

www.astesj.com 391

Robot Self-Detection System

Ivaylo Penev*,1, Milena Karova2, Mariana Todorova1, Danislav Zhelyazkov1

1Technical University of Varna, Department of Computer Science and Engineering, 9010 Varna, Bulgaria

2Technical University of Varna, Department of Automation, 9010 Varna, Bulgaria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 August, 2018
Accepted: 18 November, 2018
Online: 07 December, 2018

 The paper presents design and implementation of a mobile robot, located in an
accommodation. As opposed to other known solutions, the presented one is entirely based
on standard, cheap and accessible devices and tools. An algorithm for transformation of
the 2D coordinates of the robot into 3D coordinates is described. The design and
implementation of the system are presented. Finally, experimental results with different
devices are shown.

Keywords:
Robotics
Image recognition
2D coordinates
3D coordinates
Arduino

1. Introduction

This paper is an extension of work, originally presented in [1].

Robot orientation is a field of scientific and practical interest
for many years. Different methods and approaches for different
instances of the robot orientation problem are proposed and
studied, e.g. [2-9]. Most often communication technologies for
robot orientation and path planning are used, for example RFID
[10-12].

On the basis of the literature review several main challenges,
concerning robot orientation, arise.

How to recognize the robot, using images of the robot and the
environment;

This is a problem of image analysis and computer vision areas.
Different methods for image cutting and segmentation are known,
e.g. [13, 14]. The algoritms for robot localization use lazers, sonar
senzors and stereo vision systems, e.g. [15, 16]. Although these
solutions show good results, it is not always possible to provide the
robot with lazers, sonars or vision system.

How to convert the 2D into 3D coordinates;

There known algorithms for transformation of coordinates
from 2D to 3D plane rely on lanzer range finders or vision systems,
e.g. [17-19].

How to design the applications, concerning their usage and
scalability.

Image processing of robot and environment usually require
many resources of the robot device (CPU and RAM). Most of the
known applications rely on groups of robots or mobile agents, e.g.
[20-23]. Of course, it is not always possible to provide groups of
robot devices for experiments.

As a final conclusion of the problems and the known solutions,
described above, we could summarize, that there are not complete
and working solutions of the robot orientation problem, based on
ordinary devices with limited resources.

The current work presents a robot orientation system, using a
cheap Arduino based robot, supplied with LED sensors, and an
ordinary mobile device. The paper layout is concentrated on three
main points:

• Robot recognition from the image, shot by the device’s
camera;

• Converting the 2D coordinates to 3D;
• Implementation of the system by wide spread hardware and

programming tools.

The purpose of the presented approach is to provide
methodology for applying the robot orientation problem, using
standard, cheap, wide spread devices.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Ivaylo Penev, Email: ivailo.penev@tu-varna.bg

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030647

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030647

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 392

2. Methodology
2.1. System overview

The “Selfie robot” consists of a robot and a mobile device with
a camera. The camera takes a picture of the robot and sends it to
the robot. The robot’s control unit computes its self-coordinates as
well as the camera’s coordinates. Afterwards it builds a path for
moving to the center of the frame.

The robot is supplied with LED sensors. The system is
implemented by standard Arduino architecture and OpenCV
library.

2.2. Robot recognition

The Robot recognition algorithm consists of several separate
steps together solving the common problem.

1) Robot marking

Simple yet efficient approach should be using light-emitting
diodes (LEDs). LED is an electronic diode, which converts
electricity to light – this effect is called electroluminescence. When
an appropriate voltage is applied to it an energy is being disposed
in the form of photons. The color of the light is defined by the
semiconductor’s energy gap.

Simplified LEDs are colorful light sources which makes them
easy for recognition in environments where light is reduced.
Marking the robot with such diodes could make it look unique
regardless of the daylight. The solution should work regardless of
the environment’s brightness.

2) Camera properties

The previous pictures are taken by a camera, which properties
are set to default – most commonly to auto-adjustment values,
which ensures better quality of the picture. The current project
does not depend on high end quality. All that is needed is a
recognition of the robot.

The following settings deal with light perception:

a) ISO

This parameter measures the the camera sensitivity regarding
the light.

b) Shutter speed

The shutter speed measures the time period necessary to fire
the camera.

c) Aperture

Aperture (also known as f-number) presents a port into the lens,
thorugh which light moves into the body of the
camera.

d) Exposure value

The value of this parameter is determined by the aperture and
the shutter speed in such way ensuring that combinations giving
the same exposure have the same exposure value (1).

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒 = log2(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠
) (1)

Practically the exposure value indicates how much a picture is
illuminated or occulted.

Given these definitions a simple approach comes up for
reducing the unnecessary light from the taken pictures. They could
be darkened by reducing the ISO and Exposure values.

Figure 1 and Figure 2 present photos, taken with ISO set to 50
and exposure value set to -2. An improvement can be easily
noticed. By setting the ISO to a low value the camera sensor’s
sensitivity was reduced. By decreasing the exposure value less
light enters the camera. The effect of the reflected light from solid
objects was highly filtered while the light from the LEDs has not
changed at all.

Figure 1. Dark room; reduced light sensitivity

Figure 2. Light room; reduced light sensitivity

The LEDs’ light now can be easily extracted even if the robot
is in a brighter environment. However they are seen as little blobs
and the light reflected by highly specular objects could be still
present as noise, thus presupposing algorithm confusion and
failure.

3) Camera focus

Most cameras support different focus modes, which helps the
user adjust the focus:

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 393

• Auto-focus: automatically finds the best focus range,
where most of the objects are sharp;

• Infinity: the focus is set to the farthest range leaving close
objects dull;

• Macro: the focus is set to the closest range making nearby
objects look sharp;

• Manual: leaves focus range to be adjusted manually be
the user.

Figure 3 is taken with ISO 50, EV -2 and Macro focus in a
bright environment. It appears, that reducing the camera focus not
only blurs / removes noise from strong reflections, but also
improves the LEDs light enlarging and saturating their blobs.

Figure 3. Lighter room; defocused with reduced light sensitivity

4) Image analysis

So marking the robot with LEDs and adjusting the camera
settings ensures more or less the same picture format with clearly
expressed form of the robot regardless of the environment’s
illumination. The taken pictures are analyzed with a computer
vision algorithm. The taken approach relies on the following two
color ranges:

a) RGB

Red-green-blue color model is an additive color model
consisting of red, green and blue lights which combined give a
wide range of different colors. This model is the base of the color
space and is considered as the most identical and the easiest to
understand by the human eye. Identical values of the three lights
give a shade of the gray color. Keeping up the lights (at least one)
gives a bright color while if all three of them are low will result in
a dark color, close to the black one. In electronic devices a color in
that space is represented by 3 Bytes – a Byte for the value of each
light. Could be graphically represented by a cube (Figure 4a).

b) HSV

Hue-saturation-value is another range based on the RGB
model. It is considered to be more convenient for usage in
computer graphics and image editing. Hue represents the color
intensity, saturation – the color completeness and the value is often
call the brightness of the color. This color space is one of the most
common cylindrical representation of the RGB model. Like the
RGB color space a color of this space can be also stored in 3 Bytes
– one for each channel (Figure 4b).

a) RGB color model b) HSV color model

Figure 4. Color model

The goal is to extract the blue LEDs for example. First an
image representing the blue channel from the RGB color space is
obtained (Figure 5).

Figure 5. RGB Blue channel

The image is greyscale because it has only a single channel.
The blue blobs can be easily noticed, because they are colored in
high grey value. But so does the door’s threshold. In fact every
whiter object from the original image will have a high grey value
in the blue channel image, because the white color in the RGB
color space consists of high values in all of the three channels –
red, green, blue.

The difference between the blue LEDs and the door’s threshold
is obvious – LEDs are more colorful in the input image. A good
representation of the color intensities is the saturation channel
form the HSV color variant of the input image (Figure 6).

Figure 6. HSV Saturation channel

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 394

The difference is increased. The values of the LEDs are much
higher than the one of the door’s threshold. The saturation image
could be a perfect mask for ignoring white objects in all of the three
channels from the RGB color space.

Next a masking of the blue channel is performed with the
saturation image – applying a logical AND between the images’
binary data (Figure 7).

Figure 7. Merged blue and saturation (blue_sat) channels

c) Binary image

Binary images are simple images whose pixels can have only
two possible states – 0/1 or black/white. In most cases white pixels
are considered as part of an object or of the foreground of the image
and black – as the background. In computer vision binary images
are mostly used as a result of different processing operations such
as segmentation, thresholding, and dithering.

d) Image segmentation

Image segmentation is a technique to divide a digital image
into multiple zones. The purpose is to detect objects and
boundaries within the image.

e) Thresholding

Thresholding is one of the simplest image segmentation
methods. It basically separate a greyscale image into a background
and foreground areas as a resulting binary image. The algorithm is
simple – if a pixel value is higher than a given constant (called
threshold), it is classified as a part of the foreground regions and
its value is set to 1 in the binary image. Otherwise the pixel is
considered as a background one and a 0 is assigned to its value.
The most challenging task while using this method is
determination of a correct threshold value. Often a technique called
Otsu’s method is used to solve this task. It calculates optimal
threshold value by finding the minimal intra class variance
between two class of points – one with lower values and one with
higher values.

These image processing techniques are used by the LEDs
recognition algorithm. After masking white regions in the blue
image, a binarization is required. After the filtering a lot of dark
regions have occurred. For certain LEDs’ pixel values are highest.
Histogram analysis must be done only in the upper half of the
histogram.

This is the extracted upper half of the merged image. Almost
every time the LEDs’ pixel values are represented by the first

highest peak. Otsu’s method is used over this part of the histogram.
The calculated threshold is colored in green (Figure 8).

Figure 8. Blue_sat histogram

This binary image is a result of thresholding and consequential
dilation. With the use of connected-component labeling technique
regions could be easily extracted and their centroids could be
computed by the average point formula. These centroids represent
the {x, y} coordinates of the blue LEDs (Figure 9).

Figure 9. Blue_sat binary image

The same algorithm could be applied for the other two RGB
channels. Since there are no green LEDs results will be shown only
for the red channel (Figure 10, Figure 11).

Figure 10. RGB red channel

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 395

Figure 11. Merged red and saturation (red_sat) channels

At the end {x, y} coordinates of the red and blue LEDs are
present which makes the task of recognizing the robot completed.

2.3. Transformation of 2D coordinates to 3D
The camera of the device shoots the robot’s sensors. The

coordinates of the robot are calculated and sent to the robot using
the Bluetooth interface. This process is presented at Figure 12.

Figure 12. Sending coordinates to the robot

The robot moving to the goal consists of turning and moving
forward. Turning uses the angle between the direction of the robot
and the goal direction. The LEDs coordinates, extracted from the
image by the recognition algorithm, put in a Cartesian coordinate
system result in the following model (Figure 13):

Figure 13. Extracted LEDs coordinates in Cartesian coordinate system

The model is an approximate example. For increasing the detail
in the interest area future models will be limited only to the first
quadrant.

The environment in which the robot and the camera exist is
three dimensional. Two dimensional object representations in such
3D world exist in so called planes. The camera takes 2D images
which belongs to a plane determined by the camera. The robot on
the other hand is a 3D object. Its representation in the 2D image is
a projection of itself in that plane. Robot’s LEDs are attached in a
way that keeps them on equal distance from the floor. It could be
assumed that they are laying in a 2D plane parallel of the ground
plane. What appears is that the extracted coordinates of the LEDs
are their projections on the phone’s plane, moreover the center of
the image is a projection of the robot’s target.

The following task arises: determine the robot’s position and
orientation against its target by the given projections’ coordinates.
After little mathematical analysis it appears that these coordinates
are not enough for solving that given task. But that is not all. The
robot knows the position of its LED sensors (Figure 14).

Figure 14. Robot representation in its plane

The symbols in the diagram have the following meaning:

• T – tail point, representing the red LED with the extracted
coordinates,

• S1, S2 – side points, representing the blue LEDs with the
extracted coordinates,

• – the center of the image/coordinate system, representing the
goal’s position,

• M – midpoint of the S1S2 segment, representing the center of
the robot around which the robot should turn

• H – the T’s mirror point against M, representing the head of
the robot,

• 𝑇𝑇𝑇𝑇����– a vector indicating robot’s size and the direction it is
looking at.

This model is representation of the robot in its plane. It knows
where are its head, center and tail, what size is its diameter and that
the LEDs form an isosceles right triangle. All that is left to be

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 396

found is the target’s coordinate against the robot in that plane – the
O point. After that the value of the turn angle is defined by the
points H, M, O. The distance to O is defined by (2):

𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑒𝑒 = 𝑘𝑘. 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑_𝑑𝑑𝑑𝑑𝑣𝑣𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒 (2)

where 𝑘𝑘 = 𝑀𝑀𝑀𝑀�����

𝐻𝐻𝐻𝐻����
.

Since the robot knows its physical diameter and the distance
depends on a proportional variable the robot’s plane doesn’t need
to be the same size – just the same proportions.

2.4. Analytic Geometry for Transformation

The technique for accomplishing the task is simple and relies
on basic laws from the Analytic geometry. Analytic geometry
studies geometry using coordinate system – mostly the Cartesian
one to deal with equations for planes, lines, points and shapes in
both two and three dimensions. It defines, represents and operates
with geometrical shapes using numerical information.

The current algorithm operates only with 2D coordinates {x,y}
and the following shapes are being used:

Point

Represented by one pair of {x, y} coordinates which defines its
position on the coordinate system.

Angle

Represented by single real value in radians or in degrees in the
intervals respectively [0, 2π) or (-π, π] and [0, 360) or (-180, 180].

Line

Represents an unlimited straight ray. It is defined by (2):

𝑦𝑦 = 𝐾𝐾. 𝑒𝑒 + 𝐶𝐶 (2)

, where

𝐾𝐾 – the tangent of the angle between 𝑂𝑂𝑒𝑒→ and the line; it has
a constant value,

𝐶𝐶 – the offset between the intersection of 𝑂𝑂𝑒𝑒→ and the line and
the center point, it has a constant value.

Laws

The following laws are used by the algorithm:

Line from two points p1 and p2 (3)(4)

𝐾𝐾 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

 (3)

𝐶𝐶 = 𝑦𝑦1 − 𝐾𝐾. 𝑒𝑒1 (4)

Line parallel to line l1 passing through point p1 (5)(6)

𝐾𝐾 = 𝐾𝐾1 (5)

𝐶𝐶 = 𝑦𝑦1 − 𝐾𝐾. 𝑒𝑒1 (6)

Intersection point of two lines l1 and l2 (7)(8)

𝑒𝑒 = 𝐶𝐶2−𝐶𝐶1
𝐾𝐾1−𝐾𝐾2

 (7)

𝑦𝑦 = 𝐾𝐾1. 𝑒𝑒 + 𝐶𝐶1 (8)

Distance between two points p1 and p2 given by the Pythagorean
theorem (9)

𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑒𝑒 = �(𝑒𝑒2 − 𝑒𝑒1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 (9)

Angle α from three points p1, p2 and p3 (10)

𝛼𝛼 = 𝛼𝛼𝑑𝑑𝑣𝑣𝑑𝑑2(𝑦𝑦1 − 𝑦𝑦2, 𝑒𝑒1 − 𝑒𝑒2) − 𝛼𝛼𝑑𝑑𝑣𝑣𝑑𝑑2(𝑦𝑦3 − 𝑦𝑦2, 𝑒𝑒3 − 𝑒𝑒2)(10)

where

𝛼𝛼𝑑𝑑𝑣𝑣𝑑𝑑2(y, x) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ arctan �

𝑦𝑦
𝑒𝑒
� , 𝑑𝑑𝑖𝑖 𝑒𝑒 > 𝑦𝑦

𝜋𝜋
2
− arctan �

𝑒𝑒
𝑦𝑦
� , 𝑑𝑑𝑖𝑖 𝑦𝑦 > 0

−
𝜋𝜋
2
− arctan �

𝑒𝑒
𝑦𝑦
� , 𝑑𝑑𝑖𝑖 𝑦𝑦 < 0

arctan �
𝑦𝑦
𝑒𝑒
� ± 𝜋𝜋, 𝑑𝑑𝑖𝑖 𝑒𝑒 > 0

𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑, 𝑑𝑑𝑖𝑖 𝑒𝑒 = 0 𝑣𝑣𝑑𝑑𝑑𝑑 𝑦𝑦 = 0

2.5. Transformation Algorithm Definition

There are two planes – the phone’s one and the robot’s one,
several laws, extracted points and real proportions. The two planes
have to intersect somewhere in the space. If not that means they
are parallel – the camera is parallel to the ground and the searched
target’s position is in fact the center of camera image. But in most
cases it is not and the two planes intersect. If the actual intersection
line is found, distance from the camera to the robot could be
computed. But since the result could be proportional that operation
is unnecessary and the intersection line could be any line from the
two planes. Of course the shapes need to keep original robot
proportions. It is assumed that the intersection line is the one that
passes through the two blue points giving the following model as
a result (Figure 15).

Intersected planes with an example projection line

The dark color has shapes in the robot’s plane while brighter
ones – in the image plane; a shape’s projection has the same name
with suffix ’.

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 397

T’, H’ – projections of T and H, showing how would T and H
coordinates be if the image’s plane was parallel to the robot’s one.

As it can been seen on Fig. 4 S1, S2 and T’ also define an
isosceles right triangle in 2D – the proportions are kept.

A line could be defined from either T and T’ or H and H’ and
could be called “main projective line”. All newly defined
projective lines have to be parallel to this main one.

Let’s define the following shapes (Figure 16):

• Line from O and M called “center line”;

• Line from T and either called “side line” that can intersect the
“center line”;

Intersection point SI from the center and side lines.

The “side line” is defined using S1 which in this case is correct
since the side line is not parallel to the center one. But there is a
possibility that the line from T and S1 may not intersect the center
line. If such case occurs the side line should be defined using S2.
For certain T, S1, S2 form a triangle so if S1 is not appropriate for
defining the side line, S2 will definitely be.

Next step consists of defining the following shapes (Figure 17):

• Side line’s projection – line from T and S1 (or S2 if S1 was not
relevant during the previous step);

• Projection point of SI on the side line’s projection.

Projecting the side intersection line

Defining a projection of a point on a line consists of two steps.
Firstly a projective line must be defined. That line passes through
the projected point and is parallel to the main projective line. The
projection point is considered the intersection point of the
projective line and the line that it is supposed to lie on. In this case
the projected point is SI, the projective line is sideProjectiveLine
and the projection point is SI’ that lies on sideLine’.

The final algorithm step consists of defining the following
shapes (Figure 18):

• Define a line from M and SI’; since SI’ is a projection of SI
along with the fact that SI and M lay on the center line, it could
be stated that this new line is the projection of the center line;

• Define the projection of O on the center line’s projection.

O’ is the projection of O which is defined the same way SI’
was. But this time the projective line is centerProjectiveLine and
the second line for intersection is centerLine’.

O’ now represents the location of the target in the robot’s plane.

The result projection is shown on Figure 19.

Given that point the angle H’MO’ could be easily computed
using the declared law.

The lengths of the segments MO’ and H’T’ are also known
which enables the evaluation of (1):

 𝑘𝑘 = 𝑀𝑀𝑀𝑀′������

𝐻𝐻′𝐻𝐻′������ = 95.34
41.57

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 398

3. System requirements and specification

3.1. Mobile robot

The robot used in this project is based on the Arduino platform.
It is an open-source microcontroller-based kit for building digital
devices and interactive objects that could interact with the
environment with sensors and actuators. Arduino board provides
set of analog and digital I/O pins which enable connectivity with
external physical devices. Programs for Arduino are written in
either C, C++ or Processing.

3.2. Arduino board

Robot’s controller board is an Arduino UNO R3, which is a
basic microcontroller board, suitable for simple startup projects. It
supports Universal Serial Bus (USB) with the help of which a
serial communication could be established with PC and other
devices and could also supply power to the board. Usually
programs are built and compiled on a PC and further transferred to
the board using the USB. It has also a 2.1mm center-positive power
jack for external power supplies.

The board, used for assembling the robot, has the following
parameters:

• Microcontroller: ATmega328

• CPU: 8-bit AVR

• Clock: 16MHz

• Memory of 23KB flash, 2KB SRAM and 1KB EEPROM

• 14 I/O pins

• 6 Analog Input pins

• Physical parameters: 68.6x53.4mm , 25g weight

3.3. Robot body

For basic movements a simple 2 Wheel Drive (2WD) structure
is used. This is a DIY 2WD double leveled plastic chassis. It
consists of 2 wheels with separate gear motors, full-degree rotating
caster wheel as a third strong point and two decks. The wheels are
positioned almost in the center of the structure. Their rotation in
opposite directions will result in the whole structure spinning over
its center. The two decks are ideal for separating the mechanics
from the electronics.

3.4. Motor shield

The motor shield of the robot provides simple motor control. It
provides a control of a motor’s speed, direction and braking along
with sensing of the absorbed current. This board is stacked over
the Arduino board.

3.5. Bluetooth module

The robot is supplied with additional Bluetooth
communication module.

3.6. Magnetometer
HMC5883L is a Triple-axis Magnetometer (Compass) board.

With the help of this sensor the robot can determine the direction
it is facing. Furthermore using it the turning accuracy could be
increased.

3.7. Camera
The project definition assumes that the robot establishes a

communication with a remote device with a camera. It has one
communication module – Bluetooth, therefore the remote device
is required to have not only a camera but also Bluetooth
communication technology.rduino board.

4. System Design

4.1. General Design

Figure 20 gives an overview of the system’s design.

Robot’s main program

Communication module
(Bluetooth)

Robot marking by LEDs

Camera properties settings: ISO, shutters speed, F-
number, exposure value, camera focus

Image’s analyse

LEDs coordinates

Communication module

Calculate robot’s turning angle and goal direction

Calculate distance to the goal

Path planner module

Commands for movement controller

Mobile robot

Robot recognition

Request “Find me”

Camera image

Plan transformation algorithm
Analytic

geometry

Orientation
sensors data

Open CV

Robot
application

Android
App

Figure 20. Flowchart of the system’s general design

4.2. Robot Software Design

The software for the robot is build based on the Arduino API
keeping identical design to the general one.

The design is similar to the robot side of the general diagram.
The difference is that the software is built over Arduino core API
while the other is more abstract.

Abstract2WDController and Motor classes are meant to be an
API to the Arduino Motor shield. They encapsulate pins
reservation along with basic Arduino methods for setting different
digital and analog levels to the pins.

• Motor – class, representing single motor channel of the Motor
shield. It adjust its pins modes and levels using Arduino basic

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 399

subroutines. Represents an API to the Motor module from the
general diagram.

• Abstract2WDController – abstract class, encapsulating the
declaration of two motor channels with the specific pin
mapping for the Arduino Motor Shield. It also defines a basic
interruptible motor control leaving the motors’ parameters to
be adjusted by the class’ successors.

• Compass – an interface declaring a minimum behavior that
one true compass object should implement.

• AngularController2 – an extension of the 2WDController
providing forward movement and turning operations. In order
to do accurate turns it uses a Compass object to determine its
orientation. It has a predecessor sharing the same name and
interface but not so successful. More information about them
in the Implementation chapter.

The two controller classes could be considered as a
representation of the Movement Controller module from the
general diagram.

• ExSoftwareSerial – extends the Arduino’s SoftwareSerial
library providing methods for reading not-string based data
types from the upcoming stream. These methods support error
handling and time-out periods. This class represents the API
to the robot’s Communication module from the general
diagram.

• TargetFinder – class implementing the main Plane
transformation algorithm. It takes the {x,y} coordinates of the
tail and the two side points and determines what turn has to be
made in order to make the robot face the target and how far it
is. This class does relates to the Path Planner module from the
general diagram.

• Main – class representing the Main program. It binds the three
features of the robot (communication, brain and motion
control) together to complete the main goal of the project –
staying in the center of the camera frame. This class delegates
communication with the remote camera and controls the data
flow from it through the TargetFinder to the Movement
Controller.

4.3. Camera Software Design

The software written for the remote camera is built based on
the Android API but keeps its core identical to the general idea.
Keeping the fact that the software is more or less a mobile
application it has to have highly intractable user interface in order
to monitor the system. The design extends the general one
providing additional monitoring support using Android UI tools.

4.4. Application Overall Design

This design shows how application’s modules are bound
together.

• Bluetooth package – this package contains all defined
Bluetooth classes. These classes are façades of the Android’s
Bluetooth API and provides additional exception handling
techniques and device discovery tools.

• Camera package – contains Camera classes extending the
functionality of the Android’s Camera API. It implements
different tools for serving the application’s specification.

Camera preview class is present for handling each frame
captured by the camera sensor. Additional Image processor is
defined for analyzing images and a Custom camera class
providing programmable interface to the project specific
camera parameters for adjustment.

• Robot package – classes for handling robot requests. They
implement features as robot communication managing, robot
data translation and robot recognition.

• Graphical user interface (GUI) package – classes observing
the core objects and updating the user interface when events
occur

• MainActivity – manager class; creates all class hierarchy
binding different modules together. It is responsible for
resource acquiring and releasing such as Camera and
Bluetooth hardware modules reserving, communicator and
image processing threads handling on application starting and
closing. It also appears as a controller to the main UI window
granting classes form the GUI package an access to the UI
objects.

4.5. Core Design

The design, presenting the core of the application, does not
differ much from the general one.

• Bluetooth classes – façades to the Android’s Bluetooth API;
represent the interface to the device’s Bluetooth (the
Communication module of the mobile device).

• BluetoothModule – manager class; creates
BluetoothConnection objects, deals with the Bluetooth
hardware’s settings and takes the responsibility of acquiring
and releasing it along with closing all opened connections.

• BluetoothConnection – establishes bidirectional RF
connection to a single remote device and is responsible for all
data that flows in and out the device.

• RobotCommunicator – manager class; as the name suggests it
completely implements the functions of the
RobotCommunicator module from the general design.
Additionally it uses the BluetoothModule to connect to the
robot and a separate decoder called RobotTranslator to get a
RobotRequestEvaluator object for handling the current
request.

• RobotTranslator – factory for RobotRequestEvaluator
objects; it takes the received request from the communicator
and decides what evaluator to return.

• RobotRequestEvaluator – interface that unifies the type of all
evaluators’ responses – a byte array as specified by the
BluetoothConnection’s method “sendData”.

• CustomCamera – façade based on the Android’s Camera API
providing interface to the Camera module and access to the
following adjustable camera parameters (focus mode, ISO,
Auto-exposure lock and exposure compensation)

• CustomCameraView – camera preview; implements frame
handling that submits each new camera frame to the
CameraImageProcessor and to a UI preview surface.

• CameraImageProcessor – singleton; fully implements the
Image Analysis algorithm using external image processing

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 400

native library – OpenCV; the result represents all extracted red
and blue regions; represents the ImageProcessor module from
the general design.

• RobotLEDImageRecognizer – singleton; analyzes the
extracted regions from the CameraImageProcessor trying to
recognize the robot. If successful, it converts the appropriate
coordinates to a binary data. If the robot is not successfully
detected from the current regions, modifications of the
camera’s exposure are made and next result is awaited.
Combinations of all available low exposure parameters are
being tried.

4.6. User Interface Design

 21). It consists of objects called
Observers that are listening for activity or changes in other objects
called Subjects or Observables. Observer register to a Subject
which hold a list with subscribed Observers. Each time a Subject
do some activity or change state it notifies all its registered listeners
providing them with the required information. Using this pattern
constant looping (listening) in the listener classes is avoided.

Figure 21. UML class diagram of the Android application's UI layer along with

the observed core classes

• MainThreadExecutor – it is an abstract class providing
support for executing subroutines in the main thread.
Android’s specification states that all interactions with user
interface objects have to be done by the main thread also
called UI thread. Also it highly recommends long-running
tasks to be not executed by the main thread because it may
result in UI freezing or lagging. MainThreadExecutor is ideal
for classes that mainly interact with the UI but are being
accessed by objects running in separate threads – like the
RobotCommunicator or the CameraImageProcessor.

• CommunicationProgressListener – this class observes the
RobotCommunicator. Each time a communication activity is
being done the communicator notifies its listeners. Interaction

between the communicator and its observers is being done
using Progress typed objects. The
CommunicationProgressListener updates an UI object each
time new Progress object becomes present.

• ProcessedImageListener – an observer of the
CameraImageProcessor. When an image has been processed
the processor updates its observers. The listener retrieves the
extracted regions from the picture and displays them to the
screen using a DrawBoard. DrawBoard is an which represents
an Android UI Surface that is positioned above any else UI
object in the main UI window. It implements functionality for
drawing crosses.

• MonitorTypeChangeListener - observes the
CustomCameraView. By definition this custom view class
handles all preview images from the Camera and sends them
to both the Image processor and an UI preview class. Some
additional monitoring was implemented giving the
opportunity of displaying not only the original image but also
intermediate processed image from the Image analysis
algorithm. The Image processor provides access to such
images via ImageType object. Clicking the view changes the
type of the send image to the UI preview. The
MonitorTypeChangeListener is notified in case of such events
and reflects the displayed image type’s string representation
to a UI textbox.

Figure 22 demonstrates the common work of the application.

Figure 22. Screenshot of the Android application with marked UI objects

The number markers has the following meaning:

• This is a text label that is being handled by the
MonitorTypeChangeListener. It displays the preview image’s
type.

• A multiline not-editable text area. It is modified by the
CameraParametersListener each time a camera parameter is
changed. Presents the current camera’s settings.

• Another multiline area that keeps track of the
RobotCommunicator‘s progress. It is being handled by the
CommunicationProgressListener.

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 401

• Crosses drawn by invoking DrawBoard methods from the
ProcessedImageListener.

• Touching the screen will change the preview image. The new
image’s type will be presented in the Label 1.

• It is a switch button that forces the ImageProcessor work even
when robot communication is not present. Used for high-end
monitoring but consumes more battery power.

5. Testing and Evaluation
5.1. Android Appplication
1) Robot recognition algorithm

The application was tested on three devices with quite different
hardware specification. The results are summarized in Table 1.

Table 1. Camera application test results

Device
model

Android CPU Camera
parameters

Remarks

Asus
ZenFone 2
Laser

API 21
v5.0
Lollipop

Qualcomm
Octa-core

Focus mode
ISO
Exposure

Smooth
performance;
Fast image
analysis;
Robot
cannot be
recognized
while on
bright
surface

LG
Optimus G

API 19
v4.4
KitKat

Qualcomm
Quad-core

ISO
Exposure

Smooth
performance;
Fast image
analysis;
Robot cannot
be
recognized
while on
bright
surface
or if some
noise is
present.

Sony
Live

API 14
v4.0
Ice Cream

Qualcomm
Single-core

Exposure Smooth
performance;
Fast enough
image
analysis;
Robot
cannot be
recognized
at all.

The following conclusions are summarized:

• The presence of several background threads doesn’t badly
affect overall performance on a Qualcomm CPU with less
cores;

• Automatic or not-present ISO setting is not recommended;

• Support of a close focus range could ignore noise;

• The recognition depends on the supported editable camera
settings. An advanced intelligent robot recognition algorith is
needed to remove this dependency.

2) Application Stability
After a lot of testing and debugging it could be stated that

OpenCV’s matrix object Mat is not being automatically released

on garbage collection as defined in the library’s documentation.
Therefore it should be programmatically released before
dereferenced. Otherwise a memory leak occurs which could cause
system’s instability.

5.2. Robot behaviour
1) Plane transformation algorithm

The plane transformation algorithm is tested with different
coordinates of the LED sensors, i.e. with three input data into a
Cartesian coordinate system with range [-5; -5] ÷ [5; 5].

For resolution 2 of the value of coordinates 6 values per a
coordinate are possible: -5, -3, -1, 1, 3, 5. Three input points have
two coordinates with 66 = 46656 test cases (Table 2).

Table 2. Results from test 1

Experiments Number
of tests Percent Conclusion

Total 46656 100%
Passed 36524 78.28%
Exceptions 10132 21.72

• Handled 6048 12.96%

The three
points lay on
one line or
two of them
overlap.

• Not handled 4048 8.75%
To be
analyzed in
future.

The tests from resolution 1 are presented in Table 3:

• each coordinate has 11 possible values in range [-5; 5];

• test cases: 116 = 1 771 561 possible combinations.
Table 3. Results From Test 2

Experiments Number
of tests Percent Conclusion

Total 1 771 561 100% Conclusion
Passed 1 613 506 91.08%
Exceptions 158 055 8.92%

• Handled 84 473 4.77%

The three
points lay on
one line or
two of them
overlap.

• Not handled 73 582 4.15% Further
analysis

More combinations lead to less chance for an exception. Even
a camera with low quality can take images with resolution of 1MP.
This means, that the number of combinations is great and the
occurrence of exceptions is practically not possible.

2) Turning accuracy

After continuous manual testing an anomaly has been
discovered. The magnetometer (compass) sensor does not always
gives adequate data and thus resulting in Movement controller’s
confusion effecting the turning accuracy. The sensor has been
tested in separate project with all magnetic components (motors,
battery) detached from the robot but the problem still occurs. The
issue could be caused by hardware defect but another module is
not available at this state.

6. Conclusions and Future Work
The results from the experimental tests prove that the system is

stable and effective with different devices and resolutions of the

http://www.astesj.com/

I. Penev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 391-402 (2018)

www.astesj.com 402

camera. This means, that a mobile robot, equipped with a usual
camera, could be practically exploited for solving tasks as moving
through dangerous spaces, searching for victims of disaster events,
etc.

The future work will be direcited to implementation of
intelligent software controller, using neural network for detection
and recognition of the robot image. More advanced orientation
sensors (accelerometer, gyroscope) will be integrated and robot’s
physical parameters (wheel diameter, motor RPM, robot size) will
be used by the algorithm.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] M. Karova, I. Penev, M. Todorova, and D. Zhelyazkov, "Plane
Transformation Algorithm for a Robot Self-Detection", Proceedings of
Computing Conference 2017, 18-20 July 2017, London, UK, ISBN (IEEE
XPLORE): 978-1-5090-5443-5, ISBN (USB): 978-1-5090-5442-8, IEEE,
2017.

[2] C. Connolly, J. Burns, and R. Weiss, “Path planning using Laplace's
Equation”, IEEE Int. Conf. on Robotics and Automation, pp. 2101-2106,
1990.

[3] D. Lima, C. Tinoco, J. Viedman, and G. Oliveira, “Coordination,
Synchronization and Localization Investigations in a Parallel Intelligent
Robot Cellular Automata Model that Performs Foraging Task”, Proceedings
of the 9th International Conference on Agents and Artificial Intelligence –
Vol. 2: ICAART, pp. 355-363, 2017.

[4] J. Barraquand, and J. C. Latombe, "Robot motion planning: A distributed
representation approach", Int. J. of Robotics Research, Vol. 10, pp. 628-649,
1991.

[5] O. Cliff, R. Fitch, S. Sukkarieh, D. Saunders, and R. Heinsohn, “Online
Localization of Radio-Tagged Wildlife with an Autonomous Aerial Robot
System”, Proceedings of Robotics: Science and Systems, 2015.

[6] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple‐Robot Simultaneous
Localization and Mapping: A Review”, Journal of Field Robotics 33.1, pp.
3-46, 2016.

[7] T. Kuno, H. Sugiura, and N. Matoba, "A new automatic exposure system for
digital still cameras", Consumer Electronics, IEEE Transactions on 44.1,
pp.192-199, 1998.

[8] T. Sebastian, D. Fox, W. Burgard, and F. Delaert, “Robust Monte Carlo
localization for mobile robots”, Artificial Intelligence, Vol. 128, Iss. 1-2, pp.
99-141, 2001.

[9] W. Yunfeng, and G. S. Chirikjian, "A new potential field method for robot
path planning", IEEE, DOI: 10.1109/ROBOT.2000.844727, San Francisco,
CA, USA, 2000.

[10] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, "Mapping and
localization with RFID technology", Proc. IEEE Int. Conf. Robot. Autom.,
vol. 1, pp. 1015-1020, 2004.

[11] J. Flores, S. Srikant, B. Sareen, and A. Vagga, "Performance of RFID tags
in near and far field", Proc. IEEE Int. Conf. Pers. Wireless Commun., pp.
353-357, 2005.

[12] D. Lima, and G. de Oliveira, ''A cellular automata ant memory model of
foraging in a swarm of robots.'', Applied Mathematical Modelling 47, pp.
551-572, 2017.

[13] B. Siciliano, and O. Khatib, Handbook of Robotics, Ed. 2, ISBN: 978-3-319-
32550-7, Springer –Verlag, Berlin, Heidelberg, 2016.

[14] J. Shi, and J. Malik, "Normalized cuts and image segmentation", Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22.8, pp. 888-905,
2000.

[15] R. Stengel, “Robot Arm Transformations, Path Planning, and Trajectories”,
Robotics and Intelligent Systems, MAE 345, Princeton University, 2015.

[16] S. Se, D. Lowe, and Jim Little, “Mobile Robot Localization and Mapping
with Uncertainty using Scale-Invariant Visual Landmarks”, The
International Journal of Robotics Research, Vol 21, Iss. 8, pp. 735 – 758,
2002.

[17] T. Kuno, H. Sugiura, and N. Matoba, "A new automatic exposure system for
digital still cameras", Consumer Electronics, IEEE Transactions on 44.1,
pp.192-199, 1998.

[18] D. Hahnel, W. Burgard, and S. Thrun, ”Learning compact 3D models of
indoor and outdoor environments with a mobile robot”, Robotics and
Autonomous Systems, Vol. 44, Iss. 1, 2003.

[19] L. Lee, R Romano, and G Stein, "Introduction to the special section on video
surveillance", IEEE Transactions on Pattern Analysis and Machine
Intelligence 8, pp. 740-745, 2000.

[20] M. Beetz, “Plan-Based Control of Robotic Agents: Improving the
Capabilities of Autonomous Robots”, ISSN-0302-9743, Springer-Verlag,
Berlin, Heidelberg, New York, 2002.

[21] C. Richter, S. Jentzsch, R. Hostettler, J. Garrido, E. Ros, A. Knoll, F.
Rohrbein, P. van der Smagt, and J. Conradt, “Musculoskeletal robots:
scalability in neural control”, IEEE Robotics & Automation Magazine, Vol.
23, Iss. 4, pp. 128-137, 2016.

[22] D. Lima, and G. de Oliveira, ''A cellular automata ant memory model of
foraging in a swarm of robots.'', Applied Mathematical Modelling 47, pp.
551-572, 2017.

[23] M. Alkilabi, A. Narayan, and E. Tuci, ''Cooperative object transport with a
swarm of e-puck robots: robustness and scalability of evolved collective
strategies”, Swarm Intelligence, Vol. 11, Iss. 3-4, pp. 185-209, 2017.

http://www.astesj.com/

	2. Methodology
	2.1. System overview
	2.2. Robot recognition
	2.3. Transformation of 2D coordinates to 3D
	2.4. Analytic Geometry for Transformation
	2.5. Transformation Algorithm Definition

	3. System requirements and specification
	3.1. Mobile robot
	3.2. Arduino board
	3.3. Robot body
	3.4. Motor shield
	3.5. Bluetooth module
	3.6. Magnetometer
	3.7. Camera

	4. System Design
	4.1. General Design
	4.2. Robot Software Design
	4.3. Camera Software Design
	4.4. Application Overall Design
	4.5. Core Design
	4.6. User Interface Design

	5. Testing and Evaluation
	5.1. Android Appplication
	1) Robot recognition algorithm

	5.2. Robot behaviour

	6. Conclusions and Future Work
	Conflict of Interest
	References

