

www.astesj.com 144

Management Tool for the “Nephele” Data Center Communication Agent

Angelos Kyriakos*1,2, Thomas Tsavalos1, Dionysios Reisis1,2

1 National and Kapodistrian University of Athens, Electronics Lab, Physics Dpt, GR-15784, Zografos Greece
2 Institute for Communication and Computers (ICCS), National Technical University of Athens, Greece

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 23 July, 2018
Accepted: 04 October, 2018
Online: 14 November, 2018

 Optical switching provided the means for the development of Data Centers with high
throughput interconnection networks. A significant contribution to the advanced optical
Data Centers designs is the Nephele architecture that employs optical data planes, optical
Points of Delivery (PoD) switches and Top of Rack (ToR) switches equipped with 10 Gbps
connections to the PoDs and the servers. Nephele follows the Software Defined Network
(SDN) paradigm based on the OpenFlow protocol and it employs an Agent communicating
the protocol commands to the data plane. The current paper presents a management tool
for the Agent. The Agent’s management tool is utilized to configure the Agent, create
commands, perform step operations and monitor the results and the status. Moreover, as a
testing and validation tool, it plays a significant role in the improvement of the Agent’s
design as well as in the upgrade of the entire data center’s organization and performance.

Keywords:
Graphical User Interface
Data Center
Agent

1. Introduction

Currently, the integration of Information Technology (IT)
activities and applications takes place in data centers, which also
include the necessary devices for communication, high
performance computing and data storage. Data centers play an
important role in organizations based on IT services, as they
provide the means for fast responses to business demands, they
facilitate the IT operations and their utilization leads to the
reduction of the capital expenditures and the operating costs.
Targeting the improvement of data centers, researchers and
engineers focus on the use of optical switching due to the
bandwidth capabilities that it provides. A significant contribution
to this design effort features optical links connected through
optical Point of Delivery (PoD) switches to the Top of Rack (ToR)
switches, SDN with OpenFlow organization, an Agent connecting
the SDN controller and the data plane and an enhanced agent
management tool [1], which all integrate in the Nephele [2] data
center.

The Nephele is based on a dynamic optical network
infrastructure for scale-out, disaggregated datacenters that
leverages optical switching with SDN control and orchestration to
overcome current datacenter limitations. The Nephele design

follows vertical end-to-end development approach extending
from the data center architecture to the overlaying control plane
and its interface to the application, in order to deliver a fully-
functional networking solution, extending network virtualization
to the optical layer. The Nephele design achieves dynamic
reconfiguration by utilizing the slotted operation of the network
based on the Time-Division Multiple Access (TDMA). Moreover,
the SDN control can effectively manage the data plane elements.
The OpenFlow protocol communicates the SDN control’s
messages to the data plane [3]. Nephele uses an Agent to realize
the communication between the SDN controller and the data plane.
The Agent includes functions filtering the control plane (SDN
controller and the Agent) instructions that are transmitted through
the OpenFlow messages; the Agent translates these messages and
forwards them to the corresponding ToR switch. Although, the
Agent can be classified as a back-end process, there is a need for
an interactive management tool that allows the interaction of the
designers and the future users with the Agent. The need for the
above tool appeared in the course of the data center’s design and
implementation phase, it became more emphatic during the
integration and finally the validation and testing phases. Similar
interactive tools are reported in the literature as important tools
for the management, testing and evaluation of networks [4], [5],
[6].

ASTESJ

ISSN: 2415-6698

*Dionysios Reisis, +30 210 727 6708/6720 & dreisis@phys.uoa.gr

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030618

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030618

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 145

Figure 1: Nephele Data Center Network Architecture

Focusing on providing an effective tool mainly for advancing,
testing and monitoring the Agent’s functionality and performance
[7], the current work presents a management tool for the Nephele
Agent. The proposed Agent’s tool is able to access all the
information that it is directed to the data plane. Moreover, it can
be used to create the commands for the data plane, monitor the
commands transmission to the devices and also, the
corresponding responses of the devices to the Agent. Furthermore,
it provides the ability to request all the information with respect
to the status of the devices. The use of the proposed management
tool contributed significantly to the development of the entire
Nephele data center and consequently the testing phase.
Additionally, it benefits the entire system because it will still be
most suitable for effectively monitoring the Agent’s performance
during normal operation and also it provides the means for
realizing scenarios in the cases of demonstrations and
presentations [7].

The paper is organized as follows: Section II highlights the
Nephele data center architecture. Section III presents the Agent’s
management tool and Section IV concludes the paper.

2. The Nephele Data Center

The Nephele data center involves a slotted hybrid
electrical/optical interconnection network that is advantageous
with respect to the dynamic allocation of resources. The network
includes PoDs of racks that communicate with the so-called
innovation zones, which are the devices dedicated for the
disaggregated computing, storage and memory resources. The
innovation zones are connected to ToR switches [8]. Each
innovation zone can communicate to other innovation zones
through an all optical or an electro-optical channel. The
architecture of the Nephele data center is depicted in Figure 1.

The Nephele data center is designed for an operation that
includes dynamic and efficient sharing of the optical resources

and a collision free network operation by using Time Division
Multiplexing Access (TDMA). The control plane is based on a
Software Defined Network (SDN). The SDN controller is divided
in two distinct interfaces, namely the Northbound Interface and
the Southbound Interface. A high-level view of the Nephele
control plane architecture is presented on Figure 2.

 The Application to Controller Plane Interface defined by

ONF (Open Networking Foundation) in the SDN architecture is
realized by the Northbound Interface of the Nephele SDN
controller. This interface allows the interaction between the core
services of the Nephele SDN controller and the upper layer
network applications, which implement the logic of the network
resource allocation in the data center. The Nephele’s design
follows the approach of an overall centralized architecture. For

Figure 2: Nephele SDN Control Plane

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 146

this purpose, all the scheduling plans are carried out according to
the algorithms that are performed by the central controller's
Traffic Offline Scheduling Engine [9]. Considering the
optimization of the utilization of the entire network the Offline
Scheduling Engine is equipped with mechanisms able to allocate
resources of the data center network in the long term.

 The data-controller plane interface defined by ONF in the
SDN architecture is realized by the Southbound Interface of the
Nephele SDN controller. The commonly used in these cases
OpenFlow has been chosen as a standardized communication
channel for this interface. It executes two main tasks: to command
and configure the data plane devices via the device specific
Agents. A device specific Agent performs as a proxy for the data
plane switching devices. Consequently, the Agent should have
two communication interfaces the Agent-Controller interface and
the Agent-FPGA interface. The Nephele Agent's is mainly
devoted to filter the control plane instructions, that are included in
the OpenFlow messages. Additionally, the Agent translates these
instructions and then, it forwards them to the corresponding
FPGA via a PCI Express interconnection. The Agent is a back-
end process. It is activated at the beginning of each Nephele
scheduling period and it will communicate the new schedule
instructions in order to configure the data plane switches. The
instructions come in the form of scheduling tables; the format of
these scheduling tables is presented by Figure 3.

3. The Management Tool of the Agent

The present section describes first the graphical user interface
(GUI) architecture of the management tool of the Agent; second,
the tool’s usability and third, the back-end of the management tool.

3.1. The GUI Architecture

The Agent’s management tool is implemented by using the
JavaFX software platform of the Java programming language;
JavaFX consists of a set of graphics and media packages, which
provide the means to the developers for the design, creation,
testing, debugging, and deployment of rich client applications that
operate consistently across diverse platforms. The management
tool includes a GUI that presents to the user a Nephele network of
smaller size as an image-map. This image-map includes clickable
areas, which are illustrated graphics created on a raster graphics
editor and enhanced with interactive attributes. This design has
led to the implementation of a graphic environment, which,
considering the interaction of the user with the management tool,
ensures both, optimized usability and user experience, compared

to an environment using the standard widgets, provided by
JavaFX.

The user of the management tool sees the data center network,
the scheduling table, an explanatory image and a menu, which are
brought to her/him as the main scene of the GUI. This main scene
is shown in Figure 4. The smaller scale network includes four
PoDs residing in the network and connected via four WDM
(Wavelength Division Multiplexing) rings. Each of the PoDs
includes four PoD elements; these are divided into the
disaggregated rack and the ToR switch.

The GUI includes an explanatory image, that is located over
the menu in the right top corner. The image presents an
enlargement of a PoD element in higher resolution and it is
augmented with annotations, so that the user is able to understand
what the image portrays.

In order to present the graphic display of the PoD elements
three objects of the ImageView class were stacked in a StackPane
object [10]. This design has been implemented as follows: they
were aligned three image layers one over another (depicted by
Figure 5), so that they appear as a single solid object and at the
same time the developer can handle each one independently. The
ImageView object is a type of Node object in the JavaFX Scene
Graph that is used for painting a view; the painting is carried out
by using data contained in an Image object. The StackPane is also
a type of Node object acting as the layout container and it contains
the ImageView objects. The three ImageView objects include the
images that represent the ToR switch, the disaggregated rack and
a visual effect.

In the GUI, the ToR switches are the interactive parts of the
management tool: the user can select by clicking on them and
she/he can create the scheduling table of the data center. Each ToR
is a clickable area and it can be used by the user as the source
and/or the destination in the scheduling table entry. In our case the
upper left ToR is chosen by default as the host Agent PC
scheduling engine. This is the source ToR and the remaining ToRs
are the destinations. The interactive feature is accomplished by
registering an event handler on the ImageView object that
includes the ToR image. An event handler is an implementation
of the EventHandler interface. The handle() method of this
interface will let the code filling the entries in the scheduling table
to perform if the ToR image is clicked. Upon the cursor click
event, all the necessary code is executed to fill in the required
fields of a scheduling table’s entry. The management tool fills the
Destination field with the identity (id) of the ToR switch where
the event occurred. The Timeslot field takes the value of the time
sequence of the event, which is calculated based on a counter. The
Wavelength field is filled with a value selected from a closed
interval of integer values. Finally, the VLΑΝ (Virtual LAN) field
entry represents the identification number that is assigned to the
WDM ring, through which the data transmission will occur.
Furthermore, when the ToR is clicked, as depicted in Figure 5, it

Figure 3: The Format of the Schedule Table

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 147

Figure 4: The GUI Main Scene

will trigger the effect displaying that it is the selected ToR. The
effect is represented by a brighter image enclosing the ToR switch.
The effect is set not to be visible at first, it will be set to full
opacity if the ToR is selected and it will return to zero opacity
with a two seconds lasting fade transition. The fade transition is
an instance of the FadeTransition class, which is a subclass of the
JavaFX Animation class and it changes the opacity of a node over
a given time. The same effect has been implemented similarly to
the WDM rings and it indicates graphically what WDM ring is
chosen based on the VLAN field in the scheduling table entry.

All the aforementioned elements of the tool’s design let the

user to construct the scheduling table and provide the option of
editing it; this operation can be carried out by the use of the menu.
The menu consists of four buttons and inherits its attributes from
the Vbox class, which is a container that sorts its contents into a
single vertical column. The menu buttons were created as a
separate class. It is distinct from the Button class of JavaFX and
is created by stacking a TextField object over a filled Rectangle
object. This object’s filling is colored by an instance of the
LinearGradient class, in order to apply effects that are suitable to
the entire design of the GUI and preserve the uniformity to the
user eye. These effects are triggered by the events originating
from the mouse cursor and their implementation is based on
switching the order of the colors in the gradient fill. Each time the
user clicks the Add menu button she/he will start a new session of
constructing a scheduling table and the source ToR will be
automatically selected and indicated. A scheduling period of the
Nephele network can accommodate up to eighty entries, as the
corresponding allowed time slots. If the user exceeds that ceiling,

Figure 5: Effect of clicking the ToR

Figure 6: Pop-up Window with the Values sent to FPGA

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 148

a pop-up dialog box will emerge with the corresponding message,
prompting her/him to stop importing entries. The dialog box
prevents the user from interacting with the main application
window but it keeps the window visible in the background. When
the user has completed the creation of the scheduling table, she/he
is able to review it and delete any misplacing entries by using the
delete button from the menu. If the key is pressed and no entry is
selected or the scheduling table is empty, a pop-up window will
be called informing the user of the corresponding case. As a final
step the user presses the send button, an action which transmits
the scheduling table to the FPGA data plane devices.

The conclusion of the transaction is marked by the
appearance of a pop-up window that it will be shown to the user.
The window includes all the values that were sent to the FPGA in
a format that resembles that of a logic analyzer. The pop-up
window is shown in Figure 6 and the corresponding output of the
logic analyzer is depicted in Figure 7. The logic analyzer exports
the output as a CSV file (Comma-Separated Values); this file can
be processed by the management tool and in this case, the file’s
values will be forwarded to the pop-up window. The pop-up
window incorporates the graphical theme of the management tool
and is designed to model the layout of the logic analyzer.

3.2. Usability of the Agent’s Management Tool

The use of the management tool is of great importance to the
development and operation of the data center, since the users can
create their own traffic schedule and then transfer that schedule to
the data plane ToR switch. The engineers are able to control the
data plane switches, during the development and testing phase of

the physical layer of the data center network as shown in Fig 8.
The tool’s GUI allows to construct the commands directly in the
format of the scheduling tables of the FPGAs (instead of using the
OpenFlow protocol). Additionally, it is straightforward to extent
the management tool for creating the scheduling tables of a PoD
switch in the Nephele network. Given the fact that there is a ToR
Agent PC for each ToR switch in the network, the tool is executed
on the Agent computer and it provides to the user the means for
the scheduling of the network from the view point of the specific
ToR switch. The user can control graphically and more
importantly in real time the transmission of Nephele frames
originating at the ToR switch (that is controlled by the Agent
computer) to the other Nephele ToRs in the data center network
[11].

The benefit of designing, developing and effectively using

the proposed management tool has been already proven during
test procedures and demonstrations. An illustrious example is the
application, which has been shown during a presentation of the
control plane of the Nephele data center. The scenario for this
demonstration has as follows: the control plane includes parts of
the FPGA’s implementations of the data plane, the Agent, and the
SDN controller. Given that a functional data center Agent was not
available, we presented the control plane by dividing it into two
experiments. The first experiment demonstrates the SDN
controller and the second the FPGA’s operation controlled by the
management tool. The management tool has successfully imitated

Figure 7: Output of the Logic Analyzer

Figure 8: Nephele Data Plane Development

Figure 9: Live Demo of the Management Tool

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 149

the functions of the Agent; the majority of the people that
interacted with the management tool understood the concepts
behind the architecture of the Nephele network and the function
of the Agent in the Nephele data center. The demonstration as
shown in Figure 9 consists of the SDN controller software
presentation, the FPGA that represents the ToR switch, and the
Desktop PC that executes the management tool, which is
connected to the FPGA board via PCI Express. The user can
interact with the management tool and give his/her own
commands to the demonstration system.

3.3. Back-End of the Agent’s Management Tool

In the Nephele data center the ToR switch design includes
multiple FPGAs; all the FPGAs that belong to a single ToR
implementation use PCI Express to communicate with the host
ToR Agent computer. The management tool divides the
scheduling information to distinct parts, so that each part
corresponds to the scheduling information concerning the
corresponding FPGA; then it creates distinct threads to complete
the entire operation. We use a single thread to communicate with
a single FPGA and transfer the respective part of the ToR switch
traffic schedule. Note here that, the communication is performed
in parallel for all the FPGAs belonging to the same ToR switch.

In order to develop the PCI Express interface of the FPGAs
we used the Xilinx IP Core for PCI Express and the RIFFA
(Reusable Integration Framework for FPGA Accelerators)
framework [12]. The framework consists of an API (Application
Programming Interface), a driver/kernel module and an IP core
for the FPGAs. All the above parts are open-source. It is designed
to perform with the Xilinx IP core that handles the physical layer
of the PCI Express interface. The API is designed to support
multiple languages like C/C++, Java and Python. Moreover, it
includes the necessary function/methods that the management
tool needs to invoke, in order to communicate with the FPGA.
The entire API is designed to be executed by threads and the
design of the management tool takes full advantage of this
capability.

The communication that is directed from the Agent PC to a
FPGA operates according to the following steps. In the first, the
application initiates the transaction by calling the fpga_send
method. Then, the thread invokes the operation of the kernel
driver, which writes to the FPGA configuration registers the
necessary information to begin the transaction. The FPGA uses
DMA (Direct Memory Access) to read the scatter gather elements
[12] that the driver instructed. At the time that the transaction will
be completed the driver will read the final count of the data passed,
the amount of the data is then returned to the management tool as
the return value of the fpga_send method.

In the design of the tool special attention was payed to the
operation of the RIFFA API, because the RIFFA’s driver requires
all the data in contiguous memory locations (in an array). Note
here that, the Java’s Array object can’t be used in this case. An
attractive solution to this problem is the employment of the

ByteBuffer Class of Java, which is a class that is created to handle
a stream of raw data. The operations on the buffer can be carried
out byte by byte, but casting is also supported for the user to be
able to write a whole Java data type, like an integer.

Finally, the endian of the data has been tackled as follows.
The JVM (Java Virtual Machine) stores class files in big endian
byte order, where the high byte comes first. Multibyte data items
are always stored in big-endian order. Given that the Xilinx
FPGAs operate in little-endian byte order, the change of the
endianness could be arranged either during the construction of the
ByteBuffer or at the receiving buffer in the FPGA. The latter
choice has been proven more efficient and gave us the advantage
of the ByteBuffer casting, which would not be useful in the case
of changing the order of the byte inside the ByteBuffer in the Java
application.

4. Conclusion

The current paper presented a management tool for the Agent
of the Nephele data center. The advantage of creating and using
the proposed management tool is that the data center designers
and engineers can create their own schedule as the tool’s GUI
users and then transfer that schedule to each data plane ToR
switch. The user can control graphically in real time the
transmission of Nephele frames originating at the ToR switch to
the other Nephele ToRs in the data center network. Moreover, the
management tool can be of even further use if it will be extended
to create the scheduling tables of a PoD switch in the Nephele
network.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work has been funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 645212 (NEPHELE).

References

[1] A. Kyriakos, T. Tsavalos and D. Reisis , "GUI for the communication agent
of the “Nephele” data center," 2017 South Eastern European Design
Automation, Computer Engineering, Computer Networks and Social Media
Conference (SEEDA-CECNSM), Kastoria, 2017, pp. 1-5. doi:
10.23919/SEEDA-CECNSM.2017.8088237

[2] P. Bakopoulos, K. Christodoulopoulos, G. Landi, M. Aziz, E. Zahavi, D.
Gallico, R. Pitwon, K. Tokas, I. Patronas, M. Capitani, C. Spatharakis, K.
Yiannopoulos, K. Wang, K. Kontodimas, I. Lazarou, P. Wieder, D. Reisis, E.
Varvarigos, M. Biancani, H. Avramopoulos, “NEPHELE: an end-to-end
scalable and dynamically reconfigurable optical architecture for application-
aware SDN cloud datacenters”, IEEE Communications Magazine, 2018

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008.
“OpenFlow: enabling innovation in campus networks.” SIGCOMM Comput.
Commun. Rev. 38, 2 (March 2008), 69-74.

[4] Yi-Bing Lin , Joe Geigel, “A graphical user interface design for network
simulation,” Journal of Systems and Software, Volume 36, Issue 2, Pages
181-190, February 1997.

[5] M. Turon. 2005. “MOTE-VIEW: a sensor network monitoring and
management tool.” In Proceedings of the 2nd IEEE workshop on Embedded

http://www.astesj.com/

A. Kyriakos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 144-150 (2018)

www.astesj.com 150

Networked Sensors (EmNets '05). IEEE Computer Society, Washington, DC,
USA, 11-17.

[6] S. Corazza, S. Reale, “Network management system graphical interface”,
published in Eighth International Conference on Software Engineering for
Telecommunication Systems and Services, 1992.

[7] G. Landi, I. Patronas, K. Kontodimas, M. Aziz, K. Christodoulopoulos, A.
Kyriakos, M. Capitani, A. Hamedani(, D. Reisis, E. Varvarigos, P.
Bakopoulos, H. Avramopoulos,“SDN control framework with dynamic
resource assignment for slotted optical datacenter networks,” 2017 Optical
Fiber Communication Conference, Los Angeles, California, USA, March
2017.

[8] Ioannis Patronas, Angelos Kyriakos, Dionysios Reisis, "Switching functions
of a data center Top-of-Rack (ToR)," 23rd IEEE International Conference on
Electronics Circuits and Systems, Monte Carlo Monaco, Dec. 2016.

[9] K. Christodoulopoulos, K. Kontodimas, K. Yiannopoulos, E. Varvarigos,
"Bandwidth Allocation in the NEPHELE Hybrid Optical Interconnect",
2016 18th International Conference on Transparent Optical Networks
(ICTON), July 2016.

[10] Johan Vos, Weiqi Gao, Stephen Chin, Dean Iverson, James Weaver Pro
,JavaFX 8: A Definitive Guide to Building Desktop, Mobile, and Embedded
Java Clients [1 ed.] 2014 p.206-208.

[11] Chen J-W, Zhang J., “Comparing text-based and graphic user interfaces for
novice and expert users,” AMIA Annual Symposium Proceedings.
2007;2007:125-129.

[12] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.
2015 RIFFA 2.1: A Reusable Integration Framework for FPGA
Accelerators. ACM Trans. Reconfigurable Technol. Syst. 8, 4, Article 22
(September 2015), 23 pages. Available: http://dx.doi.org/10.1145/2815631

http://www.astesj.com/
http://dx.doi.org/10.1145/2815631

	2. The Nephele Data Center
	3. The Management Tool of the Agent
	3.1. The GUI Architecture
	3.2. Usability of the Agent’s Management Tool
	3.3. Back-End of the Agent’s Management Tool

	4. Conclusion
	Conflict of Interest
	Acknowledgment
	References

