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Considering link vibrations, the main limitation affecting flexible
manipulators, this article seeks to make a contribution by presenting an
enhanced two degree of freedom vibration controller. This controller uses
a filtered right inverse controller in the feedforward and strain feedback
controller in the feedback path. The Filtered inverse controller damps
transient vibrations while preserving joint trajectories. On the other hand,
strain feedback controller ensures a rapid decay of residue vibrations.
Modeling of the manipulator was carried out in Maplesim, linearized
and inverted in Matlab. Experiments were conducted in the dSPACE
environment. Both the simulations and the experimental results showed
that the two-degree-of-freedom controller yielded a superior performance
over the two controllers individually.

1 Introduction
This journal article, an extension of our original

work presented in the 2018 IEEE International
conference on Applied System invention(ICASI) [1]
seek to make a contribution by presenting a two degree
of freedom controller comprising of a filtered inverse
controller in the forward path and a Direct Strain
Feedback controller(DSFB) in the feedback path. The
strength of the proposed methods lies in the fact that
it can suppress both the motion induced vibrations, as
well as residue vibrations, and it is superior than the
individual controllers separately.

Since the dawn of the industrial revolution, over
and above making the work easier, man has been
thinking of how to replace human labour altogether.
This has brought to fruition many kinds of robots and
manipulators to fulfil this dream. These robots came
handy in carrying out repetitive chores, in hazardous
work environment and in heavy industries to mention
just but a few. Initially, robots comprised of bulky
links driven by huge motors. Thus, they suffered from
link inertia or were rather driven at low speeds and
were expensive to operate considering the amount of
power they consumed and the cost of maintenance.
Challenges of rigid robots, except for heavy tasks and
for application where low speeds is not a problem, were
addressed by the introduction of flexible manipulators.

These Flexible manipulators come with lots of
merits over rigid manipulators; like being light in
weight hence, small actuators can be used. Also, the
maintenance and running costs are low. However, their
links are flexible, hence they tend to vibrate especially
when operated at high speeds. These vibrations
increases with both loading and additional links, due
to coupling, which adversely affects the accuracy and
duplicity of tasks. Also, link vibration leads to time
wastage, hence having to wait for the residue vibrations
to decay to healthy levels before the end-effector can
be put to use. Link vibrations also raises a safety issue,
as continued vibration can lead to mechanical failure
due to fatigue, thereby reducing the life span of the
manipulator, and posing a risk to the operators.

In a bid to reap all the benefits of the flexible
manipulators, a lot research has been done to mitigate
link vibrations and all its shortcoming. Researchers
[2, 3] introduced a vibration control method for the
flexible manipulators based on internal resonance. In
their scheme, they designed an absorber comprising of
a servomotor, sliding along the links of the manipulator
and driving a branched link. At internal resonance, the
energy stored in the links in form of vibration energy,
is propagated back and forth between the different
modes and is dissipated to the absorber. One challenge
associated with their method includes the complication
in establishing the internal resonance considering the
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different loading and trajectories. Another limitation
is the feasibility of using this scheme with additional
links, and the inertia introduced by the absorber.

In [4], the author proposed a novel filtered input
shaping technique, implemented inside the position
control loop of a single link flexible manipulator. The
controller was developed based on the dominant
vibration modes of the manipulator to mitigate
the motion-induced vibrations from the high speed
operations, which arose also from the flexible nature of
the link. The controller was based on a lowpass and a
bandpass elliptic filters to attenuate dominant modes
in the input signal, and avoid exciting the manipulator
at its natural frequencies. With fixed filters, however,
the performance of their system would deteriorate with
additional loading, since dominant modes are bound to
change. The limitations of the fixed filters are addressed
in [5]. There exist similar work involving input shaping
for vibration control, for example [6–8].

In [9, 10], the authors noted that vibrations occur
after the manipulator was brought to a sudden stop.
They found that the severity of the induced vibration
was largely dependent on the initial speed, speed
prior to the stop and the duration of the motion.
The higher the speed, the longer the vibrations
will ensue, before the end pointer settles to the
desired position. In their work, they developed
trapezoidal and triangular velocity profiles to reduce
joint velocities at the beginning of the operation and
prior to stopping. In other words, the trajectory was
portioned into acceleration period, constant speed
period and deceleration period. The scheme resulted
in minimal vibrations naturally as the manipulator
decelerated to a stop.

Another popular active vibration control technique
is the use of smart structures in form of piezoelectric
actuators which are bonded to the root of the
manipulator [11]. Authors in [12] made use of shunted
piezoelectric transducers to mitigate vibrations. In
this type of solution, the piezoelectric transducers
are bonded onto the links of the manipulator. Link
flexure is converted to corresponding voltages which
are used as feedback. Under this broad scheme,
alternative vibration suppression methods include:
Position positive feedback [13], strain rate feedback
control [14], quantitative feedback theory [15], and
resonant control [16]. Current trends include using
Neural Networks to tune PID gains [17], filtered inverse
control [18], robust control, in particularH∞ together
with piezoelectric actuators [19], boundary control [20].

The rest of the article is organized as follows;
Modelling of the two link 3D flexible manipulator
is introduced in section 2. Development of the inverse
model is highlighted in section 3. Application of the
developed inverse is applied to the manipulator 4.
Simulation and experimental results are presented and
discussed in section 6 followed by conclusion in section
7.

2 Modeling and validation of the
manipulator

The basic prerequisite for model based controller
design is an accurate model of the plant to be controlled.
This is an easy feat for simple systems which can easily
be obtained from first principles by paper and pen
observing the governing equations. However, for
complex system especially if they are nonlinear and
dynamic is not an easy task.

Advancements in the processing power of modern
computers has brought forth another method of
obtaining models of complex system by employing
symbolic softwares. Examples of such softwares
include but not limited to Maple/Maplesim©,
Mathematica©, Matlab/Simscape© all based on
Modelica© library. In symbolic modeling, mathematical
models of common engineering parts such as joints,
links, motors with possibilities of customization are
dragged onto a workspace to form a complex system.
Simulations are carried out considering a practical
environment. The strength of this technique lies in its
accuracy, simplicity and the possibility of including
aspects which cannot be represented mathematically.

The plant reported in this article is a two link, 3D
flexible manipulator, with technical description as
tabulated in Appendix A.1. It has three rigid joints,
driven by dc servomotors and fitted with harmonic
drives to reduce joint velocities by a factor of one
hundred. It has two flexible links with a variable load
attached at the far end of the link number 2.

The control system includes a computer running
the Matlab/Simulink and interfaced with dSPACE
DSP board, which serves as Servomotors driver via DA
converters and collection of data via AD converters.
Operation of the system is carried out from the dSPACE
control desk environment. The measurement of the
joint angles and the velocities were achieved using
encoders fitted at the bottom part of the servomotors.
Strain data was obtained from strain gauges attached
at the root of the links. Strain information was
conditioned using wheatstone bridge, filtered and
amplified before being transmitted to the computer via
AD converters. The control system is configured as in
Figure 1.

Figure 1: Control system setup

The manipulator and the control system were
modelled and linearized in Maple/Maplesim and its
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inverse model was developed in Matlab. Validation
of the model against the actual manipulator was
performed and a perfect agreement was observed
between the nonlinear model, linearized model and the
actual manipulator, as will be seen later in the results.
State space matrices of the linearized model are posted
in the Appendix A.3.

3 Development of the inverse
system

To develop an inverse model, consider an Linear
Time Invariant(LTI) continuous time square system∑

(t), and let the triplet A,B and C be a minimal
state-space representation. It is assumed that the
system is stable or stabilized by negative feedback.

ẋ(t) = Ax(t)+Bu(t), x(0)=x0, t∈R+ (1)

y(t) = Cx(t) (2)
where x(t) ∈ Rn, u(t) ∈ Rp, y(t) , (y1,y2, ··· ,yp)T ∈ Rp,
A∈Rn×n, B∈Rn×p andC ∈Rp×n.

Definition 1. Given
∑

(t), an LTI system defined
above in equations 1 and 2, inversion involves the
development of a model

∑−1(t) that yields the input
control law uf (t) to reproduces y(t) when used as the
input to

∑
(t).

Definition 2. If Ci denotes the ith row of the output
matrix C, then the system is said to have a relative
degree r , (r1, r2 ··· , rp)T if CiAlB = 0, ∀l < ri − 1;
1 ≤ i ≤ p [21]. Further, if this holds true in the entire
domain in the states, then we say the system has a well
defined relative degree.

Following Definition 2 above and assuming that
the system has a well-defined relative degree r =
(r1, r2, ··· , rp)T , differentiating the ith output ri times
w.r.t time yields

y(ri ) =CiA
(ri )x+CiA

(ri−1)Bu
whereCi is the ith row of the output matrixC for 1≤ i≤p
and the subscripts represent the Lagrange’s notation
of the rith derivative in time. Repeating this for all the
rows and having the resulting expressions in vector
form, we have

y(r) =Axx(t)+Byu(t) (3)
where

y(r) ,


y

(r1)
1 (t)

y
(r2)
2 (t)
...

y
(rp)
p (t)


Ax ,


C1A

(r1)

C2A
(r2)

...
CpA

(rp)


By ,


C1A

(r1−1)B
C2A

(r2−1)B
...

CpA
(rp−1)B


From equation (3), and the fact that By is invertible

because of the well defined relative degree assumption,
the control law is

u(t)=B−1
y [y(r)

d −Axx(t)] ∀ t∈ (−∞,∞) (4)
There exist a state transformation T :Rn→Rn

x(t)=T
[
ζ(t)
σ (t)

]T
which decomposes the states into internal
dynamics(system states, which are not directly
controlled by the input u(t)), σ (t) and the external
dynamics ζ(t), (i.e, the output and its derivatives in
time up to (ri−1)) as

ζ=[y1,ẏ1,···y
(r1−1)
1 ,···,yp,ẏp,···,y

(rp−1)
1 ]T (5)

The expression of the new system after coordinate
transformation is

ζ̇ = Â1ζ+Â2σ+B̂1u

σ̇ = Â3ζ+Â4σ+B̂2u

where Â=
[
Â1 Â2
Â3 Â4

]
=T −1AT and B̂=

[
B̂1
B̂2

]
. Replacing

x(t) in (4) with the transformed dynamics, the control
law to maintain the exact tracking can be written as

uf =B−1
y [y(r)

d −Aζζ(t)−Aσσ (t)] (6)
where

[Aζ Aσ ]=AxT

internal dynamics can now be expressed as

σ̇ = Â3ζ+Â4σ+B̂2B
−1
y [y(r)

d −Aζζ(t)−Aσσ (t)]

= Âσσ (t)+B̂σY (7)
where

Âσ = Â4−B̂2B
−1
y Aσ

B̂σ = [(Â3−B̂2B
−1
y Aζ) B̂2B

−1
y ] and

Y = [ζT y
(r)T
d ]T

in the same respect, equation (4) can now be written as

u(t) = B−1
y [y(r)

d −Aζζ(t)−Aσσ (t)]

= −B−1
y Aσσ (t)−[B−1

y Aζ −B−1
y ]Y

= Ĉσσ (t)+D̂Y Y (t) (8)
where

Ĉσ = −B−1
y Aσ and

D̂Y = −[B−1
y Aζ −B−1

y ]
Equation (7) together with equation (8) form the inverse
system and can be represented in state space form

σ̇ (t) = Âσσ (t)+B̂σY (t) (9)

u(t) = Ĉσσ (t)+D̂Y Y (t) (10)
and represented as in Figure 2(see Appendix A.4 for
details of matricesAσ ,Bσ ,Cσ ,DY ).

∫
Âη

ĈηB̂η

D̂Y

η̇ η uf (t)Y (t) ++

+ +
+
−

k

Figure 2: Block diagram of the inverse system

4 Inverting the manipulator
The linear model has 17 states distributed as:
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• x1(t)= i1(t)

• x2(t)=w11(t)

• x3(t)= ẇ11(t)

• x4(t)=w12(t)

• x5(t)= ẇ12(t)

• x6(t)=w21(t)

• x7(t)= ẇ21(t)

• x8(t)=w22(t)

• x9(t)= ẇ22(t)

• x10(t)=θ1(t)

• x11(t)= θ̇1(t)

• x12(t)=θ2(t)

• x13(t)= θ̇2(t)

• x14(t)=θ3(t)

• x15(t)= θ̇3(t)

• x16(t)= i3(t)

• x17(t)= i2(t)

where ij denotes the armature current to the servomotor
driving joint j(j = 1,2,3),θj and θ̇j are the instantaneous
joint angles and joint velocities of joint (j = 1,2,3),
respectively, whereas (w11,w12), (w21,w22) and their
derivatives denote the flexure variable for links 1 and
2 respectively.

Remark 1. In the modelling of the manipulator in
Maplesim, the lengths of links 1 and 2 are broken into
two to accommodate an instrument to measure the strain.
In regard to this, in the linearized model, the flexure
variable has two parts as w11,w12 for link 1 and w21,w22
for link 2. Except for having twice as many flexure variables
as the number of links, breaking the links does not affect the
performance of the model.

With a relative degree of r = (3,3,3), the internal
dynamics, σ (t), were taken as the flexure variables,
whereas the output variables and their derivatives ζ,
were taken as the three joint angles, velocities and
motor currents, i.e.

σ (t)=



x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)
x9(t)


=



w11(t)
ẇ11(t)
w12(t)
ẇ12(t)
w21(t)
ẇ21(t)
w22(t)
ẇ22(t)


, ζ(t)=



x1(t)
x10(t)
x11(t)
x12(t)
x13(t)
x14(t)
x15(t)
x16(t)
x17(t)


=



θ1(t)
θ̇1(t)
θ̈1(t)
θ2(t)
θ̇2(t)
θ̈2(t)
θ3(t)
θ̇3(t)
θ̈3(t)


Poles and zeros of the linear model and its inverse are
as shown below
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(b) Linear model

Figure 3: Poles and zeros of the plant and its inverse

Upon inversion, the eight poles corresponded to the
internal dynamics, i.e. the flexure variables. These
poles were found to be lying on the imaginary axis
implying that these variables are marginally stable and
that they will not decay to zero with time. This was
addressed by applying pole placement technique to
slightly shift these poles to the right. This is important

as it means that the stability of the internal dynamics
and the resulting inverse is assured. Also the stable
model still remains to be the inverse of the linear
model. Consequently the stable solution of the internal
dynamics follows from solving the ODE in equation 9 as

σ (t) = eAσ tσ (0)+
∫ t

0
eAσ (t−τ)BσY (τ)dτ (11)

where τ is a dummy variable. The first term represent
the zero-input response whereas the second term is
the zero-state response. With negative eigenvalues of
the matrixAσ , which is enforced using pole placement
technique, it can be deduced from this expression that
the internal dynamics σ (t) are bounded for bounded
external dynamics Y (t).

Driving the manipulator via an inverse controller
implies that the joint angles will follow the desired
trajectories exactly. For the high speed operations
involving step or square wave trajectories; however,
joint velocities during the rising and the falling edges
would be too high thus not safe for the operators. It can
also lead to mechanical failures. This was addressed by
introducing second order bilinear low pass filter, before
the inverse controller, of the form

f (s)=
1

(λs+1)2

where λ is an adjustable parameter for limiting the
manipulator speeds to safe levels.

Remark 2. Operation without filter leads to very high
speeds, hence exposing the operator and environment to risk,
also risking the mechanical well being of the manipulator.

Remark 3. Operation with filters without the inverse
controller means that the high frequency components of the
trajectories are removed leading to a very high joint error.

Remark 4. The inverse controller ensures that the joint
trajectories follows the desired trajectory, the filter ensure
safe operation speeds.

5 Direct strain feedback control
The theory of Direct Strain Feedback (DSFB) was

developed by Luo [22, 23] and experimented with a
one-link flexible manipulator. In this control scheme,
the strain measured at the root of the flexible link
is multiplied by a constant gain k and the resultant
signal is used to modify the control law as a negative
feedback. The overall effect of direct strain feedback
is to increase the system damping coefficient thereby
leading to a rapid decay of transverse vibrations and
torsional vibration as a result of coupling between the
two types of vibrations. In [22], the author shows that
the technique can satisfactorily dampen link vibrations.
He also analytically derived the proof that the resulting
closed loop is asymptotically stable. A block diagram
showing the hybrid of the filtered inverse feedforward
controller and the DSFB is shown in Figure 4.

From the figure, the new control law is expressed as
u(t)=θf (t)−θ(t)−kε(0,t)

where:
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θf (t) - Trajectory tracking signal generated
by the filtered inverse controller

θ(t) - Joint angle of the flexible manipulator
ε(0,t) - Strain at the root of the links
k - Strain feedback controller gain

LPF Σ−1 Σ

k

θr(t) θ(t)

ε(0, t)+

+−
−

Filtered inverse Plant

DSFB controller
θf (t)

u(t)

Figure 4: Hybrid control setup

6 Results and Discussion
6.1 Modelling and validation results
To validate the model developed and linearized in
section 2, simulations were conducted in Matlab
Simulink on the linearized models and the performance
of the model compared with the existing flexible
manipulator. The task involved moving the joints
as in a simple pick and place task popular in industries
e.g soldering, painting etc.
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Figure 5: Comparison of Joint angles between linear
and the actual manipulator

Figure 5 shows the joint trajectories for joint 1, 2 and
3 for the model and the manipulator. From the figures,
we can see a perfect agreement of the model with the
existing manipulator.
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Figure 6: Comparison of strain between linear and the
actual manipulator

Figure 6 validates the model employed in this work
in terms of the vibrations excited. It shows the strain
information of the linear model against the actual
manipulator. Perfect agreement between joint angles
in torsional and links strain in 6(a-c) can be observed.
Observations in figures 5 and 6 leads to the deduction
that the linear model represents an accurate model of
the manipulator. In addition, the inverse derived from
the linearized model represent an accurate inverse of
the actual manipulator.

6.2 Simulation results
This section presents simulation results of the validated
model subjected to the inverse controller, the strain
feedback controller and a hybrid controller of the two.
Simulations were conducted in Matlab/Simulink for
a desired joint trajectory that involved moving the
joints at an angle of 20 degrees for 10 seconds and back
to the vertical position for 10 more seconds. Typical
application s of such trajectories are in soldering and
other pick and place related tasks. Simulink model of
the simulation setup is as shown in Figure 7.

The servomotors used here were of the speed
reference type. Thus, the angle feedback formed the
outer feedback loop, having unity feedback gain, while
strain feedback was in the inner loop with a feedback
gain k = 0.4. To avoid errors due to self-weight, the
gravitational effect is compensated for in the strain
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signal. The compensation was done by removing the
self-weight offset before being fed back through the
DSFB controller.

Figure 7: Simulation setup in MATLAB
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Figure 8: Strain information of the linear model

From the figures of torsional strain(Figure 8a), in
plane strain for link 1(Figure 8b) and link 2(8c), it
can be seen that the inverse controller had an upper
hand in suppressing transient vibrations caused by
the sudden starting and sudden stopping. However,
these vibrations lasted for a relatively longer time.
Interestingly, DSFB, though it had very poor transient
response, it was very strong in dealing with residue
vibrations. The hybrid of the two controller was
inherently better in handling both the transient and the

residue vibrations, hence, outperformed the individual
controllers. Figure 9 gives a pictorial evidence of the
of the comparison and the strengths of the individual
controllers.
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Figure 9: Strain power spectrum density

6.3 Experimental results
The experiment involved moving the three joints at an
angle of 20 degrees, using a step signal lasting for 10
seconds, followed by returning to its original vertical
position for another 10 seconds for a case without tip
mass and with a tip mass of 100g. Strain measurement
was achieved by attaching strain gauges at the root of
respective links for torsional, link 1 in plane and link 2
in plane strain. Figure 10 shows the experimental setup
of this work.

Figure 10: Experiment setup
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Figure 11 shows the experimental results for the
torsional strain, 11a, and strain for the two links, (11b,
11c) for a manipulator without any tip load. The figures
show the comparison of the inverse controller, the
DSFB controller and a hybrid of the two. It can be
seen that the inverse controller had an upper hand in
dealing with motion induced vibrations. On the other
hand, the DSFB ensured a rapid decay of the residue
vibrations. A combination of the two controllers as
a two degree of freedom controller, yielded a system
characterised by minimal motion-induced vibrations
decaying very rapidly. The hybrid of the two yielded
minimal strain amplitudes and shortened the duration
of the vibrations. Actually, the overall performance
of the hybrid was better than that of the controllers in
their areas of strengths, individually. This is attributed
to the combined strengths of the two controllers.
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Figure 11: Torsional and lateral strain without any load

In plane strain in the first 10 seconds of the links 1 and
2(11b, 11c), an offset from zero strain can be seen. This
error is associated with the fact that, during this time,
links 1 and 2 are tilted and thus affected by gravity.
Consequently, the bending strain at the root of the links
did not converge to zero but remained to be a value
of the distortion due to the self weight of the links for
the entire period. However, this effect doesn’t affect
torsional strain.

Figure 12 shows the strain spectral power density
without any load, where the improvement was very
significant. It can be seen that individual controllers

suppress different frequencies while the hybrid
inherits these capabilities, better yet outperforming the
individual controllers. Again, the effect of self weight
due to the tilted status of links 1 and 2 can be seen in
the lower part of the spectrum (Figures 12b,12c), but
it is absent in the spectrum for torsional strain (12a).

1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

0

0.5

1

1.5

2

S
p

e
c
tr

a
l 
d

e
n

s
it
y

10
-6

Inverse,  = 0.4

DSFB, k = 0.4

Hybrid,  = 0.4, k = 0.4

(a) Link 1, torsion

1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

0

2

4

6

8

S
p

e
c
tr

a
l 
d

e
n

s
it
y

10
-6

Inverse,  = 0.4

DSFB, k = 0.4

Hybrid,  = 0.4, k = 0.4

(b) Link 1, in plane

1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

0

2

4

6

S
p

e
c
tr

a
l 
d

e
n

s
it
y

10
-6

Inverse,  = 0.4

DSFB, k = 0.4

Hybrid,  = 0.4, k = 0.4

(c) Link 1, in plane

Figure 12: Strain spectral density without any load

With a load of 100g attached at the distal end of
link 2, Figure 13 shows the torsional strain(13a) and in
plane lateral strain for links 1 and 2(13b,13c). From the
figure, the vibrations are a bit severe relative to those
experience in a system without load. This is attributed
to the fact that loading a flexible manipulator leads to
excitation of more severe vibration at a relatively lower
frequency when compared to a manipulator without
any load. The offset due to self weight imposed by
gravity during the first 10 seconds is also relatively
higher.

The performance of the inverse controller is
commendable in attenuating link vibration, however,
complete mitigation is not possible and severe residues
remains for the entire duration of operation. Strain
feedback on the other hand, though its performance
in eradicating the residues is very good, it is poor
in dealing with trajectory induced vibrations. The
hybrid of the two controllers, having inherited the
complementary strengths of each controller is able to
deal with both transient and residue vibrations.
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Figure 13: Torsional and lateral strain with a load of
100g
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Figure 14: Strain spectral density with a load of 100g

To investigate the effect of loading on the strain spectral
power density, Figure 14 illustrates the spectrum for
torsional strain(14a) and in plane lateral strain(14b,

14c) for links 1 and 2 respectively. Comparing these
frequency responses, we can observe that: 1). The peaks
are higher than those seen in a system without any
load, and 2). these peaks occurred at a slightly lower
frequencies.

7 Conclusion
We successfully developed, linearized and validated

a model of a 3D, two link, flexible manipulator. A
stable right inverse of the linear model was developed,
augmented with a low pass filter, and used as a
feedforward controller. Together with a direct strain
feedback controller, k = 0.4, in the feedback loop, the
combination formed a two degree of freedom controller.
From both simulations and experimental results, we
found the inverse controller has an upper hand in
handling motion induced vibrations which arose from
sudden starting and stopping. Also, the strain feedback
controller ensures rapid decay of the residue vibrations.
Finally, the hybrid of the two controllers inherently
has the strengths of the two controllers, exhibited a
superior performance of suppressing both the transient
and the residue vibrations.
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A Appendix
A.1 Manipulator specifications

Table 1: Specifications of the flexible manipulator

Servo moter1 (Joint1) Type V850-012EL8
Rated armature voltage 80 V
Rated armature current 7.6 A
Rated power 500 W
Rated spindle speed 2500 rpm
Rated torque 1.96 N.m
Moment of inertia 6×10−4 kg.m2

Mass 4.0 Kg
Servo moter2 (Joint2) Type T511-012EL8

Rated armature voltage 75 V
Rated armature current 2 A
Rated power 100 W
Rated spindle speed 3000 rpm
Rated torque 0.34 N.m
Moment of inertia 3.7×10−5 kg.m2

Mass 0.95 Kg
Servo moter3 (Joint3) Type V404-012EL8

Rated armature voltage 72 V
Rated armature current 1 A
Rated power 40 W
Rated spindle speed 3000 rpm
Rated torque 0.13 N.m
Moment of inertia 8.4×10−6 kg.m2

Mass 0.4 Kg
Encoder Reduction ratio 1/100 P/R

Spring constant 1.6×104 Nm/rad
Harmonic drive -joint1 Type CSF-40-100-2A-R-SP

Reduction ratio 1/100
Spring constant 23 Nm/rad
Moment of inertia 4.50×10−4 kg.m2

Harmonic drive -joint2 Type CSF-17-100-2A-R-SP
Reduction ratio 1/100
Spring constant 1.6×10−4 Nm/rad
Moment of inertia 7.9×10−6 kg.m2

Harmonic drive -joint3 Type CSF-14-100-2A-R-SP
Reduction ratio 1/100
Spring constant 7.1×10−5 Nm/rad
Moment of inertia 3.3×10−6 kg.m2

Link1 Material Stainless steel
Length 0.44 m
Radius 5×10−3 m

Link2 Material Aluminum
Length 0.44 m
Radius 4×10−3 m

Strain Gauge Type KGF-2-120-C1-23L1M2R
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A.2 Maplesim model

Figure 15: Maplesim model of the manipulator

Table 2: Building block of the arm in Maplesim

S.No. Symbol Component name Short description.
1. pmdc motor Models a DC Machine with permanent magnets.

2. Step Generates a real step signal with variable height.

3. Revolute Joint allowing one rotational degree of freedom
about a given axis.

4. Angle Sensor Measures the absolute flange angle.

5. Force and Moment Measures and outputs the forces and moments
acting between two frames.

6. Rigid bode Center of mass frame with associated mass and
inertia matrix.

7. Flexible Beam A flexible beam with axial, lateral, and torsional
deformations.

8. Gain Outputs the product of a gain value with the
input signal.

9. Lossy Gear Gearbox with mesh efficiency and bearing friction.
Represent the harmonic drive.

10. Rigid Body Frame Frame with a fixed displacement and orientation
relative to a rigid body center of mass frame.
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0
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0
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0
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0
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0
0

0
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       
D

=

       0
0

0
0

0
0

0
0

0

       
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A.4 State, input, output and the transfer matrices of the internal dynamics of the inverse
model

Âσ =



0 1 0 0 0 0 0 0
−8877.8083 0 −505.0084 0 6959.6426 0 963.5402 0

0 0 0 1 0 0 0 0
−23691.8248 0 −87127.7174 0 36338.2298 0 104574.9609 0

0 0 0 0 0 1 0 0
54312.6517 0 5955.6170 0 −45939.3525 0 −7980.4902 0

0 0 0 0 0 0 0 1
3910.2812 0 9021.0946 0 −4191.1701 0 −12659.5994 0



B̂σ =



0 0 0 0 0 0 0 0 0 0 0 0
−1.0225 0 0.2194 0 0 0 0.0057 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
−0.1445 0 14.0596 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
7.9491 0 −1.7512 0 0 0 −0.21900 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0.0158 0 −1.2161 0 0 0 0 0 0.0035 0 0 0


Ĉσ =

 0 0 0 0 0 0 0 0
−9.6577 −0.0048 −0.0285 0 47.1468 0.0235 0.0364 0
−0.1422 0 40.4355 0.0104 0.2636 0 −5.6792 −0.0014


D̂σ =

 0 −1 0 0 −0.8887 0 0 −0.0016 0 0 0 0
−0.9999 0 0 −0.7935 0 0 −0.0007 0 0 0 0 0

0 0 −0.9998 0 0 −0.7660 0 0 −0.0006 0 0 0


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