate of the results was approximately 55%, and a large 
impact was present in CPU-bound applications. As this considers 
the impact on execution time when making resource selections 

more than for memory or I/O, it is necessary to focus on CPU 
performance.  

    Our experiment showed that the proposed method based on 
similarity can usually select the best instance for Hadoop or 
Sysbench-type applications. Furthermore, scientific computing 
workflow applications are mainly executed using few system 
functions, like Hadoop and Sysbench-type applications. Thus, our 
method would be effective in selecting resources for many types 
of scientific computing workflows. On the other hand, if the 
application requires many system functions, like UnixBench, the 
similarity calculation requires weighting factors to handle 
complicated behavior. 
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