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 Many existing system modeling techniques based on statistical modeling, data mining and 
machine learning have a shortcoming of building variable relations for the full ranges of 
variable values using one model, although certain variable relations may hold for only 
some but not all variable values. This shortcoming is overcome by the Partial-Value 
Association Discovery (PVAD) algorithm that is a new multivariate analysis algorithm to 
learn both full-value and partial-value relations of system variables from system data. Our 
research used the PVAD algorithm to model variable relations of energy consumption from 
data by learning full-and partial-value variable relations of energy consumption. The 
PVAD algorithm was applied to data of energy consumption obtained from a building at 
Arizona State University (ASU). Full- and partial-value variable associations of building 
energy consumption from the PVAD algorithm are compared with variable relations from 
a decision tree algorithm applied to the same data to show advantages of the PVAD 
algorithm in modeling the energy consumption system. 
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1. Introduction 

Our research is an extension of work originally presented in the 
2018 IEEE ICCAR Conference [1]. Many complex systems, such 
as energy consumption systems and transportation systems, 
involve both engineered and non-engineered system factors. For 
example, the energy consumption system of a building involves 
both engineered system factors, (e.g., AC equipment, pump for 
water use, lighting system, computers, and network equipment) 
and non-engineered system factors, (e.g., social/behavioral factors, 
such as occupants’ activities, and environmental/natural factors 
such as outside climate), which are intertwined to drive the energy 
consumption and demand of the building [2-4]. For another 
example, the transportation system involves both engineered 
system factors, (e.g., the transportation infrastructure including 
highways, streets and roads, and traffic control mechanisms, such 
as traffic lights) and non-engineered system factors, (e.g., 
social/behavioral factors such as traffic flows, drivers, pedestrians, 
and car accidents, as well as natural/environmental factors, such as 
weather conditions).  

Although models of engineered systems may be available, 
models of mixed-factor systems are usually not available due to 
unknown interconnectivities and interdependencies of many 

engineered and non-engineered system factors. A complete, 
accurate system model, which clearly defines relations of system 
variables including interconnectivities and interdependencies of 
engineering and non-engineered system factors, is highly desirable 
for many applications. For example, variable relations of energy 
consumption are required to enable the accurate estimation of 
energy consumption/demand and the close alignment of energy 
production with energy demand to achieve energy production and 
use .  

Utility/energy companies currently rely heavily on the past 
data of electricity loads in base, average and peak to project energy 
production/supply. This statistical investigative activity is done 
without adequate and accurate models of energy consumption 
systems [3]. Power plants often generate enough power to satisfy 
base loads and meet the difference between peak and base loads, 
sudden demand surge or any gap of energy supply and demand 
through their excess production capacities or by procuring from 
other energy sources [5, 6]. Historical data lack critical real-time 
features (e.g., the lag effect of historical data, and lack of finer 
levels and finer divisions in time and space) for the accurate 
projection and estimation of energy demand and consumption. 
Without adequate and accurate models of energy consumption 
systems, it is extremely difficult to obtain an accurate projection 
and estimation of energy demand and consumption. As a result, 
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energy has to be produced in excess in order to meet potential rise 
in demand. Energy production in excess is a significant cause of 
waste and inefficiency. Even with current technologies to obtain 
dynamic data of energy consumption systems in real time, the lack 
of adequate and accurate energy system models renders real-time 
dynamic system data useless for closely aligning energy 
production with energy demand to achieve energy production 
efficiency and energy use reduction. The ultimate energy 
efficiency through smart energy production and use will enable a 
shift from the existing code-, standard- and experience-based 
forecasting approach to a more dynamic, real-time and smart 
technology environment based on real-time data, models and 
analytics for the real-time, accurate estimation of energy 
consumption and smart technologies to align energy production 
with energy demand closely for energy use reduction and energy 
production efficiency.  

Many statistical modeling, data mining and machine learning 
techniques for system modeling, including decision trees, 
regression analysis, artificial neural network, and Bayesian 
networks, have been used to analyze and model energy 
consumption and efficiency of equipment, homes and buildings [7-
16]. System modeling techniques based on many existing 
statistical analysis, machine learning and data mining have a 
shortcoming of building variable relations for the full ranges of 
variable values using one model, although certain variable 
relations may hold for only some but not all variable values. This 
shortcoming is overcome by the PVAD algorithm that is a new 
multivariate analysis algorithm to learn both full-value and partial-
value relations of system variables from system data. Our research 
used the PVAD algorithm to model variable relations of energy 
consumption from data by learning full-and partial-value variable 
relations of energy consumption. The PVAD algorithm was 
applied to building energy consumption data at ASU.  

2. Shortcomings of existing techniques of system modeling 
from data 

Existing methods of learning system models from data include 
statistical analysis [17-24] and data mining techniques [23-32]. 
With system modeling from data, classification and prediction can 
be performed to explain or find relations among system variables. 
Depending on the nature of data, there are several methods to 
analyze data using statistical techniques such as parametric, non-
parametric and logistic regression. For example, when modeling 
categorical dependent variables, logistic regression can be applied 
[17, 21, 22]. In addition to decision and regression trees [23, 24], 
random forest and support vector machine are also considered [25-
28, 29, 31]. However, the above methods assume that the role of a 
variable in a variable relation is known (i.e., which variable is an 
independent or dependent variable) and a variable plays only one 
role of being either an independent variable or a dependent variable 
in one layer of variable relations. Once a variable is considered as 
an independent variable, it can no longer be utilized as a dependent 
variable which is a main disadvantage especially when the role of 
a variable is not known or when multiple layers of variable 
relations are required where a variable can play different roles of 
being an independent or dependent variable in different variable 
relations at different layers. 

Bayesian networks [23, 24, 35-37], structural equation models 
[33, 34] and reverse engineering methods [38-47] are examples of 
a few options left that can provide system modeling without prior 
knowledge of variables. However, those techniques discover only 
variable relations for full ranges of all  variable values instead of 
relations for specific values only. This can be seen from the 
Fisher’s Iris data set [48] in which the classification of the target 
variable (Plant Type) using independent variables works for only 
the values of Iris Versicolor and Iris Virginica) for the target 
variable but not for another target value of Iris Sentosa. For such 
data where variable relations hold for partial ranges of variable 
values only or different variable relations hold for different ranges 
of variable values, the model of the same variable relations for all 
variable values do not fit all data values well, that is, the model 
explains or represents the whole data set poorly. 

The PVAD algorithm was developed as a new system 
modeling technique [49-51] to overcome the above shortcomings. 
Variable value associations can be used to construct associative 
networks as multi-layer structural system models. The application 
of the PVAD based system modeling technique is part and parcel 
of our research of energy consumption in systems. 

3. The energy consumption data and the PVAD application 

 The PVAD algorithm is presented in detail in [49-51]. This 
section shows the PVAD application to data of energy 
consumption collected from an ASU building in January 2013 for 
modeling energy consumption. There was a data sample every 15 
minutes. The data set has 2976 data records or instances. Each data 
record contains four numeric values for the consumption of 
electricity (E), cooling (C), heating (H), and air temperature (A), 
respectively, as well as TimeStamp (T). T is important because 
changes of T are associated with changes in presence and activities 
of occupants and changes of E, C and H. 

To apply the PVAD algorithm, in Step 1 the numeric variables 
of A, H, C, and E, were transformed into categorical variables as 
shown in Fi To apply the PVAD algorithm, in Step 1 the numeric 
variables of A, H, C, and E, were transformed into categorical 
variables as shown in Figures (1)-(4). More details of Step 1 are in 
[1]. 

 
Figure 1. An example of plotting E values to determine data clusters and 

categorical values. 

http://www.astesj.com/


N. Ye et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 372-379 (2018) 

www.astesj.com     374 

 
Figure 2. An example of plotting C values to determine data clusters and 

categorical values. 

 

 
Figure 4. An example of plotting A values to determine data clusters and 

categorical values. 

Step 2.1 generated candidate 1-to-1 associations of partial 
variable values, x = a  y = b, where x = a is the conditional 
variable value (CV) and y = b is the associative variable value 
(AV), and computed the co-occurrence ratio (cr) of each 
candidate association as follows:  

𝑐𝑐𝑐𝑐(𝑥𝑥 = 𝑎𝑎 → 𝑦𝑦 = 𝑏𝑏) = 𝑁𝑁𝑥𝑥=𝑎𝑎,𝑦𝑦=𝑏𝑏

𝑁𝑁𝑥𝑥=𝑎𝑎
  (1) 

If cr is greater than or equal to the parameter α, we had an 
established association. For example, Table (1) shows 1-to-1 
associations having  CV: C = High together with their respective 
cr values and α = 0.8. 

Table 1: 1-to1 associations of ASU energy consumption data with CV: C=High 
# Association cr Co-Occurrence 

Frequency 
(𝑁𝑁𝑥𝑥=𝑎𝑎,𝑦𝑦=𝑏𝑏) 

Type of 
Association 

1 C=High  T=12:15 PM 
to 5:30 PM 

0.48 62 Candidate 

2 C=High  T=5:45 PM 
to 11 PM 

0.43 55 Candidate 

3 C=High  T=8:15 AM 
to 12 PM 

0.09 11 Candidate 

4 C=High  E=High 0.20 25 Candidate 
5 C=High  E=Medium 0.80 103 Established 
6 C=High  H=Low 0.73 94 Established 
7 C=High  H=Medium 0.27 34 Candidate 
8 C=High  A=High 0.96 123 Established 
9 C=High  A=Medium 0.04 5 Candidate 

In addition to parameter α, two other parameters, β and γ, are 
also needed. β is used to remove associations whose number of 
supporting instances (the instances containing variable values in 
the numerator of equation 1) is smaller than β. γ is used to remove 
an association with a common CV or AV that appears in more 
than γ of the data set. In this example, β is set to be 50 while α and 
γ are set to 0.8 and 0.95, respectively. 

Step 2.2 uses two methods, YFM1 and YFM2, to examine 
and esyablish p-to-q associations, X = A  Y = B, where X and Y 
represent multiple variables. For example, using #5, 6 and 8 in 
Table (1), we applied YFM1 which considers all combinations of 
AVs covered in those associations so as to find 1-to-q associations, 
where q >1. To find 1-to-2 established associations, we first 
computed 𝑁𝑁𝐶𝐶𝐶𝐶  =  103 ÷ 0.8046875 =  128.  Then we 
considered all possible combinations of two-variable AVs from 
the established 1-to-1 associations: 

1. C=High->E=Medium, H=Low (from #5 and #6) 
2. C=High->E=Medium, A=High (from #5 and #8) 
3. C=High->H=Low, A=High (from #6 and #8). 

For each 1-to-2 candidate associations above, 𝑁𝑁CommonSubset, the 
number of instances in the common subset of supporting instance, 
was computed to calculate cr for the 1-to-2 association. The 
results are given in Table (2). In this case, C=High->H=Low, 
A=High is the only established association. 

Table 2: Calculation for 1-to-2 associations with CV: C=High 

# Association 𝑁𝑁CommonSubset cr  
(= 𝑁𝑁CommonSubset / 128) 

1 C=High  
E=Medium, H=Low 

87 0.6796875 

2 C=High  
E=Medium, A=High 

103 0.125 

3 C=High   
H=Low, A=High 

94 0.8046875 

YFM2 is used to find 2-to-1 associations. YFM2 considers 
all candidate associations (cr value in (0, 1]) not just established 
associations (cr ≥  𝛼𝛼). Table (3) is used to illustrate YFM2 in the 
following. 

1) Determine𝑚𝑚𝑖𝑖 = ⌈𝑛𝑛𝑖𝑖 × 𝛼𝛼⌉. If we pick C=High->T=12:15 PM 
to 5:30 PM to start with, 𝑛𝑛1  =  62. Then 𝑚𝑚1 = ⌈𝑛𝑛1 × 𝛼𝛼⌉  =
 50 and the 2-to-1 association that we would like to generate 
will have C=High, T=12:15 PM to 5:30 PM as CV. Note that 
if  𝑚𝑚𝑖𝑖 < 𝛽𝛽 , the whole group is dropped as the number of 
instances covered by the new CV is just the occurrence 
frequency which should be ≥ 𝛽𝛽. 

2i) Iterate through all other associations from Table (2). Skip 
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immediately to the next line if the AV of that association is 
the same as one picked in the previous step. For example, #2 
has AV: T=5:45 PM to 11 PM that represents Timestamp. 
While the AV of the association also represents timestamp 
(T=12:15 PM to 5:30 PM), we skip to #3 without looking at 
the intersection of the instances. 

2ii) Generate 2-to-1 association if nintersection ≥ 50. Table (3) lists 
the nintersection and the corresponding cr value. 
 

Table 3: Calculation for 2-to1 associations of ASU energy consumption data 
with CV “C=High, T=12:15 PM to 5:30 PM” 

Combination 
(Type of 
Association) 

Association 𝒏𝒏𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 cr (=
𝒏𝒏𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢/
𝟔𝟔𝟔𝟔 ) 

1 & 4 
(Candidate) 

C=High, 
T=12:15 PM to 
5:30 PM  
E=High 

3 0.04 

1 & 5 
(Established) 

C=High, 
T=12:15 PM to 
5:30 PM   
E=Medium 

59 
 

0.9516 

1 & 6 
(Candidate) 

C=High, 
T=12:15 PM to 
5:30 PM   
H=Low 

59 
 

0.9516 

1 & 7 
(Candidate) 

C=High, 
T=12:15 PM to 
5:30 PM  
H=Medium 

3 0.04 

1 & 8 
(Established) 

C=High, 
T=12:15 PM to 
5:30 PM  
A=High 

62 
 

1 

1 & 9 
(Candidate) 

C=High, 
T=12:15 PM to 
5:30 PM  
A=Medium 

0 0 

Following the same procedure, other p-to-q associations were 
generated by YFM1 and YFM2. Step 3 generalized and 
consolidated variable associations of partial values into 
associations of full value ranges if there are partial-value 
associations covering the full value range of the same variable. 

The PVAD algorithm was used to analyze the energy 
consumption data using various values of α = 1, 0.9, and 0.8, β = 
50, 30, and 10, and γ = 95%. The results for γ = 95%, β = 50, and 
α = 0.8 are most meaningful and presented in the next section.  

4. Results of the PVAD Algorithm 
Tables (4)-(5) list the most specific association(s) in each 

group of the associations with the same AV. Table (6) lists the 
most generic association(s) in each group of the associations with 
the same AV. Variable relations for energy consumption revealed 
by each association in Tables (4)-(6). In Tables (4)-(6), there are 
groups that give similar associations. For example, the 
associations in Group 1 and Group 2 in Table (6) are similar. For 
the groups with similar associations, we marked only one group 
using the symbol ^ in the column of group #. Most of the 
associations in Tables (4)-(6) involve C=Low for cooling being 
low in CV or AV, because most of instances in the data set (2848 
out of totally 2976 instances) contain C=Low due to the month of 
January when the data was collected. Since C=Low is so common 
in the data set, C=Low can be dropped from the associations when 
interpreting associations. 

Table 4: Specific associations in each group of associations with the same AV: 
Set 1 

Group # The most specific association(s) in group 
1 A=Medium, [ T=12:15 PM to 11 PM, E=High]/ [ T=6:15 AM 

to 11 PM, E=Medium]/[T=11:15 PM to 6 AM, E=Low]  
H=Medium, C=Low 

2^ A=Medium, C=Low, [T=11:15 PM to 6 AM, E=Low]/[T=6:15 
AM to 12 PM, E=Medium]/[T=12:15 PM to 11 PM, 
E=High/Medium]  H=Medium 
A=High, C=Low, E=Medium, T=8:15 AM to 12 PM  
H=Medium 

3^ A=High, E=Medium, C=High, T=12:15 PM to 5:30 PM  
H=Low 

4 C=High, E=Medium, T=12:15 PM to 5:30 PM  A=High | 
H=Low 

5^ H=High, E=Medium, T=6:15 AM to 8 AM  A=Low, C=Low   
6 H=Medium, E=Low, T=12:15 PM to 5:30 PM  A=High, 

C=Low 
7^ [E=Medium, C=*, H=Low]/[E=Low, C=Low, H=Medium], 

T=12:15 PM to 5:30 PM  A=High 
C=High, T=5:45 PM - 11 PM  A=High  

8 H=Medium, E=High, T=12:15 PM to 5:30 PM  A=Medium, 
C=Low  

9^ H=Medium, C=Low, E=High, T=12:15 PM to 5:30 PM,  
A=Medium 

10 H=High, C=Low, E=Medium, T=6:15 AM to 8 AM,  
A=Low 

11^ [A=Low, H=High]/[ A=High, H=Low]/[ A=Low/Medium, 
H=Medium], C=Low, T=11:15 PM to 6 AM  E=Low 

12 [A=Low, H=High]/[A=High, H=Low]/[A=Medium/Low, 
H=Medium], T=11:15 PM to 6 AM  C=Low, E=Low  

 
Table 5: Specific associations in each group of associations with the same AV: 

Set 2 

13 A=Medium, H=High, T=5:45 PM to 11 PM  C=Low, 
E=Medium  
T=8:15 AM to 12 PM, H=Medium, A=High/Medium  
E=Medium, C=Low 

14^ A=High, H=Low, C=High, T=12:15 PM to 5:30 PM  
E=Medium 
A=Medium, H=High, C=Low, T=5:45 PM to 11 PM  
E=Medium 
A=Medium/High, H=Medium, C=Low, T=8:15 AM to 12 PM 
 E=Medium 

15 H=Low, C=High, T=12:15 PM to 5:30 PM  A=High | 
E=Medium  

16^ A=High, C=High, T=12:15 PM to 5:30 PM,  H=Low | 
E=Medium  
A=Medium/High, C=Low, T=8:15 AM to 12 PM  H=Medium 
| E=Medium  

The associative network of the energy consumption system 
model shown in Figure (5) was constructed using the associations 
in the groups marked with ^ in Table (6). Figure (5) shows the 
factors associated with the high, medium and low air temperatures 
(from the associations with A as the AV), the factors associated 
with the Medium and Low heating consumption (from the 
associations with H as the AV), and the factors associated with 
the medium and low electricity consumption (from the 
associations with E as the AV). 

Figure (5) shows that E, C, H and A are related differently in 
different time periods. For example, in the afternoon, T = 12:15 
PM to 5:30 PM, the medium heating consumption (H = Medium) 
along with the high electricity consumption (E = High) is 
associated with the medium air temperature (A = Medium), 
whereas in the early morning, T = 6:15 AM to 8 AM, the high 
heating consumption (H = High) is associated with the low air 
temperature (A = Low). Similarly, the most specific associations 
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in Tables (4)-(5), even the most generic associations in Table (6) 
and in Figure (5) show that associations of T, E, C, H and A differ 
in different value ranges of these variables. This illustrates that 
the PVAD algorithm can discover full/partial-value variable 
relations that exist in many real-world systems. 

Table 6: Generic associations in each group of associations with the same AV. 

Group # The most generic association(s) in each group 
1^ A=Medium/E=High  H=Medium 
2 E=High/A=Medium, C=Low  H=Medium 
3 E=Medium, C=High, A=High  H=Low 
4 E=Medium, C=High  H=Low | A=High 
5^ H=High, T=6:15 AM to 8 AM  A=Low. 
6^ E=Low, T=12:15 PM to 5:30 PM  A=High 
7^ H=Low  A=High 

T=5:45 PM - 11 PM, C=High  A=High 
C=Low, E=Low, T=12:15 PM to 5:30 PM  A=High 

8^ H=Medium, E=High, T=12:15 PM to 5:30 PM  A=Medium 
9 H=Medium, C=Low, E=High, T=12:15 PM `to 5:30 PM  

A=Medium 
10 H=High, C=Low, T=6:15 AM to 8 AM  A=Low 
11 C=Low, T=11:15 PM to 6 AM  E=Low 
12^ T=11:15 PM to 6 AM  E=Low 
13^ T=8:15 AM to 12 PM  E=Medium 

H=High, T=5:45 PM to 11 PM  E=Medium 
14 H=High, C=Low, T=5:45 PM to 11 PM  E=Medium 

C=High  E=Medium 
15 C=High  A=High | E=Medium  
16^ A=High, C=High, T=12:15 PM to 5:30 PM  H=Low | 

E=Medium  
A=Medium/High, C=Low, T=8:15 AM to 12 PM  H=Medium 
| E=Medium 

E=High/
A=Medium H=Medium

A=Low
H=High

T=6:15 AM to 8 AM

A=High
E=Low

T=12:15 PM to 5:30 PM

H=Low

A=Medium
H=Medium

E=High
T=12:15 PM to 5:30 PM

E=LowT=11:15 PM to 6 AM

E=MediumT=8:15 AM to 12 PM

H=High
T=5:45 PM to 11 PM

A=High
C=High

T=12:15 PM to 5:30 PM
H=Low

 
Figure 5. The most generic associations in the groups marked by ^ in Table (6) 

represented in an associative network. 

5.  Comparison of the PVAD algorithm with some data 
mining techniques 

We considered two of the existing data mining techniques to 
compare with the PVAD algorithm: association rule and decision 
tree.  

5.1. Comparison with the association rule technique 
The association rule technique first uses the Aprori algorithm 

to determine frequent item sets that satisfy the minimum support 
[23-24]. Then each frequent item set is broken up into all possible 
combinations of association rules which are evaluated to see if 
any of them satisfy the minimum support and confidence. For a 
large dataset, frequent item sets and candidate association rules 
from frequent item sets can be enormous, requiring huge amounts 
of computer memory space and computation time. When the 
association rule technique was applied to the energy consumption 
data, there were too many frequent item sets and consequently 
association rules to be listed in this paper. While the performance 
of the association rule technique was hindered by the data size, 
the search space of associations in the PVAD algorithm is 
narrowed down by YMF1 and YFM2, along with parameters α, β 
and γ. 

5.2 Comparison with the decision tree technique 

Decision tree is a data mining technique to learn decision 
rules that express relations of the dependent variable y with 
independent variables x in a directed and acyclic graph [23-24]. 
The software, Weka, was used to construct decision trees of the 
energy consumption system data, To construct a decision tree in 
Weka, there are different algorithms such as ID3 [52] and J48 [53]. 
The later one is an extended version of ID3 with additional 
features like dealing with missing values and continuous attribute 
value ranges. It also addresses the over-fitting problem that 
decision trees are prone to by pruning. The pruning process 
requires the computation of the expected error rate. If the error 
rate of a subtree is greater than that of a leaf node, a subtree is 
pruned and replaced by the leaf node.  

In our research, ID3 was used for the comparison with the 
PVAD algorithm because ID3 produces comparable results with 
associations produced by the PVAD algorithm. Leaf nodes 
produced by ID3 are pure in that the class labels of instances are 
the same in each leaf node. The purity of leaf node corresponds to 
AV in associations from the PVAD algorithm having the same 
variable value. The PVAD algorithm produces all associations up 
to N-to-1 associations, where N+1 is the number of variables. In 
other words, the PVAD algorithm can generate the longest CVs 
and find the AV that they are associated with. The combination of 
CVs corresponds to the path from the root of a decision tree down 
to a leaf node. 

Because the decision tree technique requires the 
identification of one dependent variable (the target variable) and 
independent variables (attribute variables) for each decision tree, 
five decision trees need to be constructed for each of the five 
variables as the dependent variable. Tables (7)-(10) list decision 
rules produced by one of the five ID3 trees. 

Although the decision rules from the decision trees appear to 
have the same form as associations from the PVAD algorithm, a 
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decision rule has a different meaning from an association from the 
PVAD algorithm. A decision rule derived from the root of a 
decision tree to a leaf node of the decision tree represents a 
frequent item set with instances in the leaf node having the values 
of the target variable and the attribute variables in the decision 
rule. This is why we see a path in a decision tree is also present in 
another tree even though different decision trees have different 
target variables. For example, the variable values in E=Medium, 
A=High, H=Medium, C=Low, T=12:15 PM to 5:30 PM, are 
found in all four decision trees. Note that the energy consumption 
data set has only five variables. Redundant paths of different 
decision trees can be found more often for larger data sets with 
more variables. This means the waste of computation time and 
space and the difficulty of sorting  out results from a  number  of  

Table 7: Decision rules from the ID3 Tree with Air Temperature as the target 
variable same as PVAD association rules 

# 
Decision rules that appear same as PVAD association rules  

1 
H=Medium, E=High, T=12:15 PM to 5:30 PM  A=Medium 

2 
H=Medium, E=Low, T=12:15 PM to 5:30 PM  A=High 

3 
H=Low, T=12:15 PM to 5:30 PM  A=High 

4 
H=High, E=Medium, T=6:15 AM to 8 AM  A=Low 

Table 8: Decision rules from the ID3 Tree with Air Temperature = Low as the 
target variable 

5 H=Medium, E=High, T=11:15 PM to 6 AM  A=Low 

6 H=High, E=Low, T=11:15 PM to 6 AM  A=Low 

7 H=High, E=Medium, T=11:15 PM to 6 AM A=Low 

8 H=High, E=Medium, T=12:15 PM to 5:30 PM  A=Low 

9 H=High, E=Low, T=6:15 AM to 8 AM  A=Low 

10 H=Medium, E=Low, T=6:15 AM to 8 AM  A=Low 

11 H=High, E=Low, T=8:15 AM to 12 PM  A=Low 

12 H=High, E=Medium, T=8:15 AM to 12 PM  A=Low 

13 H=Low, C=Low, E=Medium, T=5:45 PM to 11 PM  A=Low 

Table 9: Decision rules from the ID3 Tree with Air Temperature = Medium as 
the target variable 

14 H=Low, T=6:15 AM to 8 AM  A=Medium 

15 H=Medium, E=Low, T=11:15 PM to 6 AM  A=Medium 

16 H=Low, E=Medium, T=11:15 PM to 6 AM  A=Medium 

17 H=Medium, E=Medium, T=11:15 PM to 6 AM  A=Medium 

18 H=High, E=Low, T=12:15 PM to 5:30 PM  A=Medium 

19 H=High, E=Low, T=5:45 PM to 11 PM  A=Medium 

20 H=High, E=Medium, T=5:45 PM to 11 PM  A=Medium 

21 H=Medium, E=Medium, T=6:15 AM to 8 AM  A=Medium 

22 H=Medium, E=High, T=8:15 AM to 12 PM  =Medium 

23 H=Medium, E=Low, T=8:15 AM to 12 PM  A=Medium 

24 H=Medium, C=Low, E=High, T=5:45 PM to 11 PM  A=Medium 

25 H=Medium, C=Low, E=Medium, T=5:45 PM to 11 PM  
A=Medium 

26 H=Medium, C=Low, E=Medium, T=8:15 AM to 12 PM  
A=Medium 

decision trees. Hence, a decision rule corresponds to a frequent 
item set in the association rule technique, whereas an association 
from the PVAD algorithm corresponds to an association rule in 
the association rule technique. This is why there are decision rules 
in Tables (7) – (10) that are not found in associations of the PVAD 
algorithm because frequent item sets for those decision rules were 
eliminated in the process of forming associations. Hence, the 
PVAD algorithm has the advantage to the decision tree technique 
because the PVAD algorithm discovers associations rather than 
frequent item sets. 

Table 10: Decision rules from the ID3 Tree with Air Temperature = High as the 
target variable 

27 H=Low, E=Low, T=11:15 PM to 6 AM  A=High 

28 H=Low, E=High, T=5:45 PM to 11 PM  A=High 

29 H=Low, E=Low, T=5:45 PM to 11 PM  A=High 

30 H=Low, E=Low, T=8:15 AM to 12 PM  A=High 

31 H=Medium, C=High, E=High, T=5:45 PM to 11 PM  A=High 

32 H=Medium, C=Low, E=Low, T=5:45 PM to 11 PM  A=High 

33 H=Low, C=High, E=Medium, T=5:45 PM to 11 PM  A=High 

34 H=Medium, C=High, E=Medium, T=5:45 PM to 11 PM  A=High 

35 C=High, H=Low, E=Medium, T=8:15 AM to 12 PM  A=High 

36 H=Medium, C=High, E=Medium, T=8:15 AM to 12 PM  A=High 

37 H=Low, C=Low, E=Medium, T=8:15 AM to 12 PM  A=High 

38 H=Medium, C=High, E=Medium, T=12:15 PM to 5:30 PM  
A=High 

39 H=Medium, C=Low, E=Medium, T=12:15 PM to 5:30 PM  
A=High 

There is another difference between the decision tree 
technique and the PVAD algorithm. Each step of constructing a 
decision tree performs the splitting of a data subset for data 
homogeneity based on the comparison of splits using only one 
variable and its values rather than combinations of multiple 
variables due to the large number of combinations and the 
enormous computation costs. Hence, the resulting decision tree 
contains decision rules with the consideration of only one variable 
at a time and may miss decision rules that can be generated if 
multiple variables and their values are considered and compared 
at a time. However, the PVAD algorithm examines one to 
multiple variables at a time and does not miss any associations 
that exist. The PVAD algorithm thus has the advantage to the 
decision tree technique by not missing any established 
associations and using YFM1 and YFM2 to cut down the 
computation costs.  

Moreover, the decision tree algorithm requires the 
identification of the dependent variable (the target variable) and 
the independent variables (the attribute variables) although there 
may no priori knowledge for the identification of which variable 
is a dependent or independent variable. This is why five decision 
trees, with one decision tree taking each of the five variables as 
the target variable, had to be constructed for the energy 
consumption data. The PVAD algorithm does not require the 
distinction of dependent and independent variables but discovers 
variable value relations and the role of each variable in each 
variable value relation. 
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Furthermore, the PVAD algorithm can generate p-to-q 
associations with q > 1 that the decision tree technique cannot 
generate because a decision tree is constructed for only one target 
variable and produces only p-to-1 decision rules. Given the 
differences of the PVAD algorithm and the decision tree 
technique, the results of the PVAD algorithm are not comparable 
to the results of the decision tree technique. As discussed in 
Section 2, the PVAD algorithm overcomes shortcomings of 
existing statistical analysis and data mining techniques and 
produce partial/full-value associations that cannot be produced 
from other existing techniques. 

5. Conclusion 
Our research used the PVAD algorithm to learn and build the 

system model of energy consumption from data, especially learn 
relations of variables for both full and partial value ranges. The 
resulting partial-value associations of variables in the energy 
consumption system model reveal variable relations for partial 
value ranges that require not one but different models of variable 
relations over full value ranges of the variables. This finding 
shows that the PVAD algorithm has the advantage and capability 
of discovering variable relations for building a multi-layer, 
structural system model. Hence, the PVAD based system 
modeling technique can be useful in many fields to learn system 
models from data. The advantages of the PVAD algorithm to 
existing data mining, machine learning and statistical analysis 
techniques were also demonstrated by comparing the PVAD 
algorithm and its results from the application to the energy 
consumption data with the association rule technique and the 
decision tree technique. 
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