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Our world is characterised by uncertainty and complex, relational structures that carry temporal
information, yielding large dynamic probabilistic relational models at the centre of many
applications. We consider an example from logistics in which the transportation of cargoes
using vessels (objects) driven by the amount of supply and the potential to generate revenue
(relational) changes over time (temporal or dynamic). If a model includes only a few objects, the
model is still considerably small, but once including more objects, i.e., with increasing domain
size, the complexity of the model increases. However, with an increase in the domain size, the
likelihood of keeping redundant information in the model also increases. In the research field
of lifted probabilistic inference, redundant information is referred to as symmetries, which,
informally speaking, are exploited in query answering by using one object from a group of
symmetrical objects as a representative in order to reduce computational complexity. In existing
research, lifted graphical models are assumed to already contain symmetries, which do not need
to be constructed in the first place. To the best of our knowledge, we are the first to propose
symmetry construction a priori through a symbolisation scheme to approximate temporal
symmetries, i.e., objects that tend to behave the same over time. Even if groups of objects show
symmetrical behaviour in the long term, temporal deviations in the behaviour of objects that
are actually considered symmetrical can lead to splitting a symmetry group, which is called
grounding. A split requires to treat objects individually from that point on, which affects the
efficiency in answering queries. According to the open-world assumption, we use symmetry
groups to prevent groundings whenever objects deviate in behaviour, either due to missing or
contrary observations.

1 Introduction

This paper is an extension of two works originally presented in
KI 2021: Advances in Artificial Intelligence [1] and in AI 2021:
Advances in Artificial Intelligence – 34rd Australasian Joint Confer-
ence [2]. Both papers study the approximation of symmetries using
an ordinal pattern symbolisation approach to prevent groundings in
dynamic probabilistic relational models (DPRMs)1.

In order to cope with uncertainty and relational information of
numerous objects over time, in many real-world applications, prob-
abilistic temporal (also called dynamic) relational models (DPRMs)
need often be employed [3]. Reasoning on large probabilistic mod-
els, like in data-driven decision making, often requires evaluating
multiple scenarios by answering sets of queries, e.g., regarding the
probability of events, probability distributions, or actions leading
to a maximum expected utility (MEU). Further, reasoning on large

probabilistic models is often performed under time-critical condi-
tions, i.e., where computational tractability is essential [4]. In this
respect, DPRMs, together with lifted inference approaches, provide
an efficient formalism addressing this problem. DPRMs describe
dependencies between objects, their attributes and their relations in
a sparse manner. To encode uncertainty, DPRMs encode probability
distributions by exploiting in-dependencies between random vari-
ables (randvars) using factor graphs. Factor graphs are combined
with relational logic, using logical variables (logvars) as parameters
for randvars to compactly represent sets of randvars that are consid-
ered indistinguishable (without further evidence). This technique is
also known as lifting [5, 6]. A lifted representation of a probabilistic
graphical model allows for a sparse representation to restrain state
complexity and enables to decrease runtime complexity in inference.

To illustrate the potential of lifting, let us think of creating a
probabilistic model for navigational route planning and congestion
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avoidance in dry-bulk shipping. Dry-bulk shipping is one of the
most important forms of transportation as part of the global supply
chain [7, 3]. Especially the last year 2020, which was marked by the
coronavirus pandemic, shows the importance of good supply chain
management. An important sub-challenge in supply chain manage-
ment is congestion avoidance, which has been studied in research
ever-since [8]-[10]. Setting up a probabilistic model to improve
planning and to avoid congestion requires identifying features, such
as demand for commodities and traffic volume, affecting any routing
plans. Commodities are unevenly spread across the globe due to
the different mineral resources of countries. In case of excessive
demand, regions where the demanded commodities are mined and
supplied are excessively visited for shipping, resulting in conges-
tion in those regions. If such a model includes only a few objects,
here regions from which commodities are transported, the model
might still be considerably small, but once including more regions
to capture the whole market, i.e., with an increasing domain size,
the complexity of the model increases. However, with an increase in
complexity due to an increase in the domain size also the likelihood
of keeping redundant information within the model increases. For
example, in the application of route planning, multiple regions may
exist that are similar in terms of features of the model. Intuitive
examples are regions offering the same commodities, i.e., regions
with similar mineral resources.

Lifting exactly exploits that existence: Regions which are sym-
metrical with respect to the features used in the model can be treated
by one representative for a group of symmetrical objects to obtain
a sparser representation of the model. Further, by exploiting those
occurrences, reasoning in lifted representations has no longer a
complexity exponential in the number of objects represented by the
model, here regions, but is limited to the number of objects with
asymmetries only [11, 12]. More specifically, symmetries across
objects of a models domain, i.e., objects over randvars of the same
type, are exploited by means of performing calculations in infer-
ence only once for groups of similarly behaving objects, instead of
performing the same calculations over and over again for all objects
individually. The principle of lifting applies not only to logistics but
also to many other areas like politics, healthcare, or finance – just to
name a few.

DPRMs encode a temporal dimension and can be used in any
online scenario, i.e., new knowledge is on the fly encoded to enable
for continuous query answering without relearning the model. In
existing research, it is assumed that lifted graphical models already
contain symmetries, i.e., simply speaking, a model is setup so that
all objects behave according to the same probability distribution.
New knowledge is then incorporated in the model with new observa-
tions for each object. Observations are encoded within the model as
realisations of randvars, resulting in a split off from a symmetrical
consideration, called grounding. Of course, if the same observation
is made for multiple objects, those objects are split off together
and continue to be treated as a group. Over time, models dissolve
into groups of symmetrically behaving objects, i.e., symmetries are
implicitly exploited. Note that in the worst case, the models are
split in such way that all objects are treated individually, i.e., no
symmetries are available in the model so that lifted inference can
no longer be applied and all its advantages disappear.

To the best of our knowledge, existing research has not yet fo-

cused on constructing symmetries in advance instead of deriving
symmetries implicitly. Constructing symmetries in advance has ben-
efits in application and results from the characteristics of real-world
applications:

(i) Certain information about objects of the model may not be
available at runtime but only become known downstream. In
such cases it is beneficial to infer information according to
the open-world assumption from the behaviour of other object
which tend to behave similar, i.e., applying an intrinsic default.
On the one hand wrong information can be introduced in the
model, but on the other it is likely that objects continue to
behave the same as per other objects.

(ii) Symmetrical objects can behave the same in the long term,
but may deviate for shorter periods of time. Even already
small deviations lead to groundings in the model, which, if
prevented, introduce a small error in the model, but which also
is negligible in the long term.

In both cases a model grounds, which must be prevented in order
to keep reasoning in polynomial time. We construct groups of ob-
jects with similar behaviour, which we denote as symmetry clusters,
through a symbolisation scheme to approximate temporal symme-
tries, i.e., objects that tend to behave the same over time. Using the
symmetry clusters, it is possible to selectively prevent groundings,
which helps to retain a lifted representation.

This work contributes with a summary on approximating model
symmetries in DPRMs based on multivariate ordinal pattern sym-
bolisation and clustering to obtain groups of objects with approx-
imately similar behaviour. Behaviour is derived from the realisa-
tions of randvars, which generate either a univariate or multivariate
time series depending on the number of interdependent randvars
in the model. In the first original conference paper [1], we present
multivariate ordinal pattern symbolisation for symmetry approxi-
mation (MOP4SA) for the univariate case and introduce symmetry
approximation for preventing groundings (SA4PG) as an algorithm
to prevent groundings in inference a priori using the learned en-
tity symmetry clusters. In the second original conference paper
[2], we extend MOP4SA to the multivariate case and motivate the
determination of related structural changes and periodicities in sym-
metry structures. Further, this work contributes with an extension
of original works in [1] and [2] by

– a comprehensive review of MOP4SA and SA4PG with addi-
tional applications from dry-bulk shipping,

– a complement of the existing theoretical and experimental
investigations of MOP4SA and SA4PG in the variation of its
parameters, i.e., we fill in the gaps by investigating different
orders and delays for ordinal patterns while also examining
different thresholds in the symmetry approximation with re-
spect to the introduced error in inference, and

– a new approach named MOP4SCD to detect changes in sym-
metry structures based on a models similarity graph, an inter-
mediate step of MOP4SA, to re-learn symmetries on demand.

Together MOP4SA, SA4PG and multivariate ordinal pattern sym-
bolisation for symmetry change detection (MOP4SCD) combine
into a rich toolset to identify model symmetries as part of the model
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construction process, use those symmetries to maintain a lifted rep-
resentation by preventing groundings a priori and detect changes in
model symmetries after the model construction process.

This paper is structured as follows. After presenting preliminar-
ies on DPRMs in Section 2, we continue in Section 3 with an review
on how to retain lifted solutions through approximation and its rela-
tion to time series analysis and common approaches to determine
and approximate similarities in that domain. In the following, we
recapitulate MOP4SA, an approach that encodes entity behaviour
through ordinal pattern symbolisation in Section 4.1 and summarise
approximating entity symmetries based on the symbolisation in
Section 4.2. In Section 5 we outline SA4PG and elaborate how
to prevent groundings in DPRMs a priori with the help of entity
symmetry clusters. In Section 6 we evaluate both MOP4SA and
SA4PG in a shipping application and provide a detailed discussion
on its various parameters and its effect on the accuracy in inference.
In Section 7 we introduce a new approach to detect changes in
symmetry structures to uncover points in time at which relearning
of symmetry clusters becomes beneficial. In Section 9 we conclude
with future work.

2 Background
In the following, we recapitulate DPRMs [5] in context of an exam-
ple in logistics, specifically dry-bulk shipping. Dry-bulk shipping
is one of the most important forms of transportation as part of the
global supply chain [7, 3]. Especially the last year 2020, which
was marked by the coronavirus pandemic, showed the importance
of good supply chain management. The global supply chain was
heavily affected as a result of required lock-downs all over the world,
which has led to disruptions and significant delays in delivery. An
important sub-challenge in supply chain management is to avoid
congestion in regions/zones in which cargo is loaded, i.e., mak-
ing sure that vessels arrive when those regions are not blocked by
too many other vessels being anchored up in same. Congestion
avoidance has always been an important topic in research [8]-[10].
As follows, we setup a DPRM to infer idle times related to global
supply for commodities. As such, we formally define DPRMs and
elaborate on sparse representations and more efficient inference by
exploiting symmetries to enable for faster decision making.

2.1 A Formal Model on Congestion in Shipping

We setup a simplified DPRM to model congestion resulting in idle
times in different regions/zones across the globe. To infer idle times
in certain zones, we use freight rates, a fee per ton, which is paid
for the transportation of cargoes and differs across zones, as a driver
for operators to plan their vessel movements. E.g., an increase in
idle time in a zone can be caused by a high freight rate in that same
zone, resulting in an higher interest for sending vessels due to the
potential to gain higher profits due to high freight rates. Of course,
even though freight rates might be higher, not every vessel operator
will be able to conclude business in zones which are over-crowed or
have higher waiting times increasing costs for lay time. Hence, to
describe the interaction between waiting times and freight rates, the

idle condition and freight rates in a zone can be represented by one
randvar. Freight rates itself are driven by the supply of commodi-
ties in zones represented by another randvar. Since idle conditions,
freight rates and supply can be similar in multiple zones, we can
develop a much smaller model and combine all randvars into one
and parameterise these with a logvar to represent the set of all zones
respectively. In this example one zone from the set of all zones
is referred to as an object or entity, which we use interchangeably
moving forward. Such a parameterised random variable is referred
to as PRV for short.

Definition 2.1 (PRV) Let R be a set of randvar names, L a set of
logvar names, Φ a set of factor names, and D a set of entities. All
sets are finite. Each logvar L has a domainD(L) ⊆ D. A constraint
is a tuple (X,CX) of a sequence of logvars X = (X1, . . . , Xn) and a
set CX ⊆ ×n

i=1D(Xi). A PRV A(L1, . . . , Ln), n ≥ 0 is a construct of a
randvar name A ∈ R combined with logvars L1, . . . , Ln ∈ L. Then,
the term R(A) denotes the (range) values of a PRV A. Further, the
term lv(P) refers to the logvars and rv(P) to the randvars in some
element P. The term gr(P|C) denotes the set of instances of P with
all logvars in P grounded w.r.t. constraint C.

The idea behind PRVs is to enable for combining objects with
similar behaviour in a single randvar to come up with a sparse rep-
resentation, introducing a technique called lifting. To model the
interaction between idle times, freight rates and supply in zones
across the globe, we use randvars Idle, S upply and Rate parame-
terised with a logvar Z representing zones, building PRVs Idle(Z),
S upply(Z) and Rate(Z). The domain of Z is {z0, z1, . . . , zn} and
range values for all PRVs are {high,medium, low}2. A constraint
C = (Z, {z1, z2}) for Z allows to restrict Z to a subset of its domain,
such as here to z1 and z2. Using this constraint, the expression
gr(Idle(Z)|C) evaluates to {Idle(z1), Idle(z2)}. To represent indepen-
dent relations, PRVs are linked by a parametric factor (parfactor) to
compactly encode the full joint distribution of the DPRM.

Definition 2.2 (Parfactor) We denote a parfactor g by φ(A)|C with
A = (A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) 7→ R+ a func-
tion with name φ ∈ Φ, and C a constraint on the logvars of A. A
PRV A or logvar L under constraint C is given by A|C or L|C , respec-
tively. An instance is a grounding of P, substituting the logvars in
P with a set of entities from the constraints in P. A parameterized
model PRM G is a set of parfactors {gi}ni=1, representing the full joint
distribution PG = 1

Z
∏

f∈gr(G) f , where Z is a normalizing constant.

All PRVs are dependent on each other and therefore are com-
bined through one parfactor

g1 = φ1(Idle(Z),Rate(Z), S upply(Z)), (1)

which denotes their joint probability distribution. We omit the con-
crete mappings of potentials to range values of φ1. To encode tem-
poral behaviour, DPRMs follow the same idea as dynamic Bayesian
networks (DBNs) with an initial model and a temporal copy pattern
to describe model changes over time. DPRMs model a stationary
process, i.e., changes from one time step to the next follow the same
distribution.

2for sake of simplicity we only consider three range values here
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S upplyt−1(Z)
g1

t−1

Idlet−1(Z)

Ratet−1(Z) gS
S upplyt(Z)

g1
t

Idlet(Z)

Ratet(Z)

(a) Two-slice parameterized probabilistic model (without encoded evidence).

S upply1(Z)
g1

1

Idle1(Z)

Rate1(Z)

gS

S upply1(Z) S upply2(Z) gS

high high 5
high mid 4
· · · · · · · · ·

S upply2(Z)
g1

2

Idle2(Z)

Rate2(Z)
S upply1(z1)

g1′
1

Idle1(z1)

Rate1(z1)

Z ∈ {z2, . . . , zn}

Z ∈ {z1, . . . , zn}

(b) Setting evidence as part of the query P(S 2(z1) | S 1(z1) = high for t = 1.

Figure 1: Graphical representation of a slice of a dynamic probabilistic graphical model illustration how to encode evidence.

Definition 2.3 (DPRM) A DPRM is a pair of PRMs (G0,G→)
where G0 is a PRM representing the first time step and G→ is a
two-slice temporal parameterized model representing At−1 and At

where Aπ is a set of PRVs from time slice π. An inter-slice parfactor
φ(A)|C has argumentsA under constraint C containing PRVs from
both At−1 and At, encoding transitioning from time step t − 1 to t. A
DPRM (G0,G→) represents the full joint distribution P(G0,G→),T by
unrolling the DPRM for T time steps, forming a PRM as defined
above.

Figure 1a shows the final DPRM. Variable nodes (ellipses) cor-
respond to PRVs, factor nodes (boxes) to parfactors. Edges between
factor and variable nodes denote relations between PRVs, encoded
in parfactors. The parfactor gS denotes a so-called inter-slice par-
factor that separates the past from the present. The submodel on
the left and on the right of this inter-slice parfactor are duplicates of
each other, with the one on the left referring to time step t − 1 and
the one on the right to time step t. Parfactors reference time-indexed
PRVs, namely Idlet(Z), Ratet(Z) and S upplyt(Z).

2.2 Query Answering under Evidence

Given a DPRM, one can ask queries for probability distributions or
the probability of an event given evidence.

Definition 2.4 (Queries) Given a DPRM (G0,G→), a ground PRV
Qt, and evidence E0:t = {{Es,i = es,i}

n
i=1}

t
s=0 (set of events for time

steps 0 to t), the term P(Qπ | E0:t), π ∈ {0, . . . ,T }, t ≤ T, denotes a
query w.r.t. P(G0,G→),T .

In context of the shipping application, an example query for time
step t = 2, such as P(S upply2(z1) | S upply1(z1) = high), which
asks for the probability distribution of supply at time step t = 2 in a
certain zone z1, given that in the previous time step t = 1 the supply
was high, contains an observation S upply1(z1) = high as evidence.
Sets of parfactors encode evidence, one parfactor for each subset of
evidence concerning one PRV with the same observation.

Definition 2.5 (Encoding Evidence) A parfactor ge = φe(E(X))|Ce

encodes evidence for a set of events {E(xi) = o}ni=1 of a PRV E(X).
The function φe maps the value o to 1 and the remaining range
values of E(X) to 0. Constraint Ce encodes the observed groundings
xi of E(X), i.e., Ce = (X, {xi}

n
i=1).

Figure 1b depicts how evidence for t = 1, i.e., to the left of the
interslice parfactor gS , is set within the lifted model.

Evidence is encoded in parfactors g1′
1 by duplicating the original

parfactor g1
1 and using g1′

1 to encode evidence and g1
1 to represent

all sets of entities that are still considered indistinguishable. Each
parfactor represents a different set of entities bounded by the use of
constraints, i.e., limiting the domain for the evidence parfactor g1′

1 to
{z1} and the domain for the original parfactor g1

1 toD(Z) \ {z1}. The
parfactor that encodes evidence is adjusted such that all range value
combinations in the parfactors distribution φ for S upply1(z1) , high
are dropped. Groundings in one time step are transferred to next
time steps, i.e., also apply to further time steps, which we discuss as
follows.

2.3 The Problem of Model Splits in Lifted Variable
Elimination for Inference

As shown in Fig. 1b, evidence leads to groundings in the lifted
model. Those model splits are carried over in message passing
over time when performing query answering, i.e., in inference.
Answering queries, e.g., asking for the probability of an event,
results in joining dependent PRVs, or more specifically, joining
those parfactors with overlapping PRVs. Figure 1b shows a sam-
ple of the probability distribution for the interslice parfactor gS

which separates time steps t − 1 and t. Answering the query
P(S upply2(z1) | S upply1(z1) = high as per the example in Sec-
tion 2.1 to obtain the probability distribution over supply in time
step t = 2, requires to multiply parfactors g1′

1 with the interslice
parfactor gS and the parfactor g1

2. However, since in time step t = 1
a grounding for z1 exists, the grounding is carried over to the fol-
lowing time step t = 2 as the PRV S upply1(z1) is connected to
the following time step via the interslice parfactor gS . Therefore,
evidence, here S upply1(z1) = high, is also set within gS dropping
all range values for S upply1(z1) , high. This step is necessary
to obtain an exact result in inference. For any other queries, this
evidence is carried over to all future time steps, accordingly. Thus,
under evidence a model Gt = {gi

t}
n
i=1 at time step t is split w.r.t. its

parfactors such that its structure remains

Gt = {gi,1
t , . . . , g

i,k
t }

n
i=1 (2)

with k ∈ N+. Every parfactor gi
t can have up to k ∈ N+ splits

gi, j
t = φ

i, j
t (Ai)|Ci, j , where 1 ≤ j ≤ k and Ai is a sequence of the

same PRVs but with different constraint Ci, j and varying functions
φ

i, j
t due to evidence. Note that moving forward we use the terms

parfactor split or parfactor group interchangeably.
In our example, the model is only splitted with regards to ev-

idence for the entity z1. All other entities are still considered to
be indistinguishable, i.e., lifted variable elimination (LVE) can still
exploit symmetries for those instances. To do so, lifted query an-
swering is done by eliminating PRVs, which are not part of the
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query, by so called lifted summing out. Basically, variable elimina-
tion is computed for one instance and exponentiated to the number
of isomorphic instances represented. In [5], the author introduce the
lifted dynamic junction tree (LDJT) algorithm for query answering
on DPRMs, which uses LVE [6, 13] as a subroutine during its cal-
culations. For a full specification of LDJT, we recommend to read
on in [5]. In the worst case a model is fully grounded, i.e., a model
as defined in Eq. (12) contains

k =
∏

L∈lv(A)

∣∣∣L∣∣∣ (3)

splits for every parfactor gi
t = φi

t(A)|Ci such that each object l ∈ L is
in its own parfactor split. The problem of model splits, i.e., ground-
ings, can generally be traced back to two aspects. Groundings arise
from

(a) partial evidence or unknown evidence, i.e., certain information
about objects of the model may not be available at runtime
and either never or only become known downstream, which we
denote as unknown inequality, or

(b) from different observations for two ore more objects, i.e., ob-
jects show different behaviour requiring to consider those indi-
vidually moving forward, which we denote as known inequality.

Once the model is split, those splits are carried forward over time,
potentially leading to a fully ground model. By doing so, the model
remains exact as new knowledge (in form of observations) is incor-
porated into the model in all details. Over time, however, distin-
guishable entities might align and can be considered as one again
(in case of known inequality) or entities might have ever since be-
haved similarly without knowing due to less frequent evidence (in
case of unknown inequality). To retain a lifted representation the
field of approximate inference, i.e., approximating symmetries, has
emerged in research.

3 Related Work on Retaining Lifted Solu-
tions Through Approximation and the
Connection to Time Series Analysis

Lifted inference approaches suffer under the dynamics of the real
world, mostly due to asymmetric or partial evidence. Handling
asymmetries is one of the major challenges in lifted inference and
crucial for its effectiveness [14, 15]. To address that problem, ap-
proximating symmetries has emerged in related research that we
discuss in the following.

3.1 Approximate Lifted Models

For static (non-temporal) models, in [16] the author propose to
approximate model symmetries as part of the lifted network con-
struction process. They perform Lifted Belief Propagation (LBP)
[17], which constructs a lifted network, and apply Belief Propa-
gation (BP) to it. The lifted network is constructed by simulating
message passing and identifying nodes sending the same message.
To approximate the lifted network, message passing is stopped at

an earlier iteration to obtain an approximate instance. In [18], the
author also approximate symmetries using LBP, but propose piece-
wise learning [19] of the lifted network. That means that the entire
model is divided into smaller parts which are trained independently
and then combined afterwards. In this way, evidence only influences
the factors in each part, yielding a more liftable model. Besides
approaches using LBP, in [20] the author propose evidence-based
clustering to determine similar groundings in an Markov Logic
Network (MLN). They measure the similarity between groundings
and replace all similar groundings with their cluster centre to ob-
tain a domain-reduced approximation. Since the model becomes
smaller, also inference in the approximated lifted MLN is also
much faster. In [15], the author propose so-called over-symmetric
evidence approximation by performing low-rank boolean matrix
factorisation (BMF) [21] on MLNs. They show, that for evidence
with high boolean rank, a low-rank approximate BMF can be found.
Simply put, finding a low-rank BMF corresponds to removing noise
and redundant information from the data, yielding a more compact
representation, which is more efficient as more symmetries are pre-
served. As with any existing approach to symmetry approximation,
inference is performed on the symmetrised model, ignoring the intro-
duction of potentially spurious marginals in the model. In [12], the
author propose a general framework that provides improved prob-
ability estimates for an approximate model. Here, a new proposal
distribution is computed using the Metropolis-Hasting algorithm
[22, 23] on the symmetrised model to improve the distribution of
the approximate model. Their approach can be combined with any
existing approaches to approximate model symmetries.

Still, most of the existing research is based on static models and
requires to get evidence in advance. However, the problem of asym-
metric evidence is particularly noticeable in temporal models, and
even more so in an online setting, since performing the symmetry
approximation as part of the lifted network construction process
is not feasible [24]. That means that it is necessary to construct
a lifted temporal model once and to encode evidence as it comes
in over time. Continuous relearning, i.e., reconstructing the lifted
temporal model before performing query answering, is too costly.
For temporal models in [25], the author propose to create a new
lifted representation by merging groundings introduced over time.
They perform clustering to group sub-models and perform statistical
significance checks to test if groups can be merged.

In comparison to that and to the best of our knowledge, no-one
has focused on preventing groundings before they even occur. To
this end, we propose to learn entity behaviour in time and cluster
entities that behave approximately similar in the long run and use
them to accept or reject incoming evidence to prevent the model
from grounding. Clustering entity behaviour requires approaches
which find symmetries in entity behaviour, i.e., clustering entities
which tend to behave the same according to observations made for
them. As observations collected over time result in a time series our
problem comes down to identify symmetries across time series.

3.2 From DPRMs to Time Series

In a DPRM, (real-valued) random variables observed over time are
considered as time series. Let Ω be a set containing all possible
states of the dynamical system, also called state space. Events are
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taken from a σ-algebraA on Ω. Then (Ω,A) is a measurable space.
A sequence of random variables, all defined on the same probabil-
ity space (Ω,A, µ), is called a stochastic process. For real-valued
random variables, a stochastic process is a function

X : Ω × N→ R, (4)

where X(ω, t) := Xt(w) depending on both, coincidence and time.
Note that in the most simple case Ω matches with R and X with the
identity map. Then the observations are directly related to iterates
of some ω, i.e., there is no latency, and the X itself is redundant.
Over time, the individual variables Xt(ω) of this stochastic process
are observed, so-called realisations. The sequence of realisations
is called time series. With the formalism from above and fixing of
some ω ∈ Ω, a time series is given by

(X1(ω), X2(ω), X3(ω), . . . ) = (xt)t∈N. (5)

In the case xt ∈ R the time series is called univariate, while in
the case xt ∈ R

m it is called multivariate. Note that for stochastic
processes we use the capitalisation (X(t))t∈N, while for observations,
i.e., paths or time series, we use the small notation (x(t))t∈N. In sum-
mary, evidence in a DPRM encoding stochastic processes (X(t))t∈N

forms a time series (xt)t∈N that is the subject of further consideration.

3.3 Symmetry Approximation in Time Series

In time series analysis, the notion of similarity, known as symmetry
in DPRMs, has often been discussed in the literature [26]-[28]. In
general, approaches for finding similarities in a set of time series
are either (a) value-based, or (b) symbol-based. Value-based ap-
proaches compare the observed values of time series. By comparing
the value of each point xt, t = 1, . . . ,T in a time series X with the
values of each other point yt′ , t′ = 1, . . . ,T ′ in another time series Y
(warping), they are able to include shifts and frequencies. Popular
algorithms such as dynamic time warping (DTW) [29] or matrix
profile [30] are discussed, e.g., in [28]. As DPRMs can encode in-
terdependencies between multiple variables, respective multivariate
procedures should be used to assess similarities. The first dependent
multivariate dynamic time warping (DMDTW) approach is reported
by [31], in which the authors treat a multivariate time series with
all its m interdependencies as a whole. The flexibility of warping
in value-based approaches leads to a high computational effort and
is therefore unusable for large amounts of data. Although there are
several extensions to improve runtime [32] by limiting the warping
path or reducing the number of data points, e.g., FastDTW [32] or
PrunedDTW [33], the use of dimensionality reduction is inevitable
in context of DPRMs. For dimensionality reduction, symbol-based
approaches encode the time series observations as sequences of
symbolic abstractions that match with the shape or structure of the
time series. Since DPRMs encode discrete values, depending on the
degree for discretisation, symbol-based approaches are preferred
as they allow for discretisation directly. As far as research is con-
cerned, there are two general ways of symbolisation. On the one
hand, classical symbolisation partitions the data range according
to specified mapping rules in order to encode a numerical time
series into a sequence of discrete symbols. A corresponding and
well-know algorithm is Symbolic Aggregate ApproXimation (SAX)

introduced by [34]. On the other hand, as introduced by Bandt and
Pompe [35] ordinal pattern symbolisation encodes the total order
between two or more neighbours (x < y or x > y) into so-called
ordinal symbols ((0, 1) or (1, 0)). In [36], the author extend univari-
ate ordinal patterns to the multivariate case, taking into account not
only the dependencies of neighbouring values over time, but also
the dependencies between spatial variables in a time series.

Specifically here, an ordinal approach has notable advantages
in application: (i) The method is conceptionally simple, (ii) the
ordinal approach supports robust and fast implementations [37, 38],
and (iii) compared to classical symbolisation approaches such as
SAX, it allows an easier estimation of a good symbolisation scheme
[39, 40]. In the following, we introduce ordinal pattern symbolisa-
tion to classify similar entity behaviour.

4 Multivariate Ordinal Pattern for
Symmetry Approximation (MOP4SA)

In this section we recapitulate MOP4SA, an approach for the approx-
imation of symmetries over entities in the lifted model. MOP4SA
consists of two main steps, which is (a) encoding entity model
behaviour through an ordinal pattern symbolisation approach, fol-
lowed by (b) clustering entities with a similar symbolisation scheme
to determine groups of entities with approximately similar be-
haviour. We have introduced MOP4SA in [1] for the univariate
case and extended same in [2] to the multivariate case.

4.1 Encoding Entity Behaviour through
Ordinal Pattern Symbolisation

As mentioned in Section 3.3, approximating entity behaviour corre-
sponds to finding symmetries in time series.

4.1.1 Gathering Evidence

To find symmetries in (multivariate) time series, we use evidence
which encode model entity behaviour w.r.t. a certain context, i.e.,
w.r.t. a parfactor. In particular, this means: Every time-index PRV
Pt(X) represents multiple entities x0, . . . , xn of the same type at
a specific point in time t. That is, for a PRV S upplyt(Z), zones
z0, . . . , zn are represented by a logvar Z with domain D(Z) and
size |D(Z)|. Note that a PRV can be parameterised with more than
one logvar, but for the sake of simplicity we introduce our approach
using PRVs with only one logvar throughout this paper. Symmetry
detection for m-logvar PRVs works similarly to one-logvar PRVs,
with the difference, that in symmetry detection, entity pairs, i.e.,
m-tuples, are used. As an example, for any 2-logvar PRV Pt(X,Y),
an entity pair is a 2-tuple (x1, y1) with x1 ∈ D(X) and y1 ∈ D(Y).

A DPRM, as introduced in Section 2.1, encodes temporal data
by unrolling a DPRM while observing evidence for the models
PRVs, e.g., the PRV S upplyt(Z) encodes supply at time t in various
zones Z on the globe. In addition, a DPRM exploits (conditional) in-
dependencies between randvars by encoding interdependencies in
parfactors. As such, parfactors describe interdependent data through
its linked PRVs, e.g., the correlation between supply S upplyt(Z),
idle times Idlet(Z) and freight rates Ratet(Z) within a common zone
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Z encoded by the parfactor g1
t . For each entity zi ∈ D(Z) from

the PRVs P = {S upplyt(Z), Idlet(Z) and Ratet(Z)} observations are
made over time, i.e., a time series ((xi

t)
m
i=1)T

t=1 with xi
t ∈ R(Pi) is gen-

erated. In this work, the time series is to be assumed multivariate,
containing interdependent variables, i.e., m > 1. Note that in [1] we
consider the case m = 1. Having |D(Z)| entities in Z, we consider
|D(Z)| samples of multivariate time series

X = (((xi
t)

m
i=1)T

t=1)|D(Z)|
j=1 ∈ Rm×T×|D(Z)|, (6)

e.g., for m = 3 with observations (x1
t , x

2
t , x

3
t ) =

(S upplyt(z j), Idlet(z j),Ratet(z j)) for every z j ∈ D(Z) in time
t ∈ {1, . . . ,T }. As such, a multivariate time series is defined
for several PRVs linked in a parfactor, while a univariate time series
is defined for a single PRV. Identification of symmetrical entity
behaviour is done on a sets of (multivariate) time series, i.e., across
different (multivariate) time series that are observed for every entity
individually.

4.1.2 Multivariate Ordinal Pattern (MOP) Symbolisation

To encode the behaviour of a time series, we use ordinal pattern
symbolisation based on works from Bandt and Pompe [35]. For this,
let Xt ∈ R

m×T be a (multivariate) time series and Xt ∈ R
m×T×n be the

reference database of n ∈ N (multivariate) time series. In case of
m = 1, the time series is univariate. For a better understanding, we
start with univariate ordinal patterns that encode the up and downs
in a time series by the total order between two or more neighbours.
The encoding gives a good abstraction, an approximation, of the
overall behaviour or generating process. Univariate ordinal patterns
are formally defined as follows.

Definition 4.1 (Univariate Ordinal Pattern) A vector (x1, ..., xd) ∈
Rd has ordinal pattern (r1, ..., rd) ∈ Nd of order d ∈ N if
xr1 ≥ ... ≥ xrd and rl−1 > rl in the case xrl−1 = xrl .

Figure 2 shows all possible ordinal patterns of order d = 3 of a
vector (x1, x2, x3) ∈ R3.

(2 1 9) (0 1 2) (1 2 0) (0 2 1) (2 0 1) (1 0 2)

Figure 2: All d! possible univariate ordinal patterns of order d = 3.

For a multivariate time series ((xi
t)

m
i=1)T

t=1, each variable xi for
i ∈ 1, ...,m depends not only on its past values but also has some
dependency on other variables. To establish a total order between
two time points (xi

t)
m
i=1 and (xi

t+1)m
i=1 with m variables is only possi-

ble if xi
t > xi

t+1 or xi
t < xi

t+1 for all i ∈ 1, ...,m. Therefore, there is
no trivial generalisation to the multivariate case. An intuitive idea,
based on some theoretical discussion in [41, 42] and introduced in
[36], is to store univariate ordinal patterns of all variables at a time
point t together into a symbol.

Definition 4.2 (Multivariate Ordinal Pattern) A matrix
(x1, ..., xd) ∈ Rm×d has multivariate ordinal pattern (MOP) of
order d ∈ N


r11 · · · r1d
...

. . .
...

rm1 · · · rmd

 ∈ Nm×d (7)

if xri1 ≥ ... ≥ xrid for all i = 1, ...,m and ril−1 > ril in the case
xril−1 = xril .

For m = 1 the multivariate case matches with the univariate case
in Definition 4.1. Figure 3 shows all (d!)m possible multivariate
ordinal patterns (MOPs) of order d = 3 and number of variables
m = 2. ( 2 1 0

2 1 0

) ( 2 1 0
0 1 2

) ( 2 1 0
1 2 0

) ( 2 1 0
0 2 1

) . . . ( 2 1 0
1 0 2

)
( 0 1 2

2 1 0

) ( 0 1 2
0 1 2

) ( 0 1 2
1 2 0

) ( 0 1 2
0 2 1

) . . . ( 0 1 2
1 0 2

)
...

...
...

...
. . .

...( 1 0 2
2 1 0

) ( 1 0 2
0 1 2

) ( 1 0 2
1 2 0

) ( 1 0 2
0 2 1

) . . . ( 1 0 2
1 0 2

)
Figure 3: All (d!)m possible multivariate ordinal patterns of order d = 3 with m = 2
variables.

The number of possible MOPs d! increases exponentially with
the number of variables m, i.e., (d!)m. Therefore, if d and m are
too large, depending on the application, each pattern occurs only
rarely or some not at all, resulting in a uniform distribution of
ordinal patterns [36]. This has the consequence that subsequent
learning procedures can fail. Nevertheless, for a small order d and
sufficiently large T the use of MOPs can lead to higher accuracy
in learning tasks, e.g., classification [36] because they incorporate
interdependence of the spatial variables in the multivariate time
series.

To symbolise a multivariate time series Xt ∈ R
m×T each pat-

tern is identified with exactly one of the ordinal pattern symbols
o = 1, 2, ..., d!, before each point t ∈ {d, ...,T } is assigned its ordinal
pattern symbol of order d � T . The order d is chosen much smaller
than the length T of the time series to look at small windows in
a time series and their distributions of up and down movements.
To assess long-term trends, delayed behaviour is of interest, show-
ing various details of the structure of the time series. The time
delay τ ∈ N>0 is the delay between successive points in the symbol
sequences.

4.1.3 MOP Symbolisation with Data Range Dependence

We assume that for each time step t = τ(d − 1) + 1, . . . ,T of a multi-
variate time series ((xi

t)
m
i=1)T

t=1) ∈ X, MOP is determined as described
in Section 4.1.2. Ordinal patterns are well suited to characterise
an overall behaviour of time series, in particular their application
independent of the data range. In some applications, however, the
dependence on the data range can be also relevant, i.e., time series
can be similar in terms of their ordinals patterns, but differ consider-
ing their y-intercept. In other words, transforming a sequence

x = (xi
t)a≤t≤b (8)

as y = x + c, where c ∈ R is a constant, should change y’s similarity
to other sequences, although the shape is the same. To address the
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dependence on the data range, we use the arithmetic mean

xd,τ
t =

1
m

m∑
i=1

1
d

d∑
k=1

xi,t−(k−1)τ (9)

of the multivariate time series’ values corresponding to the ordinal
pattern, where xi,t−(k−1)τ is min-max normalised, as an additional
characteristic or feature of behaviour. If one of the variables changes
its behaviour significantly along the intercept, the arithmetic mean
uncovers this. There are still other features that can be relevant. For
simplicity, we only determine ordinal patterns and their means for
each parfactor g1 with, e.g., PRVs (S upplyt(Z), Idlet(Z), Ratet(Z)),
yielding a new data representation

X′ = 〈o, x〉(T−(τ(d−1))×|D(Z)| (10)

where 〈o, ·〉t j ∈ X
′ represents the MOP and 〈·, x〉t j ∈ X

′ represents
the corresponding mean xd,τ

t for entity z j at time step t. The order
d and delay τ are passed in from the outside and might depend on,
e.g., the frequency of the data, to capture the long-term behaviour.

4.2 Clustering Entities with Similar
Symbolisation Scheme

After encoding the behaviour of the entities through ordinal pattern
symbolisation, we identify similar entities using clustering. For
this purpose, based on the derived symbolisation representation in
Eq. (10), we create a similarity graph indicating the similarities
based on a distance measure between entity pairs.

4.2.1 Creating a Similarity Graph

Entity similarity is measured per parfactor, i.e., per multivariate
time series, separately. Therefore, multiple similarity graphs, more
specifically one per parfactor, are constructed. A similarity graph
for a parfactor g1

t connecting the PRVs S upplyt(Z), Idlet(Z) and
Ratet(Z) contains one node for each entity z ∈ D(Z) observed in
form of multivariate time series. The edges of the similarity graph
represent the similarity between two nodes, or more precisely, how
closely related two entities of the model are. To measure similar-
ity, we use the symbolic representation X′, which contains tuples
of multivariate ordinal numbers and mean values that describe the
behaviour of an entity. The similarity of two entities zi and z j is
given by counts wi j of equal behaviours, i.e.,

wi j =
∑
t≤T

[
〈o, ·〉it = 〈o, ·〉 jt ∧ |〈·, x〉it − 〈·, x〉 jt | < δ

]
, (11)

where [x] = 1 if x and, 0 otherwise. As an auxiliary structure,
we use a square matrix W ∈ N|D(Z)|×|D(Z)|, where each wi j ∈ W

describes the similarity between entities zi and z j by simple counts
of equal behaviour over time t ∈ T . Simply put, one counts the time
steps t at which both multivariate time series of zi and z j have the
same MOP and the absolute difference of the mean values of the
corresponding MOPs is smaller than δ > 0. Finally, as shown in
Figure 4b the counts wi j correspond to the weights of edges in the
similarity graphW, where zero indicates no similarity between two
entities, while the larger the count, the more similar two entities are.

z1 z2 z3 . . . zn

z1 0 9 8 . . . 7
z2 9 0 12 . . . 14
z3 8 12 0 . . . 4
. . . . . . . . . . . . . . . . . .
zn 7 14 3 . . . 0

(a) Auxiliary matrix with entity similarity counts.

z1 z2

z3

zn

9

8
7

12
14

4

(b) Auxiliary matrix in form
of the Similarity Graph.

Figure 4: (a) Auxiliary matrix and (b) similarity graph.

Approximating symmetries based on the similarity graph leaves
us with a classical clustering problem. That means, clustering enti-
ties into groups of entities showing enough similarities or leaving
others independent if those are too different.

4.2.2 Derive Entity Similarity Clusters

Theoretically, any clustering algorithm can be applied on top of the
similarity graph. Each weight in the similarity matrix, or each edge
weight between an an entity pair, denotes the similarity between two
entities, i.e., the higher the count, the more similar the two entities
are to each other. Since this contribution focuses on identifying
symmetries in temporal environments, we leave the introduction of
a specific clustering algorithm out here, and compare two different
ones, specifically Spectral Clustering and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), for the use in
MOP4SA as part of the evaluation in Section 6. After any clustering
algorithm is run, we are left with n clusters of entities for each
parfactor. Formally, a symmetry cluster is defined as follows.

Definition 4.3 (Symmetry Cluster) For a parfactor gi ∈ Gt with
Gt being the PRM at timestep t and gi = φ(A)|C containing a se-
quence of PRVsA = (A1, . . . , An), a symmetry cluster S i contains
entities l ∈ D(L) concerning the domain D(L) of one of the log-
vars L ∈ L with L =

⋃n
i=1 lv(Ai). Let the term en(S ) refer to the

set of entities in any symmetry cluster S . Each parfactor gi ∈ Gt

can contain up to m symmetry clusters S|gi = {S i}mi=0, such that
en(S i) ∩ en(S j) = ∅ for i , j and i, j ∈ {1, . . . ,m}. |> may be
omitted in S|>.

In the following section we propose how to utilise symmetry
clusters to prevent any lifted model from unnecessary groundings.

5 Symmetry Approximation for
Preventing Groundings (SA4PG)

As described in Section 2.3, evidence leads to groundings in any
lifted model. Further, those groundings are carried over in message
passing when moving forward in time leading to a fully ground
model in the worst case. As follows, we propose SA4PG, which
uses symmetry clusters as an outcome of MOP4SA to counteract
any unnecessary groundings, which occur due to evidence. Since
symmetry clusters denote a sets of entities, for which entities in each
group tend to behave the same, also observations for each entity
individually within a cluster are expected to be similar. Regard-
less of our approach to prevent groundings, in DPRMs entities are
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considered indistinguishable after the initial model setup. Under
evidence entities split off from that indistinguishable consideration
and are afterwards treated individually to allow for exact inference.
Nevertheless, in case one observation was made for multiple enti-
ties, those all together split off and are considered individually, but
still within the group of entities for which the that observation was
made. Such groundings are encoded within the DPRM in parfac-
tor groups as shown in Eq. (12). Symmetry clusters also denote
parfactor groups, with the difference that those are determined as
part of the model construction process in advance. Therefore, in
the model construction process, i.e., before running inference, a
model will be splitted according to the clusters into parfactor groups
with each group containing only entities from the respective cluster.
The only difference in creating parfactor groups without evidence is
that no range values are set to zero, but get a different distribution
representing the group the best. SA4PG is based on the assumption,
that symmetry clusters stay valid for a certain period of time after
learning them, i.e., that entities within those clusters continue to
behave similarity. More specifically and w.r.t. the two types of
inequality (see Section 2.3), this means, that

(a) in case of unknown inequality, we assume that any entity with-
out an observation most likely continues to behave similar to
the other entities within the same cluster for which observations
are present, and

(b) in case of known inequality, we assume that certain observa-
tions dominate one cluster and therefore will be applied for all
entities within the cluster.

To make one example, lets assume a symmetry cluster contains
entities z1, z2 and z3. Groundings occur whenever observations dif-
fer across entities in a symmetry cluster, e.g., grounding occurs, if
(a) the observation (S upply1(z1) = high, Idle1(z1) = high) of entity
z1 differs from observations (S upply1(zi) = low, Idle1(zi) = mid) of
entities zi for i = 2, 3, or (b) observations are only made for a subset
of the entities, i.e., for entities z2 and z3, but not for entity z1. In
both cases, the entities z2 and z3 would be split off from their initial
symmetry group, and are henceforth treated individually in a non
lifted fashion. In SA4PG we prevent such model splits until a cer-
tain extend. Algorithm 1 shows an outline of the overall preventing
groundings approach. Preventing groundings works by consuming
evidence and queries from a stream and dismissing or inferring
evidence within symmetry clusters until an entity has reached an
violation threshold H. The threshold H refers to the number of
times evidence was inferred or dismissed. To do not force entities
to stick to their initial symmetry clusters, we relieve entities from
their clusters once the threshold H is received. To keep track on
the number of violations, i.e., how often evidence was inferred or
dismissed, we introduce a violation map as a helper data structure
to store that number.

Definition 5.1 (Violation Map) For a parfactor gi ∈ Gt with Gt

being the PRM at timestep t and gi = φ(A)|C containing a sequence
of PRVs A = (A1, . . . , An), a violation map v|gi :

⋃n
i=1 gr(Ai) → 0

is initialised with zero values for all entities in all PRVs A in gi.
In case a PRV Ai is is parameterised with more than one logvar,
i.e., m = |lv(Ai)| with m > 1, v contains m-tuples as entity pairs. A
model contains up to n parfactors in Gt. The set of violation maps

is denoted by V = {v|gi }
n
i=0. Let viol(P) refer to the violation count

of some entity m-tuple in V.

SA4PG continues by taking all evidence Et concerning a
timestep t = 0, 1, . . . ,T from the evidence stream E. To set evi-
dence and to prevent groundings, for each observation Es,i ∈ Et

with Et = {Es,i = esi }
n
i=1 so called parfactor partitions are identified.

A parfactor partitions is a set of parfactor groups gi,k
t that are all

affected by evidence Es,i(x j) with x j ∈ D(lv(Es,i)). A parfactor
group is affected, if

(a) the parfactor gi
t itself links the PRV Es,i for which an observation

was made,

(b) and if the parfactor group gi
t currently represents the distribution

for the specific entity x j for which the observation was made.

To make one example, observing S upply1(z1) = high, the evidence
partition contains parfactor groups of the parfactors g1

t and gS since
the PRV is linked to both parfactors. Further, the parfactor parti-
tion is limited to only those i parfactor groups gi,1

t and gi,S
t , which

currently represent the distribution for the entity z1. A parfactor
partition containing all those parfactor groups is defined as follows.

Definition 5.2 (Parfactor Partition) Every parfactor gi
t ∈ Gt can

have up to k ∈ N+ splits such that

Gt = {gi,1
t , . . . , g

i,k
t }

n
i=1. (12)

Each parfactor gi
t contains a sequence of PRVsAt = (A1

t , . . . , A
n
t ),

which are afflicted with evidence An
t (xi) = at,i for any entity

xi ∈ D(X) with X ∈ lv(At) at timestep t leading to those splits.
A parfactor partition Pt denotes a set of parfactors, which are af-
fected by new evidence Et(xi) = et with

Pt = {gi,1
t , . . . , g

i,l
t }

n
i=1 (13)

and l ≤ k such that any parfactor group gi,l
t ∈ Pt contain the rand-

var Et, i.e., Et ∈ rv(gi,l
t ) and gi,l

t is limited by constraints to at least
the entity xi for which the observation was made, i.e., gi,l

t |Ce
with

Ce = (X, {xi}
n
i=1) and xi ∈ {xi}

n
i=1.

Considering all evidence Et for a time step t, different ob-
servations Et,i ∈ Et can result in the same parfactor partition
(before those observations are encoded within the model). This
holds true for all observation, which are made for the same PRV
with entities being in the same parfactor group, e.g., two obser-
vation S upply1(zi) = high and S upply1(z j) = mid for which
{zi, z j} ∈ gr(g1,l

1 ) and {zi, z j} ∈ gr(gS ,l). All observations that en-
tail the same parfactor partition are treated in SA4PG as one and
those observations are informally denoted as an evidence cluster.

Therefore, in SA4PG evidence Et is rearranged in a sense such
that Et contains multiple collections of observations, i.e.,

Et = {{Et,l = et,l}
m
l=0, . . . , {Et,l = et,l}

m
l=0}, (14)

with each element Et,l originally being directly in Et and each subset
{Et,l = et,l}

m
l=0 concerning the same parfactor partition Pt. SA4PG

proceeds by processing each evidence cluster separately. Evidence
of each evidence cluster is processed in a sense such that known
inequalities and any uncertainty about inequality is counteracted.
This is being done by identifying the dominating observation within
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Figure 5: Pointmap showing the normalised average supply over time intervals [t − 5, t) in the Baltic Sea region. Best viewed in colour.

each evidence cluster {Et,l = et,l}
m
l=0 and apply that observation to all

entities within the respective parfactor partition Pt. The dominating
observation max(et,l) is the observation that can be observed the
most within the evidence cluster. Further, in case any other entities
in the corresponding parfactor partition are unobserved, we also
apply the dominating observation for those. For each entity for
which evidence was inferred or dismissed, the violation counter is
increased. In case the violation threshold H for an entity is already
reached, evidence is no longer inferred or dismissed, but the entity
is relieved from its symmetry cluster, i.e., split off from the parfactor
group, and from then on considered individually.

In the following, we evaluate MOP4SA and SA4PG as part of a
case study from the example shipping domain.

6 MOP4SA and SA4PG in Application
Since MOP4SA consists of multiple steps, namely (a) encoding
entity behaviour, (b) similarity counting, and (c) clustering, we
evaluate each step separately before analysing the overall fitness in
conjunction with SA4PG, as introduced in Section 5.

6.1 The AIS Dataset

To setup a DPRM as shown in Figure 1a, we use historical ves-
sel movements from 2020 based on automatic identification sys-
tem (AIS) data2 provided by the Danish Maritime Authority for the
Baltic Sea. AIS data improves the safety and guidance of vessel
traffic by exchanging navigational and other vessel data. It was
introduced as a mandatory standard by the International Maritime
Organisation (IMO) in 2000. Meanwhile, AIS data is used in many
different applications in research, such as trade flow estimation,
emission accounting, and vessel performance monitoring [43]. Pre-
processing for retrieving variables S upply and Idle for 367 defined
Zones can be found on GitHub3. Figure 5 gives an idea on how
supply evolves over time t in the Baltic Sea region. Each point

illustrates the normalised cargo supply amount in tons. For sake of
simplicity, we only plot supply independent of idle times here. We
can see, that in the beginning of the year (for 0 < t < 20) the supply
in the northern regions, i.e. the need for resources, is higher, while
for the rest of the year (for 20 < t < 40) the supply slowly decreases
and increases in the southern regions. The important part here is,
that the supply for 20 < t < 40 in the respective regions is more or
less constant over a longer period of time.

Algorithm 1: Preventing Groundings
Input: DPRM (G0,G→), Evidence- E and Querystream Q,

Order d, Delay τ, Symmetry Clusters C
for each parfactor gi ∈ G0 do

v|gi ← init violoation map // see Definition 5.1

for t = 0, 1, ...,T do
Et ← get evidence from evidence stream E
Rearrange Et to create evidence clusters according to
parfactor partition Pt // see Definition 5.2

for each evidence cluster {Et,l = et,l}
m
l=0 ∈ Et do

max(et,l)← get dominating observation
// Align Evidence

for each observation in Et,l(xi) ∈ {Et,l = et,l}
m
l=0 do

if et,l , max(et,l) and viol(xi) < H then
Dismiss observation et,l

viol(xi)← viol(xi) + 1

// Infer Evidence

for each unobserved entity x j in Pt do
Set Et,l(x j) = max(et,l)

Answer queries Qt from query stream Q

The idea behind MOP4SA is to identify periods of time with
similar behaviour for multiple entities. That means in our applica-
tion, identifying zones with similar supply (or more specifically in
the multivariate context supply/idle times) over a period of time.

2https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/
3https://github.com/FinkeNils/Processed-AIS-Data-Baltic-Sea-2020-v2
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Next, we look into clustering based on the similarity graph as
an outcome of similarity counting after applying the symbolisation.

6.2 Multivariate Symbolisation Scheme
for Temporal Similarity Clustering

According to the procedure as introduced in Section 4.1.3, we ap-
ply the symbolisation scheme on the multivariate supply/idle-time
time series as encoded in the parfactor gi

t and create one similarity
graph as the basis for clustering. We compare different clustering
algorithms as follows. Unfortunately, classical clustering methods
do not achieve good results in high-dimensional spaces, like for
DPRMs, which are specifically made to represent large domains.
Problems that classical clustering approaches have is, that the small-
est and largest distances in clustering differ only relatively slightly
in a high-dimensional space [44]. For DPRMs, a similarity graph,
representing the similarity of entities z ∈ D(Z), contains(

|D(Z)|
2

)
(15)

fully-connected nodes in the worst case, where Z is a logvar repre-
senting a set of entities whose entity pairs share similar behaviour
for least one time step. Here, Eq. (15) also corresponds to the
number of dimensions a clustering algorithm has to deal with.

6.2.1 An Informal Introduction to Clustering

Generally, clustering algorithms can be divided into the four groups
(a) centroid-based clustering, (b) hierarchical clustering, (c) graph-
based clustering, and (d) density-based clustering.

We already pointed out the problem that classical clustering
algorithms suffer due to their distance measures, which do not work
well in high dimensional spaces. Especially centroid-based cluster-
ing approaches, like the well-known k-means algorithm or Gaussian
Mixture Models, suffer, as they expect to find spherical or ellipsoidal
symmetry. More specifically, in centroid-based clustering the as-
sumption is that the points assigned to a cluster are spherical around
the cluster centre and therefore no good clusters can be found due
to the relatively equal distances. In hierarchical clustering time and
space complexity is especially bad since the graph is iteratively
split into clusters. Graph-based clustering algorithms, like spectral
clustering, is known as being especially robust for high-dimensional
data due to performing dimensionality reduction before running
clustering [45]. One disadvantage, which also applies to clustering
algorithms above, is that the number of clusters need to be speci-
fied as a hyperparameter in advance. In contrast, in density-based
clustering approaches, like DBSCAN, the number of clusters are
determined automatically while also handling noise. DBSCAN is
based on a high-density of points. That means, clusters are dense
regions, which are identified by running with a sliding window over
dense points, making DBSCAN cluster shape independent.

For these reasons, we will compare spectral clustering and
DBSCAN as part of MOP4SA as follows. We start by informally
introducing Spectral Clustering and DBSCAN.

DBSCAN works by grouping together points with many nearby
neighbours, denoting points lying outside those regions as noise.

In DBSCAN the two parameters ε and minPoint need to be pro-
vided from the outside, which correspond to the terms Density
Reachability and Density Connectivity respectively. The idea behind
DBSCAN is to identify points, that are reachable from another if
it lies within a specific distance from it (Reachability), identifying
core, border and noise points as the result of transitively connected
points (Connectivity) [46]. More specifically, a core point is a
point that has m points within a distance of n from itself, whilst
a border point has at least one core point within the distance of
n. All other points are considered as noise. The algorithm itself
proceeds by randomly picking up a point from the dataset, that
means, picking one node from the similarity graph, until every point
was visited. All minPoint-points within a radius of ε around the
randomly chosen point are considered as one cluster. DBSCAN
proceeds by recursively repeating the neighbourhood calculations
for each neighbouring point, resulting in n clusters.

Spectral Clustering involves dimensionality reduction in ad-
vance before using standard clustering methods such as k-means.
For dimensionality reduction, the similarity graphW is transformed
into the so-called graph Laplacian matrix L, which describes the
relations of the nodes and edges of a graph, where the entries are
defined by

Li j :=


deg(zi) if i = j
−1 if i , j and wi j > 0
0 else

, (16)

with deg(zi) =
∑|D(Z)|

j=1 wi j. For decorrelation, data in the graph
Laplacian matrix L is decomposed into its sequence of eigenvalues
and the corresponding eigenvectors. The eigenvectors form a new
uncorrelated orthonormal basis and are thus suitable for standard
clustering methods. The observations of the reduced data matrix
whose columns contain the smallest k eigenvectors can now be clus-
tered using k-means. An observation assigned to cluster Ci with
i = 1, ..., k can then be traced back to its entity z ∈ D(Z) by indices.

We evaluate both clustering approaches as part of SA4PG in
Section 6.3. To improve comparability, we compare both clustering
approaches as described in the next Section.

6.2.2 Clustering Comparison Approach

We compare DBSCAN and Spectral Clustering in MOP4SA by
identifying clusters with each clustering approach and use resulting
clusters within SA4PG respectively, i.e., run SA4PG once using clus-
ters determined by DBSCAN and once using clusters determined
by Spectral Clustering.

Since DBSCAN is able to automatically determine the numbers
of clusters, we use DBSCAN to identify same and provide the re-
sulting number of clusters as a parameter when performing Spectral
Clustering. As DBSCAN is capable to also classifies noise, i.e.,
entities, which cannot be assigned to a cluster, we use the number of
points classified as noise plus the number of clusters as the number
of total clusters in Spectral Clustering. Further, for DBSCAN we
provide minPoints = 2 as the minimum number of entities in a
cluster to allow for the maximum number of clusters in general.
The eps parameter is automatically determined using the kneedle
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algorithm [47]. For Spectral Clustering we just provide parameter k
for the total number of clusters, which was previously determined
by DBSCAN. Note that the total number of clusters n, which was
determined by DBSCAN, does not necessarily corresponds to the
best number of clusters for Spectral Clustering. Nevertheless, we
obtain results that show which algorithm, given the same input n, is
better at separating entities in the multidimensional space.

In the following, we perform a detailed comparison between the
two clustering approaches as part of SA4PG with different parame-
ters for the symbolisation scheme in MOP4SA using the approach
to compare the two clustering mechanisms as described here.

6.3 Preventing Groundings

MOP4SA is affected by (a) the efficiency of the clustering algorithm
used, (b) the similarity measure itself, (c) and its hyper parameters
such as order d, delay τ and δ for the arithmetic mean as defined
in Eq. (9). We evaluate MOP4SA as part of SA4PG. Specifically,
we approximate symmetry clusters using MOP4SA with different
settings and (i) perform inference using the the symmetry clusters
to prevent the model from grounding, and (ii) compare it with exact
lifted inference and calculate Kullback Leibler divergence (KLD)
between query result to determine the error introduced through
SA4PG. A KLD with DKL = 0 indicates that both distributions
are equal. Inference in DPRMs is performed by the lifted dynamic
junction tree algorithm. Details can be found in [5].

We ran 54 experiments in total with different parameter combi-
nations d ∈ {2, 3, 4}, τ ∈ {1, 2, 3}, δ ∈ {0.05, 0.1, 0.15} and clustering
through Spectral Clustering and DBSCAN. For comparison, we per-
form query answering given sets of evidence, i.e., we perform infer-
ence by answering the prediction query P(S upplyt(Z), Idlet(Z)) for
each time step t ∈ {4, . . . , 51} and obtain a marginal distribution for
each entity z ∈ D(Z). We repeat query answering three times, once
without preventing any groundings, once with preventing ground-
ings using the clusters determined by DBSCAN, and once again
with preventing groundings but using clusters determined by Spec-
tral Clustering for each parameter combinations. Note that we only
discuss results for a sub-selection of the parameter combinations,
which give good results in terms of accuracy in inference under
preventing groundings, while Table 1 and Table 2 at the end of this
paper show the full results for all parameter combinations. Table 1
and Table 2 show results for time intervals t ∈ {[5, 10), [10, 15),
[15, 20), [20, 25), [25, 30), [30, 35), [35, 40), [40, 45), [45, 50)}.

We evaluate runtime in seconds s, the number of groundings
#gr and KLD DKL. Note that, #gr shows the number of clusters
after time t, while n shows the initial number of clusters. Thus, the
number of additional groundings at a specific timestep equals to #gr

minus n. Preventing groundings aims at keeping a lifted model as
long as possible. A basic prerequisite for this is that similarities
exists in the data. As to that, the variable n≥1 shows the number of
initial clusters, which contain more than one entity directly after
clustering, i.e., clusters in which similarly behaving entities have
been arranged. Note that similar to n, n≥1 does not change over
time. With increasing order d the number of neighbouring data
points are increasing, i.e., the classification contains more long term
patterns. With increasing delay τ, long-term behaviour is extended
even further, while also allowing for temporary deviations. For data

range dependence, in similarity counting we test different delta δ≤.
The number of clusters with more than one entity n>1 relative

to the total number of clusters n are important in evaluating how
well symmetries are exploited. When n is small, i.e. when n is
significantly smaller than the total number of entities |D(Z)|, a value
of n>1 close to n is desirable since it indicates that many entities
show symmetries with each other. If n>1 is significantly smaller
than n, then only a few entities show symmetries, which on the one
hand leads to a better accuracy in the inference since many entities
are considered at a ground level, but on the other hand runtime will
suffer greatly. As to that, Figure 6 shows a comparison for different
parameter combinations and clustering approaches. The red line
denotes the total number of clusters n independently of the number
of entities included in a cluster, while the bars only show the number
of clusters with more than one entity n>1. Note that we also include
entities, which are treated on a ground level already by the time
after learning clusters, in the total number of cluster, i.e., clusters
can also only include one entity. Since lifting highly depends on
the degree of similarities, only those clusters with more than one
entity are of interest. Each pair of bar plots correspond to a different
experiment with different parameter combinations.
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Figure 6: Comparison of number of clusters with more than one entity between
DBSCAN and Spectral Clustering.

Due to space limitations we shorten order d, delay τ and delta
δleq in the graph by the triple d/τ/δleq. From Fig. 6 it is most notice-
able that the number of clusters with more than one entity n≥1 for
higher orders d is much less than for lower orders. This intuitively
makes sense, since with higher orders d long term behaviour is
captured much better than with lower orders and thus only a few
clusters can be determined. For d = 2 much more clusters are iden-
tified since a smaller time span is considered resulting in a higher
possibility of showing similarities. This observation also applies to
increasing delays τ. The experiment with order d = 3, delay τ = 3
and delta δ≤ = 0.05 is a good example for cases where not many
similarities have been identified, but many entities are treated on a
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(a) Accuracy and runtime in inference under SA4PG for different parameter combinations.

0 10 20 30 40 50

103

105

Cluster n = 0

0 10 20 30 40 50
102

103

Cluster n = 9

0 10 20 30 40 50
102

103

104

Cluster n = 11

0 10 20 30 40 50

104

105

Cluster n = 34

0 10 20 30 40 50

103

105

Cluster n = 65

0 10 20 30 40 50

103

105

Cluster n = 17

0 10 20 30 40 50
102

103

104

Cluster n = 78

0 10 20 30 40 50

103

105

Cluster n = 15

0 10 20 30 40 50
102

103

104

Cluster n = 69

0 10 20 30 40 50

103

105

Cluster n = 18

0 10 20 30 40 50

103

105

Cluster n = 71

0 10 20 30 40 50
102

103

104

Cluster n = 70

(b) Supply over time t for a selection of clusters, which have been learned based on Supply/Idle time data for 0 < t ≤ 4 using Spectral Clustering.

Figure 7: Accuracy and runtime data based on query results under SA4PG including raw supply data for entities within clusters.

ground level, i.e., accuracy will be good, but runtime will suffer. In
the following, we look at accuracy results and will also come back
to this example.

By comparing the KLD DKL as a result of inference without pre-
venting groundings and with preventing groundings based on clus-
ters determined by DBSCAN and Spectral Clustering, it is notice-
able that for clusters determined by Spectral Clustering in average a
lower DKL compared to DBSCAN results. This is explainable with
better handling of higher dimensional data in Spectral Clustering.
Figure 7a shows a comparison between the accuracy for both cases
and different parameter combination. Each subplot corresponds to
a different order d and delay τ, while the box-plot itself shows the
variation of the accuracy over different deltas δ≤ = {0.05, 0.1, 0.15}
over time t. Note that we only plot data until t = 24 for better visi-
bility and as the effect of any wrong evidence, which was brought
in by preventing groundings, starts to level off. This happens since
groundings are only prevented until the threshold H is reached, i.e.,
any other evidence afterwards at a later timestep balance out the
effect of any wrong evidence at an early timestep after learning sym-
metry clusters. The blue box-plots in Fig. 7a correspond to the KLD
DKL with DBSCAN as the clustering approach in MOP4SA, while
the orange box-plots correspond to the KLD DKL with on Spectral

Clustering as the clustering approach in MOP4SA. The solid blue,
orange and red line correspond to the runtime for answering a query
for the specific time step. From the plots, we can see that for higher
orders and delays, i.e., with increasing time spans each ordinal rep-
resents, that DKL is decreasing. Considering the total number of
clusters for each experiment (see Fig. 6), this follows as not many
similarities can be found in the data, but more entities are handled
on a ground level, i.e., increasing accuracy. On the other hand,
runtime drastically increases as symmetries are no longer exploited.
Compared to exact reasoning, runtime is noticeably smaller in in-
ference under SA4PG. To lock again at the experiment with order
d = 3, delay τ = 3 (as highlighted above), the KLD DKL is consid-
erably small especially for Spectral clustering, but the runtime of
the inference is very poor compared to all other experiments.

In SA4PG, the violation threshold H is set to 5, i.e., groundings
due to any inequalities are prevented for an entity H times. After
t = 10 the number of groundings #gr (see Table 1) are still the same
as after learning the entity similarity cluster, i.e., all groundings are
prevented. It is expected that the majority of groundings are pre-
vented in the initial timesteps after learning the clusters. Still, if enti-
ties behave similarity in early timesteps, the threshold H is reached
far later in time. Thus, if in clustering based on the similarity graph
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the entities with similarities are identified better, then groundings
will occur much later in time. The longer DKL stays small, the better
cluster fit, i.e, the error introduced in inference through preventing
groundings is kept small. In Fig. 7a we see that the accuracy suffers
approximately for all experiments around t = 10, i.e, after 4 more
timesteps after learning the clusters. Figure 7b depicts raw supply
data for a selection of clusters as a result of running MOP4SA based
on data for t = [0, 4) with parameters d = 2, τ = 1 and δ = 0.05 for
symbolisation and Spectral Clustering. Even though only provid-
ing a small amount of training data, we can see that symmetrical
behaviour continues for most of the clusters until approx. t = 10,
like especially for clusters n ∈ {0, 11, 34, 65, 78, 69, 71} and there-
fore support the insight, which we have got based on Fig. 7a. For
simplicity only raw supply data is plotted even though symmetry
clusters are determined based on supply/idle data.

The best results are achieved with Spectral Clustering as part
of SA4PG for the parameter combinations d = 2, τ = 1, δ≤ = 0.1,
d = 3, τ = 3, δ≤ = 0.1 and d = 3, τ = 2, δ≤ = 0.05, which we
will also further refer to in the following Section. Generally, when
reasoning under time constraints, preventing grounds is a reasonable
approach as it prevents groundings in the long term and therefore
speeds up inference.

Entity similarity can change over time, i.e., to further prevent the
model from grounding it is beneficial to relearn symmetry structures
at some time. In the following we propose MOP4SCD and use it to
identify points in time when relearning clusters is beneficial.

7 Multivariate Ordinal Pattern for
Symmetry Change Detection
(MOP4SCD)

Symmetries in temporal models can change over time as already
seen in Fig. 5. Therefore, symmetry cluster, after they have been
learned, may only stay valid for a certain period of time. Further,
some are valid for a longer period of time, some not. To identify
points in time when relearning symmetry clusters is reasonable,
we use the similarity graph as an intermediate output of running
MOP4SA and check if the similarity graph has changed significantly.
More specifically, we continue running MOP4SA for every timestep,
but instead of for continuously relearning symmetry clusters, we
prevent relearning clusters in MOP4SA after the initial sync run
until the graph has changed significantly enough. To identify such
points in time with a significant change, we introduce MOP4SCD
taking as inputs a similarity graph for two consecutive timesteps and
calculating a distance measure between both. In case the distance
measure is above a certain threshold we consider those points as
change points to trigger the cluster relearning process. MOP4SCD
is based on the assumption, that clusters no longer stay valid, if
entities within a cluster no longer show the same similarity to its
cluster entities as in the previous timesteps, i.e., the similarity counts
is no longer proportionally scaling as before. Those entities might
transition to another cluster, since its showing more similarity with
another cluster. Informally, if the similarity graph changes over time
in a constant and balanced way, symmetry clusters stay valid, but if
the similarity graph changes over time in an unbalanced manner,

i.e., if similarity counts change significantly, there is a change in the
structure of the symmetry clusters. To illustrate that, let us look at
Figure 8. The Figure shows a similarity graph based on which two
clusters have been identified.

z1

z2
z3

z4

z5
z6

34

5

34

51

Figure 8: Overview of potential unbalanced changes in a similarity graph.

Nodes S 1 = {z1, z2, z3} (coloured in blue) denote a cluster S 1

and the nodes S 2 = {z4, z5, z6} (coloured in green) denote another
cluster S 2. Both clusters are connected through nodes z2 and z6
since for both a similarity was measured at any timestep before
learning clusters. Relearning clusters becomes necessary if the
cluster structure itself changes. This happens either

(a) if similarities between entities of different clusters changes,
e.g., if the similarity between z2 and z6 increases and might
require to merge the clusters or even split them into more than
two clusters, which we denote as a unbalanced interclusteral
change,

(b) or if similarities within a cluster change disproportionately, e.g.,
if similarities for S 2 changes only for a subset of the entities
such as for z4 and z5 but not proportionally for all entities such
as z4 and z6 and z6 and z5 requiring to split the cluster even fur-
ther, which we denote as a unbalanced intraclusteral change.

As follows we define both unbalanced interclusteral and intra-
clusteral change measures and combine both into a distance measure
denoting the unbalanced change between consecutive timesteps.
Both unbalanced inter- and intraclusteral changes are determined
based on the similarity graphWt from the current to the next time
stepWt+1 under current symmetry clusters S, with interclusteral
changes defined as

dinter(Wt,Wt+1,S) =
∑
S i∈S

S j=en(S i)∩en(S)

∑
i∈en(S i)
j∈en(S j)

[
wt+1

i j = wt
i j + 1

]
|en(S i)| · |en(S j)|

(17)

where [x] = 1 if x and, 0 otherwise for en(S i) ∩ en(S j) = ∅ and
intraclusteral changes defined as

dintra(Wt,Wt+1,S) =
∑
S i∈S

∑
i, j∈en(S i),i< j

[
wt+1

i j − wt
i j = 0

]
|en(S i)| · |en(S i)|

(18)

where [x] = 1 if x and, 0. Both dinter and dintra are merged into one
combined measure with

d(Wt,Wt+1,S) =
dinter + dintra

|S|
. (19)

Simply speaking, dinter counts the number of increases in weights
across different clusters S i and S j such as shown in Fig. 8 for enti-
ties z2 and z6. The resulting count is normalised by dividing through
the number of comparison between entity pairs of the clusters en(S i)
and en(S j), resulting in measure between 0 and 1 with a value close
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to 1 denoting a maximum dissimilarity. Similarly, dintra counts the
occurrences of no weight increases within entity pairs of a similar
cluster S i. To ensure that entities within a cluster continue to behave
the same, weights should proportionally increase equally distributed
within the cluster. If there is no increase in weights most likely
the entities discontinue to behave similarly. The resulting count is
equally normalised with a value close to 1 denoting a maximum
dissimilarity. Finally, both dinter and dintra are combined in a single
measure also count normalised to determine a distance measure
between 0 and 1. If d(Wt,Wt+1,S) = 0, the change in the similar-
ity graph is balanced, if d(Wt,Wt+1,S) > 0, it is unbalanced. If
d(Wt,Wt+1,S) > b, b ∈ N>0 it may be worthwhile to (re)perform
clustering and (re)build symmetry clusters.

As follows, we evaluate MOP4SCD based on clusters deter-
mined by MOP4SA for the same parameters as in the experiments
performed in Section 6.

8 MOP4SCD in Application

We evaluate MOP4SCD based on clusters determined using
MOP4SA as described in Section 6. Since Spectral Clustering
works better than DBSCAN in identifying clusters, we here only
use clusters determined by Spectral Clustering as part of MOP4SA.
We run experiments 27 experiments in total for the same parameter
combinations d ∈ {2, 3, 4}, τ ∈ {1, 2, 3} and δ ∈ {0.05, 0.1, 0.15} as
in Section 6. For each experiment we calculate d(Wt,Wt+1,S) for
timesteps t = 5, . . . , 51. Clusters are learned based on a similarity
graph with data for t = 1, . . . 4.

In this Section we discuss results for a sub-selection of the pa-
rameter combinations, which give good results in terms of accuracy
in inference under preventing groundings as seen in Section 4, while
Table 3 at the end of this paper shows detailed results for all pa-
rameter combinations. Each column in Table 3 shows the distance
measure for consecutive timesteps, e.g., for t = 5, the distance is
derived based on the similarity graph for timestep t = 4 to t = 5,
i.e., d(W4,W5,S). Note that since d(W4,W5,S) is calculated for
two consecutive timesteps, the distance measure has to be added
up over time to derive the overall distance between more then two
timesteps. Overall, the distance measure varies for different parame-
ter combinations with in the optimal case showing an unbalanced
change in weights of approximately 1.6% and in the worst case
of approximately 22.4% between two consecutive timesteps. The
distance measure is highly affected by the number of clusters n.
In the case that the number of clusters with more than one entity
n>1 is considerably small compared to the total number of clusters
n, the distance measure d(Wt,Wt+1,S) is also considerably low
since dinter and dintra, see Eq. (17) and Eq. (18), always return no
unbalanced change for clusters with just one entity, i.e., for entities
which are already being treated on a ground level. MOP4SA aims at
preventing groundings to speed up inference, i.e., lead to an increase
in runtime. Therefore, choosing parameters d, τ and δ for MOP4SA
and consequently for MOP4SCD is a trade-of between losses in
accuracy and a speed up in inference.

The parameter combinations d = 2, τ = 1, δ≤ = 0.1, d = 3,
τ = 3, δ≤ = 0.1 and d = 3, τ = 2, δ≤ = 0.05 give good results
in MOP4SA as shown in Section 6. Results for MOP4SCD also

support this. Figure 9 shows the KLD DKL in conjunction with
results from MOP4SCD. Each subplot corresponds to a different
parameter combination with the blue line corresponding to the KLD
DKL, the solid red line to the distance measure d(Wt,Wt+1,S) for
two consecutive timesteps t and t + 1 and the dashed red line for
the cumulative distance measure, i.e., from t = 0 until the current
timestep t. Note that the cumulative distance is log scaled and can
be read of from the right y-axis. The highlighted red area in each
subplots mark the interval when the cumulative distance measure
becomes greater then 50% until it has reached 100%, i.e., with a
change of 100% that all relations between all entities have been
affected.
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Figure 9: Results of MOP4SCD for three parameter combinations which show the
best results for MOP4SA and SA4PG. Further results can be found in the appendix.

Similar to the experiments in Section 6, clusters S have been
determined by MOP4SA based on data for 0 > t ≤ 4. For all upcom-
ing timesteps the clusters S have been used to prevent groundings,
i.e., execute SA4PG as part of inference, see Algorithm 1. The
KLD DKL for all experiments as shown in Fig. 9 similarly raises
up to a value of approx. 0.25 with its peak around t = 15. In
contrast d(Wt,Wt+1,S) varies across experiments and has for the
experiment with parameter combination d = 2, τ = 1 and δ≤0.1 its
best value of approx. 0.1, i.e, a unbalanced change of approx. 10%
over time. For the two other experiments d(Wt,Wt+1,S) is with
0.22 similar. Correspondingly, the cumulative distance reaches a
value of 0.5 at timestep t = 9 until it reaches a value of 1 at t = 14
for the first experiment, while for the two other experiments the
cumulative distance reaches a value of 0.5 at t = 7 and a value of
1 already at t = 9. I.e., clusters S are valid for a longer period of
time using MOP4SA with a parameter combination of d = 2, τ = 1,
δ≤ = 0.1. Further, for that parameter combination, DKL settles off

once a cumulative distance of 1 has reached. Settling off happens
due to the amount of new evidence leading to more groundings
removing the effect of any wrongly introduced evidence in previous
timesteps. Relearning clusters at a threshold of 0.5 is here beneficial
to prevent the DKL from further increasing. That means relearning
at t = 9, i.e., clusters are valid for approx. 4 timesteps after learning
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them, which corresponds to a full month in our example application
and therefore is a good result to considerably speed up inference
while only introducing a small error in inference.

9 Conclusion and Future Work

Evidence lead to groundings in dynamic probabilistic relational
models over time, negating runtime benefits in lifted inference. This
paper provides MOP4SA, SA4PG and MOP4SCD as a rich toolset
to identify model symmetries as part of the model construction
process, use those symmetries to maintain a lifted representation by
preventing groundings a priori and detect changes in model symme-
tries after the model construction process. Preventing groundings
a priori to maintain any lifted representation is important in lifted
inference to preserve its runtime benefits. MOP4SA detects sym-
metries across entities of the models domain using a multivariate
ordinal pattern symbolisation approach and building a similarity
graph for spectral clustering to identify sets of entities with sym-
metrical behaviour regarding a context of the model (symmetry
clusters). Symmetry clusters are used in SA4PG as part of query
answering to prevent any unnecessary model splits by evidence,
e.g., due to one time events. Symmetry structures can change over
time, which MOP4SCD detects based on the similarity graph, an
intermediate output of MOP4SA, and provide a distance measure
denoting the degree of any unbalanced structural change to identify
points in time when relearning symmetry clusters is beneficial.

The main contribution of this paper are the extension by theo-
retical and experimental results on the original papers [1, 2] and
the introduction of MOP4SCD as a mechanism to detect structural
changes to complement MOP4SA, SA4PG as a rich toolset to pre-
vent groundings a priori. We show, that MOP4SA requires only a
small amount of training data to come up with a good approximation
of symmetry structures. Generally, MOP4SA aims at determining
symmetry structures which stay valid for shorter time periods. This
follows, since MOP4SA is not capable to capture any reoccurring
patterns or periodicity, e.g., due to seasonality. MOP4SA can be
extended to capture such behaviour, but this would also increase
the complexity of the overall approach. Due to this and since cap-
turing symmetries for longer time spans, especially in real-world
applications which normally change much faster, is not feasible,
we focus with MOP4SA as being a simple and easy to compute
framework, requiring only few historical data points for learning,
to identify symmetries for the short term future. In addition to
MOP4SA, MOP4SCD supports in inference by identifying points
in time when relearning clustering for SA4PG is reasonable.

With preventing groundings a priori we complement existing
approaches, which focus on retaining lifted representation after a
model has already been splitted. In general, our approach works
well with any other approach undoing splits after they occurred
when moving forward in time, e.g., in message passing by merg-
ing sets of entities when those align again, denoted as temporal
approximate merging, as proposed in [25]. Combining both kind of
approaches brings together the best of both worlds: (a) While with
determining approximate model symmetries a priori, we can use the
full amount of historical training data to prevent groundings, (b) and
with temporal approximate merging, we can merge non-preventable

parfactor splits even after they occurred, i.e., a posterior.
Since MOP4SA is designed to work with small amounts of data

to provide symmetry clusters very quickly for the short term future,
the overhead MOP4SA and MOP4SCD bring into query answering
need to be kept to a minimum. Applying the symbolisation scheme
to identify symmetries is already a suitable mechanism, but with
the clustering approach we still depend on existing approaches,
which are considerably costly. The investigation of more perfor-
mant clustering approaches, e.g., taking advantage of some sort of
incremental changes to clustering after the initial learning step, are
left for future work.

List of Symbols

R set of random variables
L set of logical variables
Φ set of factor names
D set of entities
D(L) domain of a logvar
C, (X,CX) constraint restricting logical variables
A(L1, . . . , Ln) parameterised logical variable (PRV)
g, φ(A)|C parfactor
gr(P) grounding
lv(P) logical variables
R(A) range of a PRV
G model
Gt local model
E evidence, set of events
Q query term
X multivariate time series
τ delay between successive time points
d order of ordinal pattern
wi j similarity count
W similarity graph
S symmetry cluster
en(S ) objects in a symmetry cluster
S set of symmetry clusters
P parfactor partition
L Laplacian matrix
DKL Kullback-Leibler divergence
δ≤ mean delta
d(Wt,Wt+1,S) similarity change measure
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of Probabilistic Graphical Models for Dry-Bulk Shipping,” in M. Jaeger, T. D.

www.astesj.com 88

http://www.astesj.com


N. Finke et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 2, 73-93 (2022)

Nielsen, editors, Proceedings of the 10th International Conference on Proba-
bilistic Graphical Models, volume 138 of Proceedings of Machine Learning
Research, 197–208, PMLR, 2020.

[4] Y. Xiang, K.-L. Poh, “Time-Critical Dynamic Decision Making,” 2013.
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Table 1: Accuracy scores of MOP4SA in SA4PG. Further results can be found in the appendix

DBSCAN Spectral Clustering Exact DBSCAN Spectral Clustering Exact
d τ δ≤ n n>1 #gr s DKL n>1 #gr s DKL #gr s #gr s DKL #gr s DKL #gr s

t = [05, 10) t = [10, 15)

2

1

0.05 42 33 42 19.6 0.342 17 42 19.1 0.317 306 38.7 66 37.8 0.294 81 37.5 0.621 357 95.2
0.1 23 20 23 15.3 0.281 16 23 19.8 0.036 310 29.8 54 29.9 0.397 64 39.6 0.185 357 78.1

0.15 19 15 19 14.5 0.441 16 19 14.5 0.126 268 25.1 46 28.4 0.401 64 28.8 0.857 351 69.6

2

0.05 16 10 16 14.1 0.578 10 16 13.9 0.172 251 22.8 47 27.6 0.535 56 27.7 0.388 348 65.7
0.1 35 29 35 17.6 0.458 18 35 17.5 0.062 310 33.2 75 34.9 0.487 69 34.4 0.444 359 87.5

0.15 5 2 5 12.5 0.724 5 5 12.4 0.014 180 15.8 29 24.4 0.655 48 24.8 0.224 342 50.9

3

0.05 27 19 27 15.7 0.240 15 27 15.7 0.026 300 29.1 71 31.3 0.442 57 30.8 0.249 358 78.7
0.1 54 48 54 22.0 0.236 12 54 21.8 0.093 317 41.1 81 42.5 0.506 85 42.4 0.307 361 103.9

0.15 48 42 48 21.2 0.070 14 48 20.2 0.129 309 37.7 80 41.0 0.182 70 39.0 0.392 355 96.5

3

1

0.05 13 5 13 13.6 0.756 12 13 13.6 0.021 177 17.1 31 26.5 0.682 63 27.3 0.152 339 55.8
0.1 20 11 20 15.5 0.697 19 20 14.5 0.283 194 20.0 39 29.5 0.567 64 28.8 0.561 342 62.0

0.15 22 12 22 15.2 0.706 21 22 15.1 0.058 195 20.3 40 29.3 0.620 67 30.2 0.207 344 63.7

2

0.05 5 2 5 12.6 0.782 5 5 12.4 0.011 165 15.1 28 24.4 0.667 45 24.7 0.205 338 50.1
0.1 5 2 5 12.5 0.781 5 5 12.4 0.147 165 15.1 28 24.4 0.697 51 24.9 0.197 338 50.0

0.15 7 2 7 12.8 0.776 7 7 12.7 0.019 168 15.4 25 24.9 0.599 48 25.2 0.246 340 51.3

3

0.05 383 2 383 249.7 0.000 1 383 247.8 0.001 385 244.0 384 488.7 0.000 383 485.8 0.005 385 480.0
0.1 13 4 13 13.6 0.763 13 13 13.7 0.040 174 16.8 36 26.4 0.574 60 27.3 0.194 338 55.3

0.15 19 6 19 14.8 0.694 19 19 14.5 0.111 199 19.8 39 28.6 0.597 64 28.8 0.267 340 61.8

4

1

0.05 186 2 186 79.0 0.445 76 186 79.9 0.047 296 90.9 205 154.3 0.306 203 155.1 0.163 358 214.2
0.1 4 2 4 12.5 0.784 4 4 12.6 0.911 165 15.0 27 24.3 0.676 23 24.5 0.712 338 49.4

0.15 7 2 7 12.8 0.779 7 7 12.8 0.644 167 15.4 25 24.9 0.694 38 25.0 0.571 338 51.1

2

0.05 255 2 255 127.3 0.219 64 255 127.9 0.018 336 137.4 277 251.4 0.155 261 249.1 0.043 366 297.7
0.1 197 3 197 86.1 0.445 103 197 86.9 0.116 300 97.4 213 168.1 0.381 209 169.1 0.171 363 228.5

0.15 3 2 3 12.5 0.779 3 3 12.4 0.779 165 14.9 21 24.2 0.699 27 24.2 0.647 338 48.9

3

0.05 187 2 187 79.7 0.427 88 187 80.6 0.027 293 89.1 199 155.4 0.277 196 156.3 0.076 360 212.1
0.1 226 3 226 105.5 0.353 79 226 107.6 0.056 315 114.9 240 205.7 0.263 235 208.1 0.088 371 261.3

0.15 293 2 293 158.5 0.024 35 293 164.7 0.173 362 169.2 299 315.9 0.116 301 316.1 0.256 384 356.4

t = [15, 20) t = [20, 25)

2

1

0.05 42 33 231 71.7 0.170 17 232 73.7 0.355 359 154.5 302 123.9 0.150 316 133.1 0.117 362 214.0
0.1 23 20 229 58.9 0.324 16 230 69.4 0.201 359 127.9 312 104.8 0.182 318 115.3 0.116 362 178.4

0.15 19 15 236 55.2 0.374 16 227 56.3 0.867 353 116.6 305 98.9 1.029 314 100.4 0.584 356 164.2

2

0.05 16 10 242 55.1 0.145 10 238 55.3 0.280 351 111.2 301 97.6 0.098 311 98.5 0.173 353 157.0
0.1 35 29 230 67.9 0.354 18 214 64.9 0.527 359 143.1 305 117.1 0.286 317 114.6 0.313 362 199.6

0.15 5 2 227 46.7 0.203 5 229 49.4 0.193 348 90.1 301 83.8 0.162 308 87.3 0.102 350 129.9

3

0.05 27 19 251 63.8 0.471 15 224 58.6 0.344 360 130.0 305 111.3 0.280 313 104.7 0.324 362 182.2
0.1 54 48 211 78.1 0.392 12 239 80.5 0.237 362 168.6 298 131.4 0.346 330 139.4 0.132 364 233.9

0.15 48 42 217 75.5 0.168 14 214 71.3 0.443 357 160.2 293 127.5 0.118 315 125.5 0.305 359 221.3

3

1

0.05 13 5 222 49.6 0.264 12 219 53.8 0.147 345 98.8 303 90.3 0.187 307 94.7 0.091 348 142.5
0.1 20 11 222 54.6 0.348 19 224 57.1 0.535 346 108.3 297 98.0 0.291 309 100.4 0.446 349 155.5

0.15 22 12 225 55.0 0.753 21 222 58.8 0.176 347 111.1 300 99.4 0.908 303 103.0 0.110 351 159.5

2

0.05 5 2 233 46.8 0.166 5 248 49.2 0.174 344 89.2 301 84.6 0.193 309 88.1 0.087 347 128.9
0.1 5 2 230 46.8 0.358 5 231 49.4 0.216 344 89.0 300 84.5 0.774 297 86.9 0.255 347 128.8

0.15 7 2 217 46.3 0.995 7 228 49.8 0.217 345 91.5 305 84.8 0.402 319 89.4 0.161 348 132.3

3

0.05 383 2 384 728.7 0.000 1 387 726.9 0.004 385 714.6 385 968.8 0.000 388 968.8 0.004 385 950.4
0.1 13 4 234 51.0 0.309 13 236 55.0 0.202 344 98.2 301 91.9 0.493 310 96.3 0.135 347 141.8

0.15 19 6 235 54.2 0.272 19 217 56.6 0.264 345 107.6 313 98.9 0.135 301 99.4 0.144 348 154.4

4

1

0.05 186 2 319 257.8 0.121 76 269 245.3 0.181 361 343.5 337 382.2 0.043 329 361.1 0.128 364 472.5
0.1 4 2 231 46.6 0.272 4 211 45.3 0.307 344 88.0 300 83.8 0.195 301 82.0 0.043 347 127.2

0.15 7 2 217 46.3 0.307 7 229 49.6 0.257 344 93.4 304 84.7 0.192 295 87.4 0.156 347 134.2

2

0.05 255 2 344 401.4 0.059 64 309 382.2 0.039 367 460.5 352 562.2 0.019 341 533.9 0.032 368 624.7
0.1 197 3 324 275.1 0.697 103 260 264.5 0.158 365 362.6 346 406.3 0.336 324 381.1 0.134 366 497.2

0.15 3 2 215 45.0 0.251 3 225 45.8 0.273 344 87.1 303 81.6 0.179 297 82.3 0.197 347 126.1

3

0.05 187 2 315 253.7 0.482 88 267 248.7 0.068 362 340.1 352 382.7 0.261 319 361.2 0.038 363 468.2
0.1 226 3 324 325.9 0.104 79 290 321.7 0.082 373 413.8 357 472.8 0.052 339 460.3 0.063 373 564.5

0.15 293 2 341 480.2 0.122 35 333 478.9 0.180 384 545.1 377 663.8 0.053 357 656.8 0.045 385 733.7
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Table 2: Results of MOP4SA for further timesteps with t ≥ 25

DBSCAN Spectral Clustering Exact DBSCAN Spectral Clustering Exact
d τ δ≤ n n>1 #gr s DKL n>1 #gr s DKL #gr s #gr s DKL #gr s DKL #gr s

t = [25, 30) t = [30, 35)

2

1

0.05 42 33 328 182.7 0.371 17 338 193.2 0.078 363 274.0 334 248.7 0.356 345 255.4 0.073 366 334.9
0.1 23 20 328 155.2 0.102 16 340 167.2 0.093 362 229.2 338 207.6 0.088 341 220.7 0.094 364 280.7

0.15 19 15 318 146.5 0.988 16 332 150.4 0.064 356 212.3 322 195.5 0.442 338 201.1 0.052 358 261.9

2

0.05 16 10 318 143.7 0.068 10 333 146.2 0.128 355 203.5 322 191.5 0.052 340 195.7 0.110 358 250.6
0.1 35 29 324 172.1 0.105 18 337 171.8 0.076 362 256.8 334 229.4 0.076 341 230.3 0.064 364 314.5

0.15 5 2 312 124.5 0.127 5 320 128.8 0.070 352 170.1 314 167.1 0.136 325 171.7 0.068 355 210.8

3

0.05 27 19 322 162.2 0.324 15 338 157.2 0.292 362 234.5 328 215.1 0.086 348 212.4 0.178 365 287.2
0.1 54 48 331 194.4 0.233 12 348 205.7 0.070 364 299.1 342 261.1 0.119 352 275.6 0.065 366 365.4

0.15 48 42 327 187.5 0.083 14 341 188.6 0.124 359 282.9 336 250.5 0.072 349 253.1 0.064 362 349.6

3

1

0.05 13 5 313 134.9 0.143 12 323 140.1 0.064 349 187.2 317 180.7 0.134 329 187.2 0.063 352 232.2
0.1 20 11 313 145.7 0.494 19 332 149.9 0.169 351 203.2 320 194.9 0.440 338 200.9 0.097 354 251.7

0.15 22 12 314 148.0 0.656 21 326 152.9 0.079 352 208.4 319 198.6 0.189 330 204.3 0.077 355 258.0

2

0.05 5 2 311 125.5 0.149 5 320 131.4 0.071 349 169.9 313 167.4 0.145 325 174.4 0.066 352 211.0
0.1 5 2 310 125.4 0.631 5 313 127.8 0.145 349 169.0 312 167.1 0.590 322 170.2 0.129 352 210.0

0.15 7 2 311 126.6 0.142 7 335 133.6 0.112 350 173.6 316 169.5 0.122 340 179.1 0.092 353 215.5

3

0.05 383 2 385 1214.0 0.000 1 388 1210.5 0.004 385 1186.4 385 1458.9 0.000 388 1454.6 0.004 385 1422.8
0.1 13 4 309 136.1 0.523 13 322 142.5 0.090 349 186.0 312 181.3 0.492 327 189.5 0.089 352 231.0

0.15 19 6 320 147.0 0.108 19 328 164.4 0.089 350 201.5 322 196.2 0.109 337 226.8 0.077 353 249.3

4

1

0.05 186 2 341 508.9 0.037 76 360 490.5 0.108 364 602.1 342 635.8 0.036 372 627.3 0.042 367 732.7
0.1 4 2 310 124.1 0.148 4 311 122.5 0.503 349 167.1 312 165.6 0.139 317 164.3 0.524 352 207.6

0.15 7 2 312 126.6 0.143 7 313 129.2 0.105 349 176.1 317 169.8 0.135 319 172.4 0.075 352 218.2

2

0.05 255 2 355 725.2 0.015 64 361 698.5 0.025 369 789.8 356 889.8 0.016 368 873.8 0.021 370 956.1
0.1 197 3 352 540.4 0.313 103 363 516.2 0.115 367 632.7 353 676.1 0.303 368 658.3 0.102 369 772.0

0.15 3 2 312 122.2 0.134 3 309 122.6 0.156 349 165.4 317 163.8 0.131 311 163.8 0.152 352 205.5

3

0.05 187 2 354 513.2 0.252 88 346 487.1 0.025 363 597.6 355 652.6 0.254 358 619.3 0.021 365 734.7
0.1 226 3 360 623.2 0.050 79 361 611.6 0.030 373 715.9 362 775.4 0.047 368 769.2 0.028 375 868.0

0.15 293 2 384 857.6 0.019 35 369 842.5 0.038 385 924.6 385 1054.2 0.013 374 1031.6 0.032 385 1115.7

t = [35, 40) t = [40, 45)

2

1

0.05 42 33 340 314.0 0.341 17 350 318.9 0.072 369 396.8 346 378.5 0.330 353 383.4 0.070 371 459.1
0.1 23 20 346 261.6 0.078 16 342 274.7 0.095 367 333.0 349 316.7 0.074 349 329.3 0.093 370 385.8

0.15 19 15 329 247.2 0.066 16 339 252.7 0.050 361 311.4 335 298.3 0.065 345 305.2 0.048 363 361.3

2

0.05 16 10 327 240.0 0.054 10 343 246.1 0.104 361 298.6 333 289.6 0.052 350 303.8 0.109 363 347.6
0.1 35 29 338 288.0 0.070 18 345 290.0 0.063 367 373.8 343 347.7 0.069 348 350.8 0.064 369 432.8

0.15 5 2 320 209.7 0.136 5 330 215.4 0.068 358 252.4 330 253.1 0.124 338 260.1 0.068 360 294.5

3

0.05 27 19 334 269.6 0.081 15 355 269.0 0.087 367 341.2 340 324.8 0.078 359 326.6 0.082 370 395.3
0.1 54 48 347 329.5 0.107 12 353 344.8 0.064 369 438.8 352 398.8 0.100 360 415.8 0.063 373 506.7

0.15 48 42 346 316.1 0.055 14 349 319.3 0.061 365 414.6 353 383.1 0.052 352 385.6 0.063 368 479.4

3

1

0.05 13 5 325 227.6 0.131 12 333 241.8 0.062 355 277.9 331 275.4 0.121 341 290.8 0.062 357 324.1
0.1 20 11 325 245.1 0.416 19 343 253.5 0.066 357 300.9 333 296.5 0.386 347 306.7 0.065 359 350.9

0.15 22 12 325 249.6 0.093 21 336 256.7 0.074 358 308.3 335 302.0 0.060 346 310.2 0.072 360 359.3

2

0.05 5 2 318 210.5 0.140 5 331 218.4 0.064 355 253.1 327 254.1 0.131 340 263.3 0.062 357 295.6
0.1 5 2 318 209.7 0.568 5 326 213.6 0.132 355 251.9 328 253.4 0.527 332 257.9 0.134 357 298.2

0.15 7 2 322 213.3 0.113 7 344 227.6 0.094 356 259.6 331 258.3 0.108 347 286.1 0.095 358 302.9

3

0.05 383 2 385 1701.7 0.000 1 389 1699.4 0.003 385 1659.9 385 1944.8 0.000 390 1943.8 0.003 385 1898.4
0.1 13 4 317 227.3 0.472 13 332 237.5 0.091 355 276.8 327 274.4 0.443 342 286.3 0.095 357 323.4

0.15 19 6 328 246.2 0.111 19 341 285.6 0.077 356 299.6 335 298.8 0.101 349 338.4 0.075 358 349.2

4

1

0.05 186 2 345 764.2 0.031 76 374 766.0 0.023 367 864.1 347 893.2 0.031 376 913.4 0.022 369 1003.2
0.1 4 2 317 207.7 0.134 4 323 207.2 0.519 355 248.8 326 250.8 0.125 332 251.0 0.465 357 290.7

0.15 7 2 323 213.8 0.134 7 323 216.7 0.076 355 261.9 331 259.1 0.123 330 261.7 0.149 357 305.5

2

0.05 255 2 356 1055.1 0.016 64 372 1045.3 0.021 370 1124.5 359 1221.2 0.015 376 1218.6 0.021 371 1291.4
0.1 197 3 355 812.6 0.295 103 371 804.4 0.098 370 914.6 358 951.2 0.273 373 948.6 0.097 372 1067.9

0.15 3 2 323 206.2 0.129 3 317 205.7 0.147 355 246.3 332 249.8 0.117 327 248.9 0.137 357 287.7

3
0.05 187 2 356 785.1 0.245 88 360 753.9 0.020 368 865.9 358 917.9 0.238 366 889.9 0.019 368 998.0

0.1 226 3 364 929.7 0.046 79 373 929.2 0.028 377 1021.8 366 1084.0 0.045 376 1090.0 0.027 378 1175.8
0.15 293 2 385 1251.4 0.012 35 377 1223.1 0.030 385 1304.6 385 1447.7 0.012 379 1416.0 0.028 385 1494.3
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Table 3: Distances as a result of running MOP4SCD between consecutive timesteps

d(Wt ,Wt+1,S)
d τ δ≤ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2

1

0.05 .067 .067 .068 .065 .066 .068 .067 .066 .063 .065 .069 .068 .062 .061 .064 .069 .064 .067 .068
0.1 .102 .112 .116 .107 .114 .115 .109 .114 .111 .105 .101 .11 .111 .116 .11 .109 .114 .107 .113

0.15 .135 .132 .142 .125 .136 .142 .142 .138 .14 .135 .137 .133 .139 .132 .129 .135 .131 .134 .143

2

0.05 .105 .113 .114 .116 .113 .115 .113 .114 .115 .115 .116 .113 .117 .114 .115 .112 .113 .113 .116
0.1 .068 .068 .069 .073 .068 .074 .061 .082 .071 .071 .077 .08 .073 .065 .075 .072 .082 .074 .081

0.15 .177 .18 .18 .185 .18 .184 .178 .185 .18 .182 .184 .181 .181 .181 .178 .184 .185 .184 .188

3

0.05 .079 .082 .081 .082 .086 .092 .087 .08 .09 .083 .079 .089 .08 .085 .084 .089 .086 .082 .088
0.1 .037 .038 .037 .039 .039 .039 .037 .035 .038 .039 .034 .039 .038 .037 .036 .038 .038 .038 .038

0.15 .044 .043 .043 .046 .046 .044 .043 .045 .044 .045 .044 .046 .048 .046 .044 .044 .046 .046 .05

3

1

0.05 .199 .201 .2 .2 .199 .201 .2 .201 .201 .201 .201 .19 .201 .2 .201 .2 .2 .2 .201
0.1 .214 .219 .219 .218 .219 .218 .217 .216 .216 .218 .218 .217 .217 .217 .219 .217 .218 .217 .219

0.15 .213 .218 .216 .217 .218 .219 .218 .219 .217 .218 .218 .218 .218 .217 .218 .219 .218 .218 .217

2

0.05 .238 .239 .239 .24 .24 .24 .239 .24 .24 .24 .24 .241 .239 .239 .238 .239 .24 .239 .24
0.1 .237 .239 .238 .239 .239 .239 .239 .24 .239 .24 .239 .239 .239 .238 .239 .239 .24 .239 .24

0.15 .236 .237 .238 .238 .239 .238 .239 .238 .238 .239 .238 .238 .237 .237 .238 .238 .238 .238 .238

3

0.05 .001 .001 .0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001
0.1 .232 .231 .23 .233 .232 .233 .235 .233 .234 .233 .233 .232 .233 .233 .233 .235 .234 .233 .234

0.15 .223 .226 .223 .228 .227 .227 .226 .227 .23 .227 .227 .227 .229 .228 .228 .229 .226 .227 .228

4

1

0.05 .056 .055 .056 .055 .056 .056 .056 .055 .055 .056 .056 .056 .056 .056 .056 .056 .056 .056 .056
0.1 .176 .178 .178 .178 .178 .178 .178 .176 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178

0.15 .211 .21 .213 .213 .213 .213 .213 .213 .212 .212 .213 .213 .213 .213 .213 .213 .213 .213 .213

2

0.05 .033 .034 .035 .034 .035 .034 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035
0.1 .075 .076 .076 .076 .076 .076 .076 .075 .075 .076 .076 .076 .075 .076 .076 .075 .076 .075 .076

0.15 .218 .216 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218 .218

3

0.05 .064 .064 .064 .065 .065 .064 .065 .065 .065 .065 .065 .065 .065 .065 .065 .064 .065 .065 .065
0.1 .049 .05 .049 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .049 .05 .05 .05

0.15 .016 .015 .015 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016

d(Wt ,Wt+1,S)
d τ δ≤ 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

2

1

0.05 .066 .067 .064 .064 .064 .068 .067 .064 .063 .065 .066 .067 .062 .068 .066 .067 .066 .067 .067
0.1 .116 .11 .103 .103 .115 .115 .108 .11 .107 .115 .109 .107 .114 .117 .107 .116 .112 .115 .114

0.15 .135 .135 .139 .137 .139 .136 .132 .143 .133 .143 .132 .134 .129 .137 .137 .142 .13 .141 .14

2

0.05 .111 .115 .113 .114 .111 .11 .11 .112 .108 .112 .11 .111 .112 .112 .115 .114 .11 .113 .109
0.1 .078 .079 .073 .077 .077 .067 .074 .08 .068 .072 .065 .076 .072 .074 .076 .073 .068 .073 .067

0.15 .184 .185 .182 .182 .182 .182 .178 .183 .172 .184 .175 .179 .183 .177 .184 .186 .176 .187 .18

3

0.05 .075 .087 .08 .086 .09 .085 .091 .086 .089 .083 .091 .076 .086 .088 .082 .091 .087 .088 .092
0.1 .039 .039 .036 .036 .039 .037 .039 .038 .037 .036 .036 .037 .036 .038 .035 .038 .037 .035 .039

0.15 .046 .044 .045 .045 .048 .048 .048 .046 .045 .043 .047 .042 .045 .049 .048 .048 .049 .044 .048

3

1

0.05 .201 .2 .2 .2 .201 .198 .199 .2 .198 .201 .191 .2 .19 .2 .199 .2 .2 .2 .198
0.1 .218 .218 .217 .217 .217 .218 .217 .217 .216 .217 .218 .217 .218 .217 .216 .217 .215 .219 .217

0.15 .218 .218 .218 .218 .219 .217 .217 .218 .217 .216 .216 .217 .219 .217 .218 .216 .218 .219 .216

2

0.05 .24 .239 .24 .239 .239 .239 .238 .239 .237 .239 .239 .237 .24 .238 .238 .24 .239 .24 .239
0.1 .239 .239 .239 .239 .239 .239 .238 .239 .238 .237 .238 .238 .24 .237 .238 .239 .239 .239 .239

0.15 .238 .237 .238 .237 .237 .238 .236 .238 .236 .237 .237 .237 .238 .236 .237 .238 .236 .238 .236

3

0.05 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001
0.1 .233 .234 .232 .235 .233 .232 .233 .231 .233 .233 .233 .231 .232 .232 .234 .235 .233 .232 .235

0.15 .229 .229 .228 .228 .228 .227 .228 .227 .226 .228 .226 .227 .226 .225 .228 .228 .228 .228 .226

4

1

0.05 .056 .055 .056 .056 .055 .055 .055 .055 .055 .055 .054 .055 .056 .056 .056 .056 .056 .056 .056
0.1 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178 .178

0.15 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213 .213

2

0.05 .035 .035 .035 .034 .035 .034 .035 .035 .035 .034 .035 .034 .035 .034 .035 .035 .035 .035 .035
0.1 .075 .076 .076 .076 .076 .076 .076 .075 .076 .074 .076 .075 .076 .076 .076 .076 .076 .076 .075

0.15 .218 .218 .218 .218 .218 .216 .218 .218 .218 .218 .218 .218 .216 .218 .218 .218 .218 .218 .218

3

0.05 .065 .065 .063 .065 .065 .065 .065 .065 .065 .065 .065 .065 .064 .064 .065 .065 .064 .065 .065
0.1 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

0.15 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016
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