

www.astesj.com 40

A Proposed Architecture for Parallel HPC-based Resource Management System for Big Data
Applications

Waleed Al Shehri*, Maher Khemakhem, Abdullah Basuhail, Fathy E. Eassa

Department of Computer Science, King Abdul-Aziz University, Jeddah, KSA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 02 October, 2018
Accepted: 11 January, 2019
Online : 20 January, 2019

 Big data can be considered to be at the forefront of the present and future research
activities. The volume of data needing to be processed is growing dramatically in both
velocity and variety. In response, many big data technologies have emerged to tackle
the challenges of collecting, processing and storing such large-scale datasets. High-
performance computing (HPC) is a technology that is used to perform computations
as fast as possible. This is achieved by integrating heterogeneous hardware and
crafting software and algorithms to exploit the parallelism provided by HPC. The
performance capabilities afforded by HPC have made it an attractive environment for
supporting scientific workflows and big data computing. This has led to a convergence
of the HPC and big data fields.
However, big data applications usually do not fully exploit the performance available
in HPC clusters. This is so due to such applications being written in high-level
programming languages and do not provide support for exploiting parallelism as do
other parallel programming models.
The objective of this research paper is to enhance the performance of big data
applications on HPC clusters without sacrificing the power consumption of HPC. This
can be achieved by building a parallel HPC-based Resource Management System to
exploit the capabilities of HPC resources efficiently.

Keywords:
High-Performance Computing
Big Data
Load-Balancing
Data-Locality
Resource Management
Parallel Programming models
Power Consumption

1. Introduction

The amount of data produced in the scientific and commercial
fields is growing dramatically. Correspondingly, big data
technologies, such as Hadoop and Spark, have emerged to tackle
the challenges of collecting, processing, and storing such large-
scale data.

There are different opinions on the definition of big data
resulting from different concerns and technologies. One definition
applies to datasets that cannot be realized, managed and analyzed
with traditional IT software. This definition reflects two
connotations: data volume that is growing and changing
continuously; and, this growing volume is different from one big
data application to another [1]. A more specific definition based on
the multi-V model by Gartner in 2012: ‘‘Big Data are high-
volume, high-velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision
making, insight discovery and process optimization’’ [2].

While the focus of big data applications is on handling
enormous datasets, high-performance computing (HPC) focuses
on performing computations as fast as possible. This is achieved
by integrating heterogeneous hardware and crafting software and
algorithms to exploit the parallelism provided by HPC [3]. The
performance capabilities afforded by HPC have made it an
attractive environment for supporting scientific workflows and big
data computing. This has led to a convergence of the HPC and big
data fields.

Unfortunately, there is usually a performance issue when
running big data applications on HPC clusters because such
applications are written in high-level programming languages.
Such languages may be lacking in terms of performance and may
not encourage or support writing highly parallel programs in
contrast to some parallel programming models like Message
Passing Interface (MPI) [4]. Furthermore, these platforms are
designed as a distributed architecture, which differs from the
architecture of HPC clusters [5].

ASTESJ

ISSN: 2415-6698

* Waleed Al Shehri, : Email: waleed.ab2@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj040105

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040105

W. Al Shehri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com 41

Additionally, the large volume of big data may hinder parallel
programming models such as Message Passing Interface (MPI),
Open Multi-Processing (OpenMP) and accelerator models
(CUDA, OpenACC, OpenCL) from supporting high levels of
parallelism [1].

Furthermore, resources allocation in HPC is one of the prime
challenges, especially since HPC and big data paradigms has a
different software stack [6] as shown in (Figure 2):

2. Related Work

The related work can be organized based on the different
aspects required to fulfill the architecture requirements of this
research. The job scheduler concept will be highlighted by
considering its features and functionality. Moreover, different
comparative studies will be introduced covering big data
programming models and parallel programming models to
establish the performance gap between them. Other works are
presented to show how the performance of these programming
models can be enhanced. Finally, research involving data locality
approaches and decomposition mechanisms covering the same
context of this research is reviewed.

A job scheduler can play an essential role in modern big data
platforms and HPC systems. It manages different compute jobs
related to different users on homogenous or heterogeneous
computational resources. It can have different names that reflect
the same mechanism such as scheduler, resource manager,
resource management system (RMS), and a distributed resource
management system (D-RMS) [7]. Despite significant growth in
terms of heterogeneity of resources and job complexity and
diversity, job schedulers still have the main core function of job
queuing, scheduling and resource allocation, and resource
management [8][9]. In [7], many features are analyzed of the most
popular HPC and big data schedulers including Slurm, Son of Grid
Engine, Mesos, and Hadoop YARN.

Additionally, there are two primary job types: job arrays and
parallel jobs. In job arrays, multiple independent processes for a
single job identifier can be run with different parameters for each
process. In parallel jobs, it is possible to launch each of the
processes simultaneously, allowing communication between them
during the computation. While HPC schedulers support both types,
big data schedulers can support only job arrays. Furthermore, there

are many important features of HPC schedulers, generally not
available with big data schedulers, such as job chunking, gang
scheduling, network aware scheduling and power-aware
scheduling.

Big data jobs are usually considered to be network-bound
regarding a large amount of data movement between different
nodes among clusters. In [10], traffic forecasting and job-aware
priority scheduling for big data processing is proposed by
considering the dependencies of the flows. The network traffic for
flows of the same job is forecasted via run-time monitoring, then a
unique priority for each job is assigned by tagging every packet in
the job. Finally, it uses a FIFO order for scheduling flows of the
same priority.

In [11], a new backfilling algorithm, known as fattened
backfilling, is proposed to provide more efficient backfilling
scheduling. In this algorithm, short jobs can be moved forward if
they do not delay the first job in the queue. A Resource and Job
Management System (RJMS) based on a prolog/epilog mechanism
has been proposed in [12]. It allows communication between HPC
and Big Data systems by reducing the disturbance on HPC
workloads while leveraging the built-in resilience of Big Data
frameworks.

Processing tremendous volumes of data on dedicated big data
technology is not as fast as processing the data on HPC
infrastructure. This fact is recognized when comparing the
efficiency of low-level programming models in HPC, which
supports more parallelism, with big data technologies that are
written with high-level programming languages. Many practical
case studies and research have confirmed this fact. In [13],
sentiment analysis on Twitter data was conducted for different
dataset sizes using an MPI environment that showed better
performance than using Apache Spark.

The enhancement of big data programming models can be
achieved by integrating them with parallel programming models
such as MPI. This approach can be seen in [4] that showed how to
enable the Spark environment using the MPI libraries. Although
this technique indicates remarkable speedups, it must use shared
memory, and there are other overheads as a potential drawback. In
[14], a scalable MapReduce framework, named Glasswing, is
introduced. It is configured to use a mixture of coarse- and fine-
grained parallelism to obtain high performance on multi-core

Figure 1. HPC and Big Data Software Stacks.

http://www.astesj.com/

W. Al Shehri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com 42

CPUs and GPUs. The performance of this framework is evaluated
using five MapReduce applications with the indication that
Glasswing outperforms Hadoop in terms of performance and
resource utilization.

Data locality is a critical factor that affects both performance
and energy consumption in HPC systems [15]. Many big data
frameworks such as MapReduce and Spark can support this
concept by sending the computation to where the data resides. In
contrast, parallel programming models such as MPI lack this
advantage. A novel approach by Yin et al. in [16], named DL-MPI,
is proposed for MPI-based data-intensive applications to support
data locality computation. It uses a data locality API that allows
MPI-based programs to obtain data distribution information for
compute nodes. Moreover, it proposes a probability scheduling
algorithm for heterogeneous runtime environments that evaluate
the unprocessed local data and the computing ability of each
compute node.

In [17], a data distribution scheme is used by abstracting
NUMA hardware peculiarities away from the programmer and
delegating data distribution to a runtime system. Moreover, it uses
task data dependence information, which is available with
OpenMP 4.0RC2, as a guideline for scheduling OpenMP tasks to
reduce data stall times.

Partitioning or decomposition is the first step for designing a
parallel program by breaking down problems into small tasks. It
includes two main types: domain or data decomposition and
function decomposition [18]. These two types can be combined as
mixed parallelism that employs an M-SPMD (multiple-single

program multiple data) architecture, which includes both task
parallelism (MPMD) and data parallelism (SPMD) [19].

The choice of decomposition type and parallelism paradigm is
determined by resource availability. Furthermore, these resources
may define the granularity level that the system can support [20].
There have been few empirical studies for performing data
decomposition in the HPC field, [21] investigated this approach
when designing parallel applications. Additionally, the state-of-
practice was studied with probing tools used to perform this
function. Moreover, a set of key requirements was derived for tools
that support data decomposition and communication when
parallelizing applications.

Based on this previous related work and to the best of our
knowledge, there is no contribution yet that employs all the
previous factors in terms of using a hybrid parallel programming
model, decomposition technique and granularity approach to build
a HPC-based Resource Management System for enhancing the
performance of big data applications and optimizing HPC resource
utilization. The contribution of this paper is to address this gap.

3. The Proposed Architecture

The proposed architecture will be built based on different
techniques that will be integrated together to constitute a parallel
HPC-based Resource Management System that enhances the
performance of big data applications on HPC clusters without
sacrificing the power consumption of HPC. In more details, the
system will have the following techniques (Figure 2):

Figure 2: High-level architecture for the proposed system.

http://www.astesj.com/

W. Al Shehri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com 43

• A new technique for HPC resources manipulation

This dynamic technique will have some functionality related to
HPC resources including:

• Collecting a resource metadata to constitute a repository
containing HPC resources with their capabilities and
availabilities.

• Tracking status of HPC resources.

• Updating the metadata repository from time to time.

• New decomposition techniques

In this technique, we will provide a domain decomposition
technique and/or a function decomposition technique for the given
big data applications targeting both parallel computing
architectures: Single Program Multiple Data (SPMD) and/or
Multiple Instruction Multiple Data (MIMD). The availability of
resources and system architecture can determine the
decomposition paradigm and granularity options that efficiently
support the resource management system.

• A new high-level scheduling technique

This technique will receive the decomposition results and
creates clusters/queues of jobs during scheduling time based on the
metadata about HPC resources/ clusters. It will consider data
locality and load balancing while performing this task. Once
clusters/queues of jobs are created, they will be dispatched to being
executed by OS-platform on HPC resources/clusters.

4. Evaluation and comparative study

By comparing our architecture to other techniques, it is
noticeable that the proposed architecture considers all the critical
factors to achieve the performance and scalability attributes.
Primarily, focusing on the topology awareness and building a
metadata repository about the availabilities and capabilities of
HPC resources can play a critical role to support the decomposition
and high-level scheduling techniques. Such metadata can enhance
the decision-making about choosing suitable granularity options
and parallelism paradigm. Furthermore, the high-level scheduling
technique can exploit the HPC resources positively by taking in
account data locality and load balancing.

Instead of Integrating some big data and parallel programming
models, this architecture constitutes an independent big data
platform that employ hybrid parallel programming to support high
parallelism for CPUs and GPUs accelerators.

The scalability can be seen from adding more dedicated
clusters as needed. Adding more clusters will not affect the essence
of each technique in particular, and resource management as a
whole system integrating these techniques.

Different performance metrics have to be considered to
implement the proposed architecture efficiently. Big data is the
primary stream of this architecture, thus data building time is a
significant metrics that may affect the performance. This time is
required to construct a data structure used for computation and to
perform the decomposition technique. Furthermore, employing
parallel programming models such as MPI and OpenAcc can affect
the computation time positively. From the part of HPC, hardware

utilization metrics is also a cornerstone of the proposed
architecture particularly for improving high-level scheduling
technique

The novelty of this architecture can be arisen from having
metadata about both big data applications and HPC resources,
which leads to scheduling current jobs to the most suitable and
available resources or cluster.

5. Conclusion

HPC has become an attractive environment for supporting
scientific workflows and big data computing due to its
performance capabilities. Unfortunately, big data applications
usually do not fully exploit these capabilities afforded by HPC
clusters, because such applications were written in high-level
programming languages that do not encourage parallelism as
parallel programming models. Another reason is that the
architecture of big data platforms defers from the HPC
architecture. A parallel HPC-based Resource Management System
is proposed in this paper to enhance the performance of big data
applications on HPC clusters without sacrificing the power
consumption of HPC. For the future work, the High-level
architecture for the proposed system will be developed and
evaluated by running some big data applications. Moreover, some
performance benchmarks will be provided to reflect the efficiency
of our system.

References

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob. Networks Appl.,
vol. 19, no. 2, pp. 171–209, 2014.

[2] C. L. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data,” Inf. Sci. (Ny)., vol. 275,
pp. 314–347, 2014.

[3] D. A. Reed and J. Dongarra, “Exascale computing and big data,” Commun.
ACM, vol. 58, no. 7, pp. 56–68, 2015.

[4] M. Anderson et al., “Bridging the gap between HPC and big data
frameworks,” Proc. VLDB Endow., vol. 10, no. 8, pp. 901–912, 2017.

[5] P. Xuan, J. Denton, P. K. Srimani, R. Ge, and F. Luo, “Big data analytics on
traditional HPC infrastructure using two-level storage,” Proc. 2015 Int. Work.
Data-Intensive Scalable Comput. Syst. - DISCS ’15, pp. 1–8, 2015.

[6] H. R. Asaadi, D. Khaldi, and B. Chapman, “A comparative survey of the
HPC and big data paradigms: Analysis and experiments,” Proc. - IEEE Int.
Conf. Clust. Comput. ICCC, pp. 423–432, 2016.

[7] A. Reuther et al., “Scalable system scheduling for HPC and big data,” J.
Parallel Distrib. Comput., vol. 111, pp. 76–92, 2018.

[8] P. Jones, “NAS for Job Requirements Queuing / Scheduling Checklist
Software,” 2018.

[9] W. Saphir, L. A. Tanner, B. Traversat, W.~Saphier, L.A.~Tanner, and
B.~Traversat, “Job Management Requirements for {NAS} Parallel Systems
and Clusters,” IPPS Work. Job Sched. Strateg. Parallel Process., no. 949,
pp. 319–336, 1995.

[10] Z. Wang and Y. Shen, “Job-Aware Scheduling for Big Data Processing,”
Proc. - 2015 Int. Conf. Cloud Comput. Big Data, CCBD 2015, pp. 177–180,
2016.

[11] C. Gómez-Martín, M. A. Vega-Rodríguez, and J. L. González-Sánchez,
“Fattened backfilling: An improved strategy for job scheduling in parallel
systems,” J. Parallel Distrib. Comput., vol. 97, pp. 69–77, 2016.

[12] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard, “Big Data and HPC
collocation : Using HPC idle resources for Big Data Analytics,” pp. 347–352,
2017.

[13] D. S. Kumar and M. A. Rahman, “Performance evaluation of Apache Spark
Vs MPI: A practical case study on twitter sentiment analysis,” J. Comput.
Sci., vol. 13, no. 12, pp. 781–794, 2017.

[14] I. El-Helw, R. Hofman, and H. E. Bal, “Glasswing,” Int. Symp. High-
Performance Parallel Distrib. Comput., pp. 295–298, 2014.

[15] D. Unat et al., “Trends in Data Locality Abstractions for HPC Systems,”
IEEE Trans. Parallel Distrib. Syst., pp. 1–1, 2017.

[16] J. Yin, A. Foran, and J. Wang, “DL-MPI: Enabling data locality computation

http://www.astesj.com/

W. Al Shehri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com 44

for MPI-based data-intensive applications,” Proc. - 2013 IEEE Int. Conf. Big
Data, Big Data 2013, pp. 506–511, 2013.

[17] A. Muddukrishna, P. A. Jonsson, and M. Brorsson, “Locality-aware task
scheduling and data distribution for OpenMP programs on NUMA systems
and manycore processors,” Sci. Program., vol. 2015, pp. 156–170, 2015.

[18] B. Ren, S. Krishnamoorthy, K. Agrawal, and M. Kulkarni, “Exploiting
Vector and Multicore Parallelism for Recursive, Data- and Task-Parallel
Programs,” Proc. 22nd ACM SIGPLAN Symp. Princ. Pract. Parallel
Program. - PPoPP ’17, pp. 117–130, 2017.

[19] V. Boudet, F. Desprez, and F. Suter, “One-step algorithm for mixed data and
task parallel scheduling without data replication,” Proc. - Int. Parallel
Distrib. Process. Symp. IPDPS 2003, no. October 2015, 2003.

[20] L. Silva and R. Buyya, “Parallel programming models and paradigms,” High
Perform. Clust. Comput. Archit. …, pp. 4–27, 1999.

[21] A. Meade, D. K. Deeptimahanti, J. Buckley, and J. J. Collins, “An empirical
study of data decomposition for software parallelization,” J. Syst. Softw., vol.
125, pp. 401–416, Mar. 2017.

http://www.astesj.com/

W. Al Shehri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 40-44 (2019)

www.astesj.com 45

http://www.astesj.com/

	2. Related Work
	3. The Proposed Architecture
	4. Evaluation and comparative study
	5. Conclusion
	References

