

www.astesj.com 67

Similarity-based Resource Selection for Scientific Workflows in Cloud Computing

Takahiro Koita1,*, Yu Manabe2

1Doshisha University, Faculty of Science and Engineering, Japan

2NAIST, Department, Division of Information Science, Japan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 August, 2018
Accepted: 22 October, 2018
Online: 01 November, 2018

 There are high expectations for commercial cloud services as an economical computation
resource when executing scientific computing workflows, for which the computation is
increasing on a daily basis. However, no method has been developed for determining
whether a scientific computing workflow can be executed at a low usage cost, and thus
scientists have difficulty in selecting from the diverse range of computational resources.
The aim of this study is to provide clear criteria for selecting a computational resource
while executing a scientific computing workflow. This study focuses on the performance of
application execution for one such commercial cloud service, Amazon EC2, and proposes
a method for selecting the optimal resource showing high similarity to a target application
in execution time and usage cost. The novelty of this study is its approach of employing
application similarity in resource selection, which enables us to apply our method to
unknown applications. The contributions of this work include (1) formularizing
performance values of computational resources, as well as similarity values of applications,
and (2) demonstrating the effectiveness of using these values for resource selection.

Keywords:
Cloud computing
Amazon web services
Scientific workflows
Resource selection

1. Introduction
This paper is an extension of work originally presented in

ICBDA2018 [1]. Scientific computing workflows [2] are
applications that performs a sequence of processes by dividing
applications handling scientific computing into small tasks and, by
executing these tasks in stages. Figure 1 shows an overview of
scientific computing workflows of Epigenomics and Motage.
Characteristically, scientific computing workflows can deal with
large amount of data, and the work quantity differs for each task.
Here, as examples, we introduce three types of scientific
computing workflows. Montage is an application developed by
NASA that processes celestial images. A feature of Motage is that,
since it handles large-sized images, it requires high levels of I/O
performance. Broadband is an application that generates a
vibration record diagram from multiple earthquake simulations,
and requires high levels of memory performance. Epigenomics is
an application dealing with DNA, and requires high levels of
processing ability based on CPU performance. Thus far, scientific
research has mainly consisted of experiments and theories.
However, with developments in hardware, advanced calculation

ASTESJ

ISSN: 2415-6698

*Takahiro KOITA, Email: tkoita@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

Figure 1. Scientific Workflow

https://dx.doi.org/10.25046/aj030606

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030606

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 68

has become possible, and computer-based simulations have
become an essential new research method. The importance of
scientific computing workflows are only expected to grow for
future science. Many scientific computing workflows have been
developed based on distributed processing using high performance
computers (HPC) with grids, PC clusters, and supercomputers, and
scientists have used their own PC clusters and grid computing,
such as Open Science Grid [3], when executing scientific
computing workflows. However, through the development of
hardware, the data quantity that can be operated is increasing on a
daily basis, and the processing capabilities of computation sources
and the storage capacity required are expanding in the same way.

When executing scientific computing workflows, for which the
computational data is increasing on a daily basis, the use of
commercial sloud services as a computation resource, in place of
PC clusters and Open Science Grid, has attracted attention. The
commercial cloud service is a service in which scientists can use
servers on the network by paying usage fees. Features of such
services are that computational sources and storage can be swiftly
added, and computational sources of various performance
(instances) are prepared. Scientific computing workflows are
designed based on distributed processing, and it is possible to
execute these in the cloud in which distributed processing is
performed through distributed computing. Additionally, as a wide
variety of performance instances are prepared, tasks with different
processing can be performed in respectively optimized
environments. It also has the characteristics of being a measured
rate system in which you only pay for the time you use, the fact
that maintenance costs are not required, and initial investment for
constructing facilities is not necessary. It promises to be applicable
to scientific computing workflows, and is to be used as a highly-
economical computation source. In this study, we use the
commercial cloud service Amazon Elastic Compute Cloud (EC2)
[4] used in the preceding research [5]. EC2 is a web service
provided by Amazon. The users can select virtual machines, called

instances, according to various purposes. With EC2, five types of
roles and multiple respective processing resources are prepared. A
list of the instances is shown in Table 1.

One of the important problems with using EC2 is that it is
difficult to select the instance and the application to execute with
the instance performance table. If the instance performance does
not satisfy the performance requirements of the application,
execution will be impossible, or the execution time will increase,
leading to an increase in usage costs. On the other hand, if the
instance performance is higher than necessary, the cost per unit
time will be higher, and even if the execution time is shorter, the
costs would increase. Currently, when selecting the instance to
execute the application, specialized knowledge about applications
and cloud or user experience are required. This stiuation makes it
difficult to select a suitable computational resource from a large
number of computation resources when considering execution
time and usage costs, and this is the problem for scientists using
commercial cloud services.

To solve the problem, this study aims to provide a clear
criterion for selecting instances for executing scientific computing
workflows. Using the provided selection criteria, it will be possible
for scientists to casually engage in cloud services, and to perform
experiments using advanced computing resources for low research
fees. The novelty of this study is its approach of employing
application similarity in resource selection, which enables us to
apply our method to unknown applications. The contributions of
this work include (1) formularizing performance values of
computational resources, as well as similarity values of
applications, and (2) demonstrating the effectiveness of using
these values for resource selection.

2. Current Issues
There are four main issues in executing scientific computation

workflow using the cloud, as follows:

Table 1. List of Instances

(a) Role list (b) Performance list

Table 2. Instance Performance

 vCPU ECU memory (GB) storage (GB) cost ($/h)
t2.micro 1 variable 1 8 0.013
c4.large 2 8 3.75 8 0.105
m4.large 2 6.5 8 8 0.12

m4.xlarge 4 13 16 8 0.239
r3.large 2 6.5 15.25 32 0.166
i2.xlarge 4 14 30.5 800 0.853

role instance name
General purpose t2 m4
CPU optimized c4

Memory optimized r3 x1
Storage optimized i2 d2

GPU instance g2
GPU computing p2

performance
nano micro small medium
large xlarge 2xlarge 4xlarge

10xlarge 16xlarge 32xlarge

http://www.astesj.com/

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 69

1) Virtualization overhead

2) Low throughput in shared/parallel file systems

3) Low network performance

4) Unclear usage costs

Issue 1 appears in a significant way when CPU performance is
required. Additionally, 2 and 3 clearly have an impact on
applications requiring I/O performance [6]. Based on the above
features, the current commercial cloud services cannot achieve
HPC-equivalent performance. It is expected that issues 1 to 3 shall
be resolved on the hardware front, through the development of
commercial cloud services. However, this will not solve 4, which
occurs when scientists use commercial cloud services. Scientists
need to select the computation resources satisfying the processing
ability required for the application based on uncertain factors such
as their own knowledge and experience. A cause of issue 4 not
being satisfied is that there are no criteria for selecting
computational resources that consider the necessity of applications
[7].

This study focuses on the issue of usage cost. The issue is how
to select instances that will satisfy computing performance
requirements and have the lowest user cost when executing a
scientific workflow on a commercial cloud service. In EC2, the
performance of each instance is published, and users can determine
the computation resources based on the performance table values.
Table 2 shows part of the published performance table. vCPU
expresses the number of virtual Server cores, and ECU (EC2
Computing Unit) is a numerical representation of the total
processing performance for the instants. In case of an instance
where ECU is 8 and vCPU is 2, the CPU processing ability per
core is 4. EBS (Elastic Block Storage) is the block unit storage
provided by Amazon, and a total of four types are prepared,
comprising two types of SSD and two types of HDD [8]. For all
instances in this study, the versatile SSD type found in the default
settings is used.

Currently, the user selects the instance using their experience,
based on the performance capability required for the executed
applications and the values of the instance performance table, and
it is possible that the instance with the shortest execution time or
the lowest usage costs may not be selected.

We explain this situation using the example of a prime number
calculation application. Prime number calculation applications are
applications that mainly require CPU processing ability. For this
reason, it is predicted that the user will select the c4 interface,

which has enhanced CPU performance. However, at that time, they
need to decide whether to choose the c4.large with 8 ECU, or the
c4.xlarge with 16 ECU. The result of actually executing this was
that the execution time was shorter for c4.xlarge, but the usage
costs were lower with c4.large. Due to this, until we actually
execute the application, it is unclear which instance has the shortest
execution time or which has a lower usage costs. Additionally, the
processing ability used for prime number calculation examples is
virtually CPU only, but with the actual application, memory and
I/O processing ability are required at the same time. When
selecting the instance, it is important to have a proper
understanding of the processing ability required by the application.

To execute the application with a short execution time or a low
usage cost, it is necessary to quantitatively grasp the performance
ability required by the application and the instance performance
and clarify these relationships. Therefore, in the next section, we
will quantitatively demonstrate the instance performance and the
processing ability required by the application and perform
preliminary experiments to provide clear selection criteria.

Very few studies have been made to quantitatively grasp the
performance required by the application or the instance. Tovar et
al. [9] classified tasks in scientific workflows and proposed an
estimation method for the tasks. They showed that the execution
time can be estimated and that CPU, memory and I/O performance
indexes are important for this estimation. Sfiligoi et al. [10]
showed the characteristics of scientific workflows statistically, and
the results were effective for their experiment’s applications.
However, these studies are useful only for known applications
whose behavior information can be given well in advance of
instance selection. Consequently, if such information is
insufficient, these studies cannot be applied. Thus, the current
study employs several values to achieve resource selection for
unknown applications. Furthermore, previous studies assumed that
their target instance was a single type and thus did not consider the
various types of instances in commercial cloud services.

3. Preliminary Experiment

We perform preliminary experiments to quantitatively show
the instance performance and processing ability required by the
application.

3.1. Instance Performance Value

We describe the instance performance as numerical values. We
focus on instance performance in terms of CPU, memory, and I/O.
This is because CPU, memory, and storage are enhanced
respectively in EC2, and because the instances are mainly prepared
in relation to these, it is assumed that these will have the greatest
impact on execution time and usage cost. The CPU processing
ability uses ECU, published by Amazon. In this study, memory
and I/O processing ability are defined respectively as EMU and
EFU, and these are measured and expressed numerically in these
preliminary experiments. In these preliminary experiments, the
versatile instances m4.large and m4.xlarge，the CPU optimization
instances c4.large and c4.xlarge，and the memory optimization
instances r3.large and r3.xlarge are used. The performance of each
of these is shown, respectively, in Table 3.

Table 3. Instance Performance Values

 ECU EMU EFU

m4.large 6.50 9.30 9.50

m4.xlarge 13.0 9.62 9.25

c4.large 8.00 8.00 8.00

c4.xlarge 16.0 8.04 9.08

r3.large 6.50 8.48 9.05

r3.xlarge 13.0 8.45 9.05

http://www.astesj.com/

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 70

Measurements are performed using a program prepared for the

purpose of measuring performance evaluations. Memory
performance evaluations involve reading and writing memory
multiple times, whereas I/O performance is assessed by reading
and writing a text file multiple times. The respective execution
times are measured, with the ratio with the c4.large value and 8,
which is the same as ECU, to discover the EMU and EFU of each
instance. The respective instance performance is shown in Table
4.

3.2. Execution Performance Value

In this experiment, the processing ability required by the
application expressed as a numerical value is used as the execution
performance value. The execution performance value shows the
effect of the CPU, memory, and IO required for the application on
the execution time. As an example, we shall show a formula for
obtaining the execution performance value based on CPU
performance. The performance values based on memory or I/O
performance can be calculated by making the respective ECU
values the EMU and EFU values according to the following
formula.

Here, as an example, we shall seek the two application
execution performance values of memory performance evaluation
and I/O performance evaluation used when evaluating instance
performance. The execution performance values need to actually
be executed with the instances. In this preliminary experiment,
measurement was performed using the versatile instance m4.large.
The execution time and execution performance values based on the
CPU, memory, and I/O performance are as follows.

 From the results, we can see that the size of the execution
performance values changes depending on the execution time, and
that differences appear in the execution performance value ratios
based on the processing content. The two applications used in this
preliminary inspection have high execution performance values
based on CPU performance and, as with the instance performance
evaluation, the execution time for both applications was shorter
with the c4 instance optimized for CPU performance, by
referencing the execution performance values, it is possible to
grasp the processing capability required by the application.

4. Proposed Method

We propose a method for selecting resources that uses an
application with similar execution performance to select the
instance that can run an application in the lowest time or with
lowest usage cost. In the past, the run time and usage cost were
unknown before actually running an application, and there was a
risk of costs increasing when the application was run several times.
The proposed method enables a resource to be selected, running

the application a minimum number of times, by considering the
application execution performance values and instance
performance.

We expect that if the performance required by two applications
is the same, the computing resources required for the shortest
execution time or lowest usage cost will be the same for them as
well. The proposed method selects an application with similar
execution performance values as the application in question from
among several that have been run in the past, and selects the
computing resource able to execute the application in question in
the shortest time or at lowest cost. The method is comprised of the
following four steps.

1) Standardization Step: Measure the execution performance of
the sample applications

2) Measurement Step: Measure the execution performance of the
application in question

3) Comparison Step: Select a sample application with similar
execution performance values

4) Selection Step: Select the instance with shortest execution time
or with lowest usage cost

Details of each step are described below.

Standardization Step: The sample applications are executed on
each instance, and the instances producing the shortest run time
and lowest usage cost are selected. The execution performance is
also computed using an arbitrarily selected instance. Several
applications performing different processes are used as sample
applications for the proposed method.

Measurement Step: This step deals with the application for
which a computing resource is being selected. The application is
executed on an instance selected in the standardization step to
measure its execution performance values.

Comparison Step: In this step, the execution performance
values of all sample applications measured in the standardization
step are compared with the execution performance values of the
application in question, as measured in the measurement step. For
this method, a similarity level is used for this comparison. The
similarity level is expressed as a distance between the execution
performance values of the two applications. The normalized
execution performance values of CPU, memory and I/O of
application A are denoted 𝐸𝐸𝐴𝐴𝐴𝐴 ,𝐸𝐸𝐴𝐴𝐴𝐴 , and 𝐸𝐸𝐴𝐴𝐴𝐴 , respectively. These
execution peformance values, are obitained by the preliminary
experiment described in Section 3. Similarly, the execution
performance values for application B are denoted
𝐸𝐸𝐵𝐵𝐴𝐴 ,𝐸𝐸𝐵𝐵𝐴𝐴 , and 𝐸𝐸𝐵𝐵𝐴𝐴 . The similarity, 𝐷𝐷𝐴𝐴𝐵𝐵 , is given by the following
equation (1). This equation uses Euclidean Distance between
applications A and B. If the similarity value is sufficiently high,
they are considered similar applications. The highest similarity
value is thus used to select the most similar application. To select
a resource, the target application A is fixed while application B
varies. That is, the distances to application A from all other
applications are calculated. The distance is determined by the
values of execution time, memory, and I/O described in the
previous section. More details can be seen in an earlier work [11].

Table 4. Execution Performance Values
(partial result only for two applications in [11])

 execution
time [sec] CPU memory I/O

Memory
bound apl. 291.6 44.9 31.4 30.7

I/O
bound apl. 25.6 3.94 2.75 2.70

http://www.astesj.com/

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 71

𝐷𝐷𝐴𝐴𝐵𝐵 = �(𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2 + (𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2 + (𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴)2 (1)

Selection Step: In the selection step, the similarity of the
application with each of the sample applications is computed. The
sample application with the smallest similarity level is selected as
the one that is most similar to the application in question. The
instance able to execute this most-similar sample application with
the shortest execution time or lowest cost is then selected as the
instance to run the application in question.

5. Evaluation

To show that instances can be selected based on similarity of
execution performance values, we conducted experiments to
evaluate the effect of similarity on the execution time and usage
cost.

5.1. Experiment Overview

Using the same instances as in the preliminary experiments, the
execution time, usage cost and similarity were measured for
multiple applications. If the instances running the applications with
the lowest execution time and usage cost are the same for
applications that are similar, the proposed method will select
resources correctly. The instances used were the same as those
used in the preliminary experiments. The test procedure was as
follows:

1) Run applications

2) Calculate execution performance values

3) Calculate similarities

4) Select similar applications.

Each of these steps is described in more detail below.

Run applications: Multiple applications were run on each
instance, and the execution time was measured. From the
execution times for each instance, the instances producing the
shortest execution time and lowest usage cost were selected for
each.

Calculate execution performance values: Each application was
run on an arbitrarily selected instance and the execution
performance values were measured. For these tests, we used the
m4.large general-purpose instance.

Calculate similarities: Here, the computed execution
performance values were normalized, and the similarity to all of
the other applications was computed for each application.

Select similar applications: For each application, the one with
the lowest similarity level was selected as the most similar
application. Each application was compared with the other
application most similar to it, and we checked whether the
instances producing the shortest execution time and usage cost
were the same.

5.2. Applications

The applications used here include Sysbench [12] and
UnixBench [13], which are comprehensive benchmark
applications, and Hadoop [14], which is a distributed framework.
These are described in more detail below.

Sysbench is a general benchmark application for Linux/Unix
operating systems. Sysbench has six types of evaluation (e.g. CPU
or memory) and enables each of them to execute with adjusting
application parameters such as the number of CPUs or the file size.
For our experiments, we performed CPU, memory and I/O tests.
Prime numbers are computed for the CPU test, reading and writing
to memory is done for the memory test, and reading and writing
files to storage is done for the I/O test. Each test was done
repeatedly and the execution times were measured. The term of
test means a specific execution to perform one type of evaluation.

UnixBench is a benchmark application used with Unix-type
operating systems. The test covers a variety of tasks from integer
arithmetic through to OS system calls. In these experiments,
benchmarks for integer computation (Dhrystone), floating-point
computation (Whetstone), and file copying (fsdisk) were
performed. Results are given in terms of processing capability per
unit time. These were converted to results in terms of a time
required to complete a fixed-size process for these experiments.

Hadoop is a distributed framework that enables multiple
computers to be treated as a single computer with improved
performance. Hadoop can be used in any of three modes: stand-
alone mode, which runs on a single CPU, pseudo-distributed
mode, which virtualizes use of two machines on a single machine,
and fully-distributed mode, which uses multiple computers. For
these experiments, we used pseudo-distributed mode, measuring
execution time for standard sample processes including computing
pi, counting words, and sorting files.

5.3. Results

Each application was executed on each of the instances. For
some of the applications, such as Dhrystone in UnixBench, the
results are given in number of loops per second rather than total
execution time. In such cases, the results were converted to a time
required to perform a set number of loops. Execution times and
usage costs are given in Tables 4 and 5, and execution performance
values, as discussed previously, are given in Table 6.

Instance c4.xlarge had the shortest execution time, and instance
c4.large had the lowest usage cost in most cases. Execution
performance values were calculated using the execution times and
the ECU, EMU, and EFU performance values for m4.large, and
these were then normalized.

Similarities were then computed using these values. Below, we
give an example of computing the similarity, 𝐷𝐷𝑝𝑝𝑝𝑝 , is given by
equation (2) using the execution performance values from the
prime number computation in Sysbench and the word count
process on Hadoop.

𝐷𝐷𝑝𝑝𝑝𝑝 = �(0.038− 0.020)2+(0.047− 0.025)2+(0.047− 0.025)2 (2)

Similarities were computed for all process pairs, and that with
the smallest similarity value was designated as the similar
application for each application. Table 8 shows whether the
instances producing the shortest execution time and lowest usage
cost were the same for these similar applications.

The process most similar to the prime number computation on
Sysbench was word count on Hadoop. The instance with the
shortest execution time for the prime number process in Sysbench
was c4.xlarge, which was the same as for the Hadoop word count,

http://www.astesj.com/

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 72

Table 5. Execution Times [sec]

application execution time
m4.large m4.xlarge c4.large c4.xlarge r3.large r3.xlarge

Sysbench

prime number 157.51 78.99 128.68 64.32 153.31 76.47
memory read 42.55 38.61 35.79 33.72 40.62 36.39
memory write 52.32 41.82 43.63 36.96 49.90 40.09

random read/write 2.07 0.42 1.71 0.78 1.51 1.00
sequential read/write 34.42 22.90 34.36 22.90 38.14 24.60

hadoop
pi 3328.29 1692.45 2828.35 1438.95 3339.85 1698.05

word count 83.14 54.62 77.71 50.90 88.76 56.86
file sort 40.86 36.68 40.00 36.36 42.82 36.55

UnixBench
Dhrystone 0.76 0.85 0.64 0.32 0.74 0.37
Whetstone 0.34 0.73 0.35 0.17 0.41 0.20

fsdisk 0.71 0.76 0.68 0.83 0.95 1.14
Table 6. Usage Costs [$]

application usage cost
m4.large m4.xlarge c4.large c4.xlarge r3.large r3.xlarge

Sysbench

prime number 21.89 21.96 16.21 16.21 30.66 30.51
memory read 5.91 10.73 4.51 8.50 8.12 14.52
memory write 7.27 11.63 5.50 9.31 9.98 15.99

random read/write 0.29 0.12 0.22 0.20 0.30 0.40
sequential read/write 4.78 6.37 4.33 5.77 7.63 9.81

Hadoop
pi 462.63 470.50 356.37 362.62 667.97 677.52

word count 11.56 15.18 9.79 12.83 17.75 22.69
file sort 5.68 10.20 5.04 9.16 8.56 14.58

UnixBench
Dhrystone 0.11 0.24 0.08 0.08 0.15 0.15
Whetstone 0.05 0.20 0.04 0.04 0.08 0.08

fsdisk 0.10 0.21 0.09 0.21 0.19 0.46
Table 7. Execution Performance Value

application performance value
CPU memory I/O

Sysbench

prime number 0.03837 0.04725 0.04725
memory read 0.01030 0.01270 0.01270
memory write 0.01269 0.01564 0.01564

random read/write 0.00042 0.00054 0.00054
sequential read/write 0.00832 0.01026 0.01026

Hadoop
pi 0.81248 1.00000 1.00000

word count 0.02021 0.02490 0.02490
file sort 0.00989 0.01220 0.01220

UnixBench
Dhrystone 0.00010 0.00015 0.00015
Whetstone 0.00000 0.00002 0.00002

fsdisk 0.00009 0.00013 0.00013
Table 8. Matching Instance and Result of Similarity-based method

application best time best cost similarity
application best time instance best cost instance

Sysbench

prime number c4.xlarge c4.xlarge word count Same Different
memory read c4.xlarge c4.large file sort Same Same
memory write c4.xlarge c4.large memory read Same Same

random read/write m4.xlarge m4.xlarge Dhrystone Different Different
sequential read/write m4.xlarge c4.large file sort Different Same

Hadoop
pi c4.xlarge c4.large prime number Same Different

word count c4.xlarge c4.large memory write Same Same
file sort c4.xlarge c4.large memory read Same Same

UnixBench
Dhrystone c4.xlarge c4.xlarge fsdisk Different Different
Whetstone c4.xlarge c4.large fsdisk Different Same

fsdisk c4.large c4.large Dhrystone Different Different

http://www.astesj.com/

T. Koita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 67-73 (2018

www.astesj.com 73

so the instances with the shortest execution time matched. On the
other hand, the instance able to run the Sysbench prime number
process at lowest cost was c4.xlarge, while for Hadoop word count,
it was c4.large, so the lowest cost instances did not match. This
result appears on the first row of data in Table 7. From left to right,
it indicates that for the prime number process in Sysbench, the
similar application was Hadoop word count, that the instances with
shortest execution time matched, and that the instances with lowest
usage cost did not match.

6. Discussion

We now discuss the results of these evaluation experiments.
Instances for which execution with short execution time and low
usage charges are possible tended to be c4.xlarge and c4.large,
respectively. The cause of this is that many of the applications used
in this experiment were CPU-bound, and this is considered to have
had a major impact on the match rate. In particular, the prime
number calculation by Sysbench and the performance required for
Dhrystone in UnixBench is biased toward the CPU. As the
processing for these had the shortest execution time and lowest
usage costs in c4.xlarge, which is optimized for the CPU, this is a
result compatible with the published ECU values. For the scientific
computing workflow, processing differs depending on the task,
and there are tasks that require a lot of non-CPU processing. For
that reason, in the reading and writing of memory for Sysbench,
which is an application that requires not only CPU, but also
memory and I/O processing performance, and file sorting by
Hadoop, execution time became shorter due to CPU performance.
CPU performance is important even for applications requiring
memory and I/O processing performance; therefore, creating a
calculation formula that is weighted in consideration of the impact
of each on execution time and usage cost is effective when
selecting resources.

 To apply this method to the scientific computing workflows
carrying out a variety of processing, it is necessary to increase the
number of sample applications handled and support a more diverse
range of processing. Additionally, as the sample applications used
in this test have a low computational volume, there is a concern
that it cannot support scientific computing workflows handling
huge volumes of processing. A greater diversity of sample
applications is required to realize this method and enable the
selection of computational resources in scientific computing
workflows.

7. Conclusion

The objective of this experiment is to achieve a method of
selecting resources based on execution time and usage costs when
using commercial cloud services for scientific computing
workflows. By using instance performance and the execution
performance values required for the application, we measured the
features of the application for a certain instance. The aim is to
propose a method for selecting instances that can be executed in
the shortest execution time with the lowest usage costs, by
referencing similar applications for the measured execution
performance values. In the evaluation experiment, we verified the
effectiveness of selecting resources based on similarity. The
match rate of the results was approximately 55%, and a large
impact was present in CPU-bound applications. As this considers
the impact on execution time when making resource selections

more than for memory or I/O, it is necessary to focus on CPU
performance.

 Our experiment showed that the proposed method based on
similarity can usually select the best instance for Hadoop or
Sysbench-type applications. Furthermore, scientific computing
workflow applications are mainly executed using few system
functions, like Hadoop and Sysbench-type applications. Thus, our
method would be effective in selecting resources for many types
of scientific computing workflows. On the other hand, if the
application requires many system functions, like UnixBench, the
similarity calculation requires weighting factors to handle
complicated behavior.

References

[1] T. Koita Performance Evaluation of Memory Usage Costs for Commercial
Cloud Services, Proc. of the IEEE 3rd Int’l Conf. on Big Data Analysis
(ICBDA2018), pp.307-311, 2018.

[2] Ewa Deelman, Pegasus and DAGMan From Concept to Execution: Mapping
Scientific Workflows onto Today's Cyberinfrastructure, Proc. of the
Advances in Parallel Computing, vol.16, pp.56-74, 2008.

[3] Open Science Grid, https://www.opensciencegrid.org/.
[4] Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2/.
[5] Y. Manabe, Performance comparison of scientific workflows on EC2, IPSJ

technical report, 2016.
[6] S. Ostermann, A Performance Analysis of EC2 Cloud Computing Services

for Scientific Computing, Proc. of the Cloud Computing, pp.115–131, 2010.
[7] G. Juve, Scientific workflows and clouds, Crossroads, vol.16, pp.14-18, 2010.
[8] G. Juve, Scientific workflow applications on Amazon EC2, Proc. of the 5th

IEEE International Conference on e-Science Workshops, pp.59-66, 2009.
[9] B. Tovar, A Job Sizing Strategy for High-Throughput Scientific Workflows,

IEEE Trans. On Parallel and Distributed Systems, vol.29, no.2, pp.240-253,
2018.

[10] I. Sfiligoi, Estimating job runtime for CMS analysis jobs, Proc. of J. Physics:
Conf. Series, vol. 513, no. 3, 2014.

[11] Y. Manabe, Resource provisioning method for scientific workflows on
commercial cloud services, graduation thesis, Doshisha University, 2017.

[12] Sysbench,http://imysql.com/wp-content/uploads/2014/10/sysbench-
manual.pdf, 2009.

[13] UnixBench, http://code.google.com/p/byte-unixbench/.
[14] Hadoop, http://hadoop.apache.org.

http://www.astesj.com/

	2. Current Issues
	3. Preliminary Experiment
	3.1. Instance Performance Value
	3.2. Execution Performance Value

	4. Proposed Method
	5. Evaluation
	5.1. Experiment Overview
	5.2. Applications
	5.3. Results

	6. Discussion
	7. Conclusion
	References

