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 Big data can be considered to be at the forefront of the present and future research 
activities. The volume of data needing to be processed is growing dramatically in both 
velocity and variety. In response, many big data technologies have emerged to tackle 
the challenges of collecting, processing and storing such large-scale datasets. High-
performance computing (HPC) is a technology that is used to perform computations 
as fast as possible. This is achieved by integrating heterogeneous hardware and 
crafting software and algorithms to exploit the parallelism provided by HPC. The 
performance capabilities afforded by HPC have made it an attractive environment for 
supporting scientific workflows and big data computing. This has led to a convergence 
of the HPC and big data fields. 
However, big data applications usually do not fully exploit the performance available 
in HPC clusters. This is so due to such applications being written in high-level 
programming languages and do not provide support for exploiting parallelism as do 
other parallel programming models. 
The objective of this research paper is to enhance the performance of big data 
applications on HPC clusters without sacrificing the power consumption of HPC. This 
can be achieved by building a parallel HPC-based Resource Management System to 
exploit the capabilities of HPC resources efficiently. 
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1. Introduction 

The amount of data produced in the scientific and commercial 
fields is growing dramatically. Correspondingly, big data 
technologies, such as Hadoop and Spark, have emerged to tackle 
the challenges of collecting, processing, and storing such large-
scale data. 

There are different opinions on the definition of big data 
resulting from different concerns and technologies. One definition 
applies to datasets that cannot be realized, managed and analyzed 
with traditional IT software. This definition reflects two 
connotations: data volume that is growing and changing 
continuously; and, this growing volume is different from one big 
data application to another [1]. A more specific definition based on 
the multi-V model by Gartner in 2012: ‘‘Big Data are high-
volume, high-velocity, and/or high variety information assets that 
require new forms of processing to enable enhanced decision 
making, insight discovery and process optimization’’ [2]. 

While the focus of big data applications is on handling 
enormous datasets, high-performance computing (HPC) focuses 
on performing computations as fast as possible. This is achieved 
by integrating heterogeneous hardware and crafting software and 
algorithms to exploit the parallelism provided by HPC [3]. The 
performance capabilities afforded by HPC have made it an 
attractive environment for supporting scientific workflows and big 
data computing. This has led to a convergence of the HPC and big 
data fields. 

Unfortunately, there is usually a performance issue when 
running big data applications on HPC clusters because such 
applications are written in high-level programming languages. 
Such languages may be lacking in terms of performance and may 
not encourage or support writing highly parallel programs in 
contrast to some parallel programming models like Message 
Passing Interface (MPI) [4]. Furthermore, these platforms are 
designed as a distributed architecture, which differs from the 
architecture of HPC clusters [5]. 
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Additionally, the large volume of big data may hinder parallel 
programming models such as Message Passing Interface (MPI), 
Open Multi-Processing (OpenMP) and accelerator models 
(CUDA, OpenACC, OpenCL) from supporting high levels of 
parallelism [1]. 

Furthermore, resources allocation in HPC is one of the prime 
challenges, especially since HPC and big data paradigms has a 
different software stack [6] as shown in (Figure 2): 

2. Related Work 

The related work can be organized based on the different 
aspects required to fulfill the architecture requirements of this 
research. The job scheduler concept will be highlighted by 
considering its features and functionality. Moreover, different 
comparative studies will be introduced covering big data 
programming models and parallel programming models to 
establish the performance gap between them. Other works are 
presented to show how the performance of these programming 
models can be enhanced. Finally, research involving data locality 
approaches and decomposition mechanisms covering the same 
context of this research is reviewed.  

A job scheduler can play an essential role in modern big data 
platforms and HPC systems. It manages different compute jobs 
related to different users on homogenous or heterogeneous 
computational resources. It can have different names that reflect 
the same mechanism such as scheduler, resource manager, 
resource management system (RMS), and a distributed resource 
management system (D-RMS) [7]. Despite significant growth in 
terms of heterogeneity of resources and job complexity and 
diversity, job schedulers still have the main core function of job 
queuing, scheduling and resource allocation, and resource 
management [8][9]. In [7], many features are analyzed of the most 
popular HPC and big data schedulers including Slurm, Son of Grid 
Engine, Mesos, and Hadoop YARN.  

Additionally, there are two primary job types: job arrays and 
parallel jobs. In job arrays, multiple independent processes for a 
single job identifier can be run with different parameters for each 
process. In parallel jobs, it is possible to launch each of the 
processes simultaneously, allowing communication between them 
during the computation. While HPC schedulers support both types, 
big data schedulers can support only job arrays. Furthermore, there 

are many important features of HPC schedulers, generally not 
available with big data schedulers, such as job chunking, gang 
scheduling, network aware scheduling and power-aware 
scheduling. 

Big data jobs are usually considered to be network-bound 
regarding a large amount of data movement between different 
nodes among clusters. In [10], traffic forecasting and job-aware 
priority scheduling for big data processing is proposed by 
considering the dependencies of the flows. The network traffic for 
flows of the same job is forecasted via run-time monitoring, then a 
unique priority for each job is assigned by tagging every packet in 
the job. Finally, it uses a FIFO order for scheduling flows of the 
same priority.  

In [11], a new backfilling algorithm, known as fattened 
backfilling, is proposed to provide more efficient backfilling 
scheduling. In this algorithm, short jobs can be moved forward if 
they do not delay the first job in the queue. A Resource and Job 
Management System (RJMS) based on a prolog/epilog mechanism 
has been proposed in [12]. It allows communication between HPC 
and Big Data systems by reducing the disturbance on HPC 
workloads while leveraging the built-in resilience of Big Data 
frameworks.  

Processing tremendous volumes of data on dedicated big data 
technology is not as fast as processing the data on HPC 
infrastructure. This fact is recognized when comparing the 
efficiency of low-level programming models in HPC, which 
supports more parallelism, with big data technologies that are 
written with high-level programming languages. Many practical 
case studies and research have confirmed this fact. In [13], 
sentiment analysis on Twitter data was conducted for different 
dataset sizes using an MPI environment that showed better 
performance than using Apache Spark. 

The enhancement of big data programming models can be 
achieved by integrating them with parallel programming models 
such as MPI. This approach can be seen in [4] that showed how to 
enable the Spark environment using the MPI libraries. Although 
this technique indicates remarkable speedups, it must use shared 
memory, and there are other overheads as a potential drawback. In 
[14], a scalable MapReduce framework, named Glasswing, is 
introduced. It is configured to use a mixture of coarse- and fine-
grained parallelism to obtain high performance on multi-core 

Figure 1. HPC and Big Data Software Stacks. 
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CPUs and GPUs. The performance of this framework is evaluated 
using five MapReduce applications with the indication that 
Glasswing outperforms Hadoop in terms of performance and 
resource utilization. 

Data locality is a critical factor that affects both performance 
and energy consumption in HPC systems [15]. Many big data 
frameworks such as MapReduce and Spark can support this 
concept by sending the computation to where the data resides. In 
contrast, parallel programming models such as MPI lack this 
advantage. A novel approach by Yin et al. in [16], named DL-MPI, 
is proposed for MPI-based data-intensive applications to support 
data locality computation. It uses a data locality API that allows 
MPI-based programs to obtain data distribution information for 
compute nodes. Moreover, it proposes a probability scheduling 
algorithm for heterogeneous runtime environments that evaluate 
the unprocessed local data and the computing ability of each 
compute node.  

In [17], a data distribution scheme is used by abstracting 
NUMA hardware peculiarities away from the programmer and 
delegating data distribution to a runtime system. Moreover, it uses 
task data dependence information, which is available with 
OpenMP 4.0RC2, as a guideline for scheduling OpenMP tasks to 
reduce data stall times. 

Partitioning or decomposition is the first step for designing a 
parallel program by breaking down problems into small tasks. It 
includes two main types: domain or data decomposition and 
function decomposition [18]. These two types can be combined as 
mixed parallelism that employs an M-SPMD (multiple-single 

program multiple data) architecture, which includes both task 
parallelism (MPMD) and data parallelism (SPMD) [19].  

The choice of decomposition type and parallelism paradigm is 
determined by resource availability. Furthermore, these resources 
may define the granularity level that the system can support [20]. 
There have been few empirical studies for performing data 
decomposition in the HPC field, [21] investigated this approach 
when designing parallel applications. Additionally, the state-of-
practice was studied with probing tools used to perform this 
function. Moreover, a set of key requirements was derived for tools 
that support data decomposition and communication when 
parallelizing applications.  

Based on this previous related work and to the best of our 
knowledge, there is no contribution yet that employs all the 
previous factors in terms of using a hybrid parallel programming 
model, decomposition technique and granularity approach to build 
a HPC-based Resource Management System for enhancing the 
performance of big data applications and optimizing HPC resource 
utilization. The contribution of this paper is to address this gap. 

3. The Proposed Architecture 

The proposed architecture will be built based on different 
techniques that will be integrated together to constitute a parallel 
HPC-based Resource Management System that enhances the 
performance of big data applications on HPC clusters without 
sacrificing the power consumption of HPC. In more details, the 
system will have the following techniques (Figure 2): 

Figure 2: High-level architecture for the proposed system. 
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• A new technique for HPC resources manipulation 

This dynamic technique will have some functionality related to 
HPC resources including: 

• Collecting a resource metadata to constitute a repository 
containing HPC resources with their capabilities and 
availabilities.  

• Tracking status of HPC resources. 

• Updating the metadata repository from time to time. 

• New decomposition techniques 

In this technique, we will provide a domain decomposition 
technique and/or a function decomposition technique for the given 
big data applications targeting both parallel computing 
architectures: Single Program Multiple Data (SPMD) and/or 
Multiple Instruction Multiple Data (MIMD). The availability of 
resources and system architecture can determine the 
decomposition paradigm and granularity options that efficiently 
support the resource management system. 

• A new high-level scheduling technique 

This technique will receive the decomposition results and 
creates clusters/queues of jobs during scheduling time based on the 
metadata about HPC resources/ clusters. It will consider data 
locality and load balancing while performing this task. Once 
clusters/queues of jobs are created, they will be dispatched to being 
executed by OS-platform on HPC resources/clusters. 

4. Evaluation and comparative study 

By comparing our architecture to other techniques, it is 
noticeable that the proposed architecture considers all the critical 
factors to achieve the performance and scalability attributes. 
Primarily, focusing on the topology awareness and building a 
metadata repository about the availabilities and capabilities of 
HPC resources can play a critical role to support the decomposition 
and high-level scheduling techniques. Such metadata can enhance 
the decision-making about choosing suitable granularity options 
and parallelism paradigm. Furthermore, the high-level scheduling 
technique can exploit the HPC resources positively by taking in 
account data locality and load balancing. 

Instead of Integrating some big data and parallel programming 
models, this architecture constitutes an independent big data 
platform that employ hybrid parallel programming to support high 
parallelism for CPUs and GPUs accelerators. 

The scalability can be seen from adding more dedicated 
clusters as needed. Adding more clusters will not affect the essence 
of each technique in particular, and resource management as a 
whole system integrating these techniques. 

Different performance metrics have to be considered to 
implement the proposed architecture efficiently. Big data is the 
primary stream of this architecture, thus data building time is a 
significant metrics that may affect the performance. This time is 
required to construct a data structure used for computation and to 
perform the decomposition technique. Furthermore, employing 
parallel programming models such as MPI and OpenAcc can affect 
the computation time positively. From the part of HPC, hardware 

utilization metrics is also a cornerstone of the proposed 
architecture particularly for improving high-level scheduling 
technique 

The novelty of this architecture can be arisen from having 
metadata about both big data applications and HPC resources, 
which leads to scheduling current jobs to the most suitable and 
available resources or cluster. 

5. Conclusion 

HPC has become an attractive environment for supporting 
scientific workflows and big data computing due to its 
performance capabilities. Unfortunately, big data applications 
usually do not fully exploit these capabilities afforded by HPC 
clusters, because such applications were written in high-level 
programming languages that do not encourage parallelism as 
parallel programming models. Another reason is that the 
architecture of big data platforms defers from the HPC 
architecture. A parallel HPC-based Resource Management System 
is proposed in this paper to enhance the performance of big data 
applications on HPC clusters without sacrificing the power 
consumption of HPC.  For the future work, the High-level 
architecture for the proposed system will be developed and 
evaluated by running some big data applications. Moreover, some 
performance benchmarks will be provided to reflect the efficiency 
of our system.  
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