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Our work demonstrates how to use contemporary software tools on older or
“legacy” robots while keeping compatibility with the original control, tools,
and calibration procedures. This is done by implementing a lightweight
middle-ware called MDS-Ach connected directly to the hardware commu-
nications layer of the robot’s control system. The MDS-Ach middle-ware,
which relies on the x-Ach methodology, was specifically designed for Xit-
ome Mobile Dexterous Social (MDS) Robot which was released in 2008.
The MDS Robot is actively used in multiple research facilities including
the United States Naval Research Laboratory. This middle-ware gives the
MDS Robot the bleeding edge software capabilities of today’s robot by imple-
menting the x-Ach real-time processes based computer control architecture.
MDS-Ach controls the robot over its low level hardware communications
interface (CAN-Bus). This communication controlled and implemented by
a real-time daemon process. Controllers communicate with the real-time
daemon via a ring buffer shared memory with network capabilities. The
ring buffer shared memory is a “first-in-last-out” and is non-head-of-line
blocking. All of the latter ensures non-blocking reading and writing of the
latest data even while newer data is being added to the buffer. The UDP
and TCP protocols can be implemented depending on reliability and timing
requirements. Secure communication between networked controllers is im-
plemented via tunneling over SSH if needed. The MDS-Ach middle-ware is
designed to allow for simple and easy development with modern robotic tools
while adding accessibility and usability to our non-hardware-focused part-
ners. We present an implementation of real-time collision avoidance and a
robust inverse kinematics solutions within the MDS-Ach system. We include
detailed examples of collision avoidance, inverse kinematics implementation,
and the software architecture and tools.

1 Introduction

The goal of this work is to extend the life of legacy
robots that have high quality electro-mechanical hard-
ware by allowing them to make use of modern day
robotics software frameworks such as the Robot Op-
erating System (ROS) [1], while keeping compatibility
with their existing calibration and monitoring tools.
The significance and the novelty of this work is in its
focus on the compatibility with legacy robotic systems
via the use of a lightweight middleware, a non-head-
of-line blocking buffer design, and real-time network
daemon. This document details our efforts in creat-

ing the latter for the MDS Robot. The MDS Robot
by Xitome is a high degree of freedom (DOF) Mobile
Dexterous Social (MDS) robot [2]. This research-grade
robot originally debuted in 2008. The physical robot
hardware was custom built to support human-robot in-
teraction research. This includes the two 6-DOF arms
each with a 7-DOF hand. Each hand has four under-
actuated fingers. The robot also includes a 4-DOF neck
and a 17-DOF face. All of the latter items enable differ-
ent facial expressions, physical gestures, and grasping
within a single robotic platform.

Given the goals of this work, our system must meet
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Table 1: Summary of existing software robotic frameworks [4]

Framework Concurrency Model Data Sharing Focus

ROS [1] Processes Proprietary TCP Mobile Robots, Vision, and AI
ROS 2.0 [3] Processes Selectable DDS ROS 1.0 + Real-Time Control
OpenRDK [4] Threads Shared memory, Proprietary TCP/UDP Mobile Robots
Player [5] Threads Client/Server over TCP Mobile Robots
YARP [6] Processes shared memory, proprietary TCP Mobile & Serial Kinematic Chain Robots
MARIE [7] Processes Many (3rd Party) Connecting Different Frameworks
OpenRTM-aist [8] Threads CORBA General Robotics
Orca [9] Processes ICE[10] Mobile Robots
JAUS [11] Processes Proprietary TCP/UDP Standardization, Unmanned Systems
x-Ach [12] Processes Shared Memory, Proprietary TCP/UDP Real-time Robotics

specific requirements. Firstly, the well-tuned and re-
fined calibration procedures that are extensively doc-
umented for the robot must remain unchanged while
extending the robot’s capabilities. Similarly, existing
monitoring tools must remain functional, but often
cannot be modified. Furthermore, with robotics and
Artificial Intelligence (AI) research back in the spot-
light and becoming more mainstream in recent years,
a robot system must implement additional safety con-
trols to allow researchers with no mechanical or elec-
trical engineering background to use the robot while
keeping the risk of damage to the physical system low.
The system must also be capable of working securely
over a network. Finally, the system must not be con-
fined to a single programming language, allowing the
user to use “the right tool for the right job.”

To keep compatibility with the legacy software, di-
rect control is implemented by commanding the MDS
Robot over the Controller Area Network (CAN) bus via
a dedicated real-time daemon. A process based con-
troller approach is used for the control system using
a “first-in-last-out” (FILO) non-head-of-line blocking
ring buffer type of shared memory. This allows for the
use of multiple programming languages in the same
system. This also gives each controller the ability to
read the newest data first which is typically of most im-
portance to real-world robot controllers. SSH tunnel-
ing is used when secure connections between network
connected controllers is required. Real-time collision
avoidance with a robust inverse kinematics solution is
implemented within the MDS-Ach system allowing for
a multitude of types of users to safely control the robot.
In the following sections, we describe our methodol-
ogy and provide usage examples of the system. We
also include, in the appendix, a description of the tools
and the implemented API. Please note that this paper
is heavily based on and is an addition to the authors
previous work in Lofaro et. al. [13]. This work adds
detailed instructions and examples of how to utilize
the MDS-Ach system.

2 Background

There are currently many implementations of middle-
ware for robot systems. The most notable one is the
Robot Operating System which is commonly known

as ROS[1]. ROS is a middle-ware which is TCP-based.
It allows for communication between different con-
trollers other over “topics.” This is typically done
to connect the hardware systems of the robot such
as the sensors and actuators to the logic and control.
Its biggest strength is large ecosystem. Additionally,
ROS is most useful for systems that require many con-
trollers but do not require real-time capabilities. Cur-
rently ROS 2.0 [3] is being developed. ROS 2.0 will
add real-time capability to the system. Because of the
latter MDS-Ach is written specifically to be compatible
with both ROS 1.0 and 2.0.

The YARP system, or Yet Another Robot Platform,
is a C/C++ based middle-ware. The purpose of YARP
is to connect control processes, sensors, and actuators.
YARP is tested on Windows, Linux, and OSX [6]. It
uses shared memory, over TCP when needed, for com-
munication between the YARP server and clients. Non-
blocking and latest data first reading is implemented
via double and triple buffers. YARP is currently limited
to a C/C++ API.

OpenRDK is an open source framework for robotics
[4]. It uses socket communication and shared mem-
ory to implement its thread based architecture. This
impressive control system utilized linking techniques
and blackboard-based communication to allow for in-
put/output data port conceptual system design. Open-
RDK is a thread based design. Our desired system is
processed based not thread based.

Joint Architecture for Unmanned Systems, also
known as JAUS [11], was originally an initiative started
in 1998 by the United States Department of Defense
(DoD) to develop an open architecture for the domain
of unmanned systems. JAUS was formerly known
as Joint Architecture for Unmanned Ground Systems
(JAUGS) and is built on five principles: vehicle plat-
form independence, mission isolation, computer hard-
ware independence, technology independence, and op-
erator use independence. Still in use by the DoD, JAUS
communicates with other systems over TCP and/or
UDP. Though a formidable system, the public ecosys-
tem is relatively small when compared to competitors.
A comparison of the above-mentioned middleware, but
also other robotic frameworks can be seen in Table 1.

The x-Ach system is based on the Ach IPC, or inter
process communication [12]. Current implementation
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of x-Ach include Hubo-Ach [12] for the Hubo series of
robots, Android-Ach for phones, Shoko-Ach [14] for
the underwater legged robot AquaShoko, MDS-Ach
(this work) for the MDS Robot, and more. The x-Ach
system is lightweight with non-head-of-line blocking
like OpenRDK, however it uses processes for each con-
troller instead of threads. Like YARP, we use the idea
of newest data first. Like OpenRDK, we use shared
memory and offer a choice between TCP and UDP de-
pending on need. x-Ach is compatible with multiple
languages including C/C++, Python, Java, etc. ROS
currently has the largest robot controller ecosystem,
however it is not real-time; ROS 2.0 will be real-time
when completed. To leverage ROS’ ecosystem, x-Ach
is written to be compatible and easily integrated with
either ROS versions.

3 Methodology

This section details the methodology and implemen-
tation of the MDS-Ach system and is based on our
original paper [13].

3.1 Controller Area Network Communica-
tion

A key goal of this work is to keep compatibility with
older robot’s legacy software and well-defined cali-
bration procedures. In this case the specific robto in
question is the MDS Robot. We created the MDS-Ach
system to connect directly to the robot via the CAN
(Controller Area Network) bus. This is the communi-
cations bus that is concurrently used to control each
actuator on the MDS Robot and is also used with the
legacy system, in this case the MDS Motion Server. The
CAN bus is specifically designed designed for multiple
devices/controllers to communicate over it. The latter
allows all of the legacy software, utilities, and tools to
run, monitor, and calibrate the robot while allowing
for integration with the state of the art robotic software.
The direct communicating via the CAN bus results in
keeping compatibility with the original software and
tools without having to modify, recompiled, or in any
way adjust these tools in order for the MDS-Ach system
to run.

3.2 x-Ach

The x-Ach system has a process based architecture.
This means that it runs individual controllers as in-
dependent, synchronous and/or asynchronous, pro-
cesses. Each process communicates with each other
over the IPC called Ach which is a circular buffer and
is non-head-of-line-blocking [12].

Ach was chosen because it is low-latency (key for
real-time control) and has a first-in-last-out (FILO)
buffer. This allows controllers to get the newest in-
formation first while retaining the ability of reading
older information at a later time if needed. The latter is

very important to real-time robotic systems. Packed c-
structs are used for messages types in order to keep the
system archatecture agnostic. This means that x-Ach
controllers running on different platforms (i.e. x86,
amd64, ARM, and other systems) can communicate
with each other despite the different memory block
sizes. It is important to note that all of the memory
types are well defined within the packed c-struct. For
example a (int32 t) is used instead of (int) to ensure
data congruence between different architecture.

Controllers communicate with each other over Ach
channels. Each controller has a standardized input
channel called “reference” (ref ), a standardized pro-
cessed reference output channel called “processed ref-
erence” (p-ref ), and a standardized output channel
called ”state” (state). Details on the reference (ref ) chan-
nels can be found in (Section 3.2.1) and details on the
state (state) channel can be found in (Section 3.2.2).

3.2.1 Reference Channels

Each process based controller has two reference chan-
nels. One is a standardized input channel called “ref-
erence” (ref ) and one is a standardized processed refer-
ence output channel called “processed reference” (p-
ref ) The latter two channels are where other controllers
can write, or publish, to and read from, or subscribe to,
respectively. It is important to note that the reference
(ref ) channel does not bind. This means that multiple
controllers can write, or publish, simultaneously to the
same reference channel. The controller will only use
the most recent message received and only utilize the
other older messages if it is specifically needed.

The process can synchronize its control loop to the
incoming reference (ref ) input or be asynchronous (i.e.
free running). The latter is useful for use and devel-
opment of synchronous and asynchronous controller
systems and controllers. Both of the reference chan-
nels, the input reference (ref ) and the process output
reference (p-ref ), are identical in structure.

As stated in Section 3.2, the reference channels con-
sist of packed c-structs. The size of the structure is
dependent on the number of degrees of freedom (DOF)
of the robot of the given robot. The reference structure
contains joint-space references (JS-ref ) and work-space
(Cartesian space) references (WS-ref ) (see Figure 5).
This is in the same structure to allow for less complex-
ity in the controllers’ number and types of sources and
sinks.

3.2.2 State Channel

Each MDS-Ach controller has one channel for the state
what is real-only by other processes. Other controllers
can read the most up to date state of the robot/con-
troller by reading the state channel even if the given
robot/controller is currently updating the state. For
the implimentaiton on the MDS a daemon is created
called the MDS-Ach daemon (see Section 3.3). This
daemon publishes the most recent joint-space states
including, but not limited to, actual position of the
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collision detected collision detected

Figure 2: High-resolution MDS Robot model (LEFT) next to the high-resolution MDS Robot model with the
low-resolution collision models overlapped (CENTER LEFT). The collision models are simplifications of the
high resolution geometry and are denoted in orange. The collision model is “over-sized” in order to help the
system detect a collision before an impact actually occurs. Self Collision Avoidance Test: Robot does not collide
when each hand is told to go to the same location. (RIGHT) World Collision Avoidance Test: Robot does not
collide when the hand is commanded to a position that will collide with an object in its workspace. In this
example the hand stops before it hits the table.

joint, last received reference/commanded position,
joint load/current, etc. Like the reference channels
the state channel is a packed c-struct. The size of the
structure is dependent on the number of DOFs of the
robot. An example use case for the state channel is the
collision detection daemon in Section 3.4.2. This dae-
mon reads the state channel and applies those values
to its internal model to check for collisions in real-time.
The daemon then outputs collision state of the robot
on its state channel. This is done without disrupting
the real-time performance of the MDS-Ach Daemon.

3.3 Daemon

The MDS-Ach daemon is the bridge between the CAN
bus, which commands the MDS Robot, and the process
based x-Ach controllers. The goal of all x-Ach dae-
mons, in cluding the MDS-Ach daemon, is to be the
“driver” for the given robot. The CAN bus is half-duplex
running at a rate of 1.0 Mbps. Joint-space control and
sensor feedback (i.e. reference and state information)
is sent over the CAN bus to and from the daemon.
The MDS-Daemon is specifically calibrated to keep the
load on the CAN bus at approximately 60% of its band-
width saturation. The latter is done to help guarantee
real-time performance and on-time data delivery. The
x-Ach daemons have been implemented and tested on
multiple different types of robots with different CAN
packet structures and a varying amount of communica-
tion buses. 200 hz real-time performance was achieved
when utilizing multiple CAN buses (two) along with
a specialized packet structure and the the utilization
of the PREEMPT RT linux kernel [15] as seen in our
previous work [12]. The MDS requires the use of only
one CAN bus with a BAUD rate of 1Mbps and state-full
packet structure. All of the latter limitations require
us to run at 10 hz to guarantee real-time performance,
with sub ms accuracy, for this specific robot.

The MDS-Ach daemon has an optional first-order
real-time joint-space position smoothing filter. This
filter is applied to the input from the reference (ref )
channel (Section 3.2.1) before being applied to the con-
trol and sent to the robot over the CAN bus. The first-

order real-time joint-space position smoothing filter
converges to within 95% of the reference input within
4.0 seconds and is enabled by default. This filter was
added in order to reduce acceleration and jerk of each
joint without limiting the maximum velocity.

The MDS-Ach daemon reads the reference com-
mand (as described in Section 3.2.1) in real-time and
sends the command data over the CAN bus. This pro-
cess is asynchronous in reference to the robot’s actu-
ators control loop. If multiple commands are sent
within one cycle only the newest one is read and pro-
cessed. There is a zero order hold is there are no new
commands between given control cycles. The except
to this is during setup phases such as “homing”, reset-
ting/error correcting, and other hardware setup/con-
figuration specific commands. Additionally, during
each cycle the MDS-Ach daemon requests and reads
the information from the sensors via the CAN bus and
writes it to the state channel (see Section 3.2.2).

3.4 Input Pipeline

The Main Controller receives the user-level commands
in either joint-space or Cartesian-space, over the ACH
shared memory. The latter input goes through the
pipeline described in section below before it is sent to
the Daemon (Section 3.3).

3.4.1 Joint Mux

The Joint Mux is an event-based process that takes in
joint-space references from multiple processes. It up-
dates the primary joint-space reference, which is sent
to the MDS-Ach daemon, only with the joint-space ref-
erences that are controlled by and updated by a given
controller while preserving the ones that they con-
troller does not have write permission to and/or were
not modified. The MDS-Ach daemon is then sent the
resulting consolidated (muxed) reference command.
The purpose of this is to allows multiple controllers
to update individual joints without conflicting with
(overwriting) other joint commands while preserving
a common message type.
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Figure 3: Example of the MDS-Robot (MIDDLE) and its simulation (LEFT) utilizing the ik solver, joint smoother,
and self-collision avoidance to move its hand in a square pattern while keeping all rotational degrees of freedom
in the null space. (RIGHT) Coordinate system for the MDS Robot when using MDS-Ach.

3.4.2 Real-Time Collision Detection

The fully integrated real-time collision detection sys-
tem utilizes the opensource simulator GazeboSim and
ODE [16, 17] to ensure safe system operation. To guar-
antee the real-time performance, the system must de-
tect self-collisions as well as collisions with objects in
the environment within one time step of the MDS-Ach
daemon (as defined in 3.3). To maintain compliance
with the real-time deadline unneeded features of the
simulator, such as physics, are disabled. This results in
a reduced computational load. Additionally a geomet-
rically simplified/reduced model of the MDS robot is
created. This model is comprised of basic shapes such
as cylinders, boxes, and spheres. This simplified model
is used to create the collision model to further reduce
computational complexity and improve performance
of the system. The performance improves because de-
tecting collisions between two spheres only requires
comparing the euclidean distance between the spheres
centers and to the sum of the spheres’ radii. There is
no collision as long as the sum of the radii is less than
the euclidean distance from the centers. The same can
be said for cylinders if the conditional measurement
is made from the center of the sphere to the closest
point on the axial line of the cylinder. Figure 2 shows
the MDS Robot model with the collision model over-
lapped.

The collision state is written in state the message
format, as described in Section 3.2.2, to the Main Con-
troller. If the reference position is free of collisions, a
joint-space reference is sent to the the MDS-Ach dae-
mon via the Joint Mux. The MDS-Ach daemon will
execute the motion on the physical robot. If a collision
is detected, the most recent safe joint-space reference
values will be used for all the joints of the affected
arm(s). “Expert” user is able to overwrite this behavior,
if needed, by sending a joint-space command from the
main controller.

3.4.3 Joint-Space Smoothing

When the robot is operating in situations where it is
moving between joint-space configurations or required
to stop its motion to avoid collision/self-collision (see
Section 3.4.2), the safety of the robot’s joints needs to
be ensured. Torque due to high joint-space acceleration

is one of the primary causes of robot joint damage. We
need to reduce the torque applied to the joints without
causing joint-space overshoot. Furthermore this needs
to be done in real-time and on-line. The motion at
this level can not be pre-planned so it can be used in
real-time tasks such as servoing or world interaction.
This section shows how we reduce the acceleration,
which reduces torque, on the joints while reducing the
overshoot. The latter is done by applying the filter
shown in (1).

θn =
(θn−1L− 1) +θdes

L
(1)

Where θn is the output of the filter which is the new
reference position (angle) the joint will be commanded
to at step n; θn−1 is the reference position to the joint
from the previous time step, i.e. n− 1; L is the weight
of the filter (defined by its integer length); and θdes is
the desired reference position in joint-space that the
joint is requested to go at time step n.

The position as recorded from the joints’ encoders
(θenc) are used to add joint-space compliance to the
system. This is done by replacing θn−1 in (1) with θenc
as seen in (2). The use of the measured angle allows
us to take advantage of the natural compliance in the
system and magnify it. When the filter is applied it
results in a pose “sag” due to gravity.

θn =
(θencL− 1) +θdes

L
(2)

3.4.4 Inverse Kinematics

We utilize the “Inverse Jacobian” method for our on-
line inverse kinematics solver. This is used to the
joint-space angles for the commanded Cartesian-space
(work-space) positions [18, 19]. The joint limits are uti-
lized when constructing the the Jacobian during each
cycle. During each step of the search the resulting
pose is checked for self-collisions via ODE (see Sec-
tion 3.4.2). A new intermediate goal position is created
if a collision is found. The process is then repeated.
The joint-space configurations found from the Jacobian
IK is then passed through the filter discribed in (1) to
prevent large steps in joint-space. Each step of the re-
sulting filtered positions are then checked in real-time
by the collision checker (Section 3.4.2) before being
sent to the MDS-Ach daemon.
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Figure 4: Example of the MDS-Robot (TOP) and its simulation (BOTTOM) utilizing the IK solver,
joint smoother, and self collision avoidance to move its hand in a box with the coordinates
(x,y,z,θy) = (0.35m,0.45m,0.25m,null) → (0.35m,0.10m,−0.05m,null) → (0.45m,0.10m,−0.05m,null) →
(0.45m,null,null,90o) while keeping some linear and some rotational degrees of freedom in null space.

The Inverse Jacobian IK method is used because it
allows control the required work-space degrees of free-
dom while the other degrees of freedom remain in null
space. The MDS Robot is used for world interaction
tasks such as opening doors (via pushing), grabbing
cups, pushing buttons etc. thus having work-space
degrees of freedom in null space is needed. In the door
opening example (via pushing) the robot only degree
of freedom that strictly matters is the x value (out of
the robot’s chest - see Figure 3). The x value defines the
distance the robot pushes the door open. The height
(z) and the left/right distance (y) does not matter as
much and thus can be left in null space. Furthermore
the orientation (all three degrees of freedom) of the
hand also belongs in the null space.

Solving for the required degrees of freedom for the
given task, and leaving all the others in the null space,
allows less iterations/computations for the solver re-
sulting in a faster solving time and the ability to run
in real-time. For MDS Robot, real-time constraints are
satisfied if the joint-space values for a given Cartesian-
space (joint-space) position are calculated in less than
0.5 sec. This is achieved when the desired Cartesian-
space position can be described with DOF ≤4. The
higher order of the required position requirements (i.e.
the less degrees of freedom in the null space) the more
time (on average) is required to solve the joint-space
solution. A measured ∼ 0.7 sec is required to solve
for a 5-DOF position and ∼ 1.3 sec for a 6-DOF on
our contemporary computers using a single core. It is
important to note that the latter calculated times are
averages, also a solution is not guaranteed to be found
even if one exists.

Figure 3 shows the MDS-Robot and its simulation
utilizing the inverse kinematics daemon. The figure
shows the MDS-Robot commanding its end-effector to
move in a box pattern in real-time. A detailed descrip-
tion of the test can be found in Section 4.1.
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Figure 5: MDS-Ach middleware: A real-time process
based control system used to extend the research life
of the MDS Robot.

3.4.5 Network Daemon

The network daemon utilizes achd, as a part of the Ach
library, to share data over a “socket” supported net-
work. The achd daemon pushes the state data from the
primary control computer on the robot to the external
“user-level” computer controller when new state data
is available. When a reference command is updated
by the user-level computer controller it is pushed to
the primary control computer over the network by the
achd daemon. Updates are only pushed or pulled when
there is new state or reference data in order to conserve
bandwidth. UDP is used by default for data transport
to help facilitate tighter real-time performance. TCP or
TCP over a SSH tunnel can be used by the user depend-
ing on timing, reliability, and security requirements.
More details can be found in our previous work [12].

3.4.6 Security

Intercepting and spoofing network traffic is a major
threat to any robot system and the threat persists even
on a properly configured Unix/Linux computer. These
“man-in-the-middle” attacks allow a third party to con-
trol the robot using the existing controllers if they can
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spoof the feedback data [20]. To prevent a man-in-the-
middle attack over the network, a secure SSH tunnel
with pre-shared keys is used to transmit and receive
state and reference data between the main controller
and the user-level controller. Since SSH tunnel oper-
ates over TCP, the network throughput between the
user-level controllers and the Main Controller is re-
duced, and may even affect the real-time performance.

3.5 External Framework Bridge

The ROS 1.0 and ROS 2.0 bridge allows us to make use
of the extensive ROS ecosystem and serves as proof
of concept for extensibility of this middleware. This
bridge talks directly with the Main Controller via the
Ach shared memory or the network daemon (3.4.5).
This controller converts the state data published by the
MDS-Ach system into ROS messages to be published
again on specified ROS topics. To reduce latency (1)
the state topic of ROS is synchronous with the state
channel of MDS-Ach, and (2) the reference channel is
synchronous with the state topic of ROS (seen Fig. 5).

4 Testing

At the conclusion of the MDS-Ach middleware devel-
opment, we tested the software to confirm its function-
ality. We present the testing procedures and results
of the inverse kinematics system (Section 4.1), the live
self-collision detection system (Section 4.2), and the
live external-collision detection system (Section 4.3).

4.1 Inverse Kinematics Test

To validate the usability of the inverse kinematics sys-
tem, we performed couple tests to show its ability to
move the end-effector to a position (4.1.1) and an ori-
entation (4.1.2) in the Cartesian-space (work-space)
while keeping other variables in the null-space. The
coordinate system used for the IK tests is shown in
Figure 3; the origin is the orthogonal projection of the
base of the neck onto the line defined by the rotations
points of the shoulders. x-y plane is horizontal. x-z
plane extends in front and behind the robot while y-z
plane extends to the sides. All signs of rotation follow
the “right hand rule.”

4.1.1 Position Control IK Test

This section presents results showing that the end-
effector can be moved between multiple linear
Cartesian-space (work-space) locations (x,y,z) with-
out constraining the end-effector orientation. The left
arm is commanded and moved to the locations shown
in (3) where S1, S2, S3, and S4 are the coordinates for
the simulated robot and R1, R2, R3 and R4 are the
coordinates for the real robot.

S1 = R1 =(0.40m,0.45m,0.25m)

S2 = R2 =(0.40m,−0.05m,0.25m)

S3 = R3 =(0.40m,−0.05m,−0.25m)

S4 = R4 =(0.40m,0.45m,−0.25m)

(3)

The screenshots of the resulting motion can be found
in Fig. 3.

4.1.2 Orientation Control IK Test

This section presents results showing that the end-
effector can be moved between multiple Cartesian-
space poses (x,y,z,θy) while keeping the remaining ori-
entations in the null space. The left arm is commanded
and moved to the locations shown in (3) where S11,
S22, S33, and S44 are the coordinates for the simulated
robot and R11, R22, R33 and R44 are the coordinates
for the real robot. In the case of the last motion (R44
and S44), θy is set to 90o and a desired x to a value of
0.45m while all other degrees of freedom remain in the
null space. The full set of coordinates for this test can
be found in (4).

S11 = R11 =(0.35m,0.45m,0.25m,null)

S22 = R22 =(0.35m,0.10m,−0.05m,null)

S33 = R33 =(0.45m,0.10m,−0.05m,null)

S44 = R44 =(0.45m,null,null,90o)

(4)

This shows that the IK process can solve for some de-
grees of freedom while keeping the others in null space
(see Figure 4). This improves system performance
when higher fidelity solutions are not required for sys-
tem operation.

4.2 Self-Collision Detection and Avoid-
ance Test

To test the self-collision system as described in Sec-
tion 3.4.2, we drove the hands to the same location us-
ing the IK system described in Section 3.4.4. Multiple
instances of this test were performed. In all the runs,
the hands stopped before colliding. Figure 2 shows one
example of the multiple self-collision tests. In this in-
stance of the test, both the left and the right hands were
told to go to the (x,y,z) coordinates (0.3m,0.2m,0.0m).
As expected, the hands did stop when the two parts of
the collision model touched as shown in Fig. 2.

4.3 World-Collision Detection and Avoid-
ance Test

To test the world-collision avoidance system described
in 3.4.2, we drove the hand from the position stated in
Section 4.2 out to an x value of 0.5m towards the table.
We placed a model of a table in the simulated world
where the real table would be. From there we drove
the hand down in z. Similar to the results in 4.2 the
hand would not move farther than the collision point
between the collision model of the hand and the colli-
sion model of the table (see Figure 2). This was done
for multiple objects and multiple collision locations.
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5 Usage

This section documents how to start, stop, and use
different MDS-Ach utilities. The MDS-Ach controls
the MDS Robot via the CAN bus. It provides smooth-
ing/filtering, multi-process control architecture, multi-
language support, inverse kinematics for right and left
arm, and more.

5.1 Daemon Control: mds-ach

The MDS-Ach daemon is the process running the back-
ground that controls communications between the
physical (or simulated) robot and the controllers. The
daemon controls the CAN bus when connected to the
physical robot. Section 5.1 describes the different in-
put options and modes of the MDS-Ach daemon. A
full description of the options for the console input for
the MDS-Ach daemon can be found in Appendix A.

Figure 6: MDS Robot simulated in Gazebo.

5.2 Startup Procedure

This section documents the startup procedure for the
MDS-Ach system.

5.2.1 Initialize

We preserved the original MDS setup procedure pro-
vided by MDS manufacturer, Xitome. Once setup is
complete, which include a fairly involved homing pro-
cedure for all the joints, the user is able to keep the
Xitome subsystem running. User may not issue com-
mands to any of the joints using the Xitome system
once MDS-Ach is started.

5.2.2 Start Daemon

It is important that the MDS robot is in its homed con-
figuration when starting the MDS-Ach system. This
is because MDS-Ach system assumes the robot’s start-
ing position to initialize the IK and the self-collision
systems. If the robot is not in its “homed” position,
than some joints will get a step input to go to the start-
ing position. All starting positions are read from the

anatomy.xml configuration file located in /etc/mds-
ach. This file is identical to that used by the Xitome
system for configuration.

The MDS-Ach system can run on the robot (Option
1) and on a simulated robot (Option 2). Option 1 sends
all of the commands over the CAN bus while Option 2
sends all commands to GazeboSim[16]. Both Option
1 and Option 2 have an x-Ach[13] abstraction layer
between their respective communication buses and the
controller. A full description of the implementation
procedure can be found in Appendix B.

5.3 Examples

Examples of how to do basic operations using the MDS-
Ach system on both the real robot and the simulator
can be found in Appendix C. The examples show how
to start the MDS-Ach daemon on the physical and sim-
ulated robot. An image of the simulated robot can be
seen in Figure 6. All example code/software can be
found in Lofaro et. al. [21].

6 Utilities

This section describes the utilities available for use
with the MDS-Ach system. All utilities work seam-
lessly with the physical and simulated robot.

6.1 MDS-Ach Console

The MDS-Console utility allows the user to read and
set individual joint angle values via the command-line.
It also allows the user to read the Caretesian-space
pose (6 DOF) of the end-effector and set the desired
target pose (3, 4, 5, and 6 DOF). The console provides
control interface for all the joints listed in Table 2. We
included examples of single joint interactions, but also
end-effector control, in Appendix D.

Table 2: Joint abbreviations (short and long) with defi-
nitions

Definition
< joint > < joint >

(short option) (long option)

Right Elbow Pitch REP RightElbowFlex
Right Shoulder Yaw RSY RightUpperArmRoll
Right Shoulder Roll RSR RightShoulderAbd
Right Shoulder Pitch RSP RightShoulderExt
Left Elbow Pitch LEP LeftElbowFlex
Left Shoulder Yaw LSY LeftUpperArmRoll
Left Shoulder Roll LSR LeftShoulderAbd
Left Shoulder Pitch LSP LeftShoulderExt
Right Wrist Roll RWR RightWristFlex
Right Wrist Yaw RWY RightWristRoll
Left Wrist Roll LWR LeftWristFlex
Left Wrist Yaw LWY LeftWristRoll
Torso Yaw WST TorsoPan
Neck Roll NKR HeadRoll
Neck Pitch (lower) NKP1 HeadPitch
Neck Pitch (upper) NKP2 NeckPitch
Neck Yaw NKY HeadPan
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6.2 MDS-Ach Read

The MDS-Read utility allows the user to view the joint
space references, state, and address of each active joint.
This utility updates the information at ∼ 20Hz. It may
be started or stopped at any time without affecting the
overall system.

6.2.1 Prerequisites

Since MDS-Read is a monitoring tool, it must be started
after the MDS-Ach is already running.

6.2.2 Startup

To start the MDS-Read utility, run the command below.
The expected terminal can be seen in Figure 7.

Bash/MDS-Ach Console:

$ mds−ach read

Figure 7: Expected window for ($ mds-ach read)

• Note 1: If you are running with the simulator the
state (Actual pos) will always be zero. When running
on the physical robot the real position (in radians)
will be shown.

• Note 2: If you make more joints “active” in
the /etc/mds-ach/configs/mdsach.xml configura-
tion file they will automatically show up in MDS-
Read.

6.3 Software Interface

The MDS-Ach system currently works with the C/C++
and Python programming languages. Appendix E de-
scribes the required libraries for each of the latter lan-
guages.

7 Operating in Joint-Space

This section documents how to use MDS-Ach to con-
trol the robot in joint-space. To move one, or multiple
joint/joints the following steps must be followed:

• Open Ach Channels - This is the ring buffer
shared memory that this controller communi-
cates with MDS-Ach with.

• Create Required Data Structures - Standardized
(packed) data structure that contains all of the
reference and state data for the robot.

• Get Joint ID - Determine the IDs of the join-
t/joints to be controlled (See Table 2).

• Queue New Motor Position - Put the desired mo-
tor positions in the reference structure at the
index position defined by the Joint IDs.

• Set Motor Position (put) - Write the reference
structure that has been updated with the desired
position for the desired joint to the reference Ach
channel.

• Close Ach Channels on Exit - Though not re-
quired it is good practice to close the unused Ach
channels upon exiting the controller.

Figure 8 shows the expected simulator window
when following the above steps and setting the Left
Elbow Pitch (LEP) and the Right Shoulder Pitch (RSP)
to -0.2 rad and 0.1 rad respectively.

Figure 8: Expected simulator window for ($ ./mds-
simple-demo). (LEFT) Before running. (RIGHT) After
running.

It is important to note that Appendix F is an depth
explanation and example of how to setup the Ach chan-
nels for communication with the MDS-Ach system and
how to control the robot in joint-space while using the
smoothing filter process. Examples are given in C/C++
and Python.

8 Operating in Cartesian-Space

In this section we discuss end-effector operations in
Cartesian-space which utilize forward and inverse
kinematics controllers of the MDS robot.

8.1 Built-in IK Controller (Python)

The MDS-Ach system has a built-in inverse kinematics
(IK) controller for both the right and left arms. This
controller automatically runs when the MDS-Ach sys-
tem is started. The controller solves for one arm at a
time.

The system begins to solve the IK equations auto-
matically, when you post a new desired position on the
IK reference channel. Below is a step by step of how
you do this using Python.
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8.1.1 Python imports

The following are required imports for the MDS-Ach
system while using python: mds ach, ach, and mds.
Other imports are for the given controller implementa-
tion.

Python:

import mds ach as mds
import ach
import time
import sys
import os
import math

8.1.2 Create Open Ach Channel for IK

Ach channels are how you communicate with MDS-
Ach. You simply write data to the channel and the
robot can read the data in newest to oldest order. The
section below shows you how to open an Ach channel.
Please note that ach.Channel() takes a string as an in-
put. Here we opened one channel. This is a different
channel then found in previous sections because it is
only for the IK controller.

Python:

# Open ACH Channel f o r IK
k = ach . Channel (mds .MDS CHAN IK NAME)

8.1.3 Make IK Structure

Similar to controlling the robot in joint-space you need
to set a reference structure to the desired work-space
position. For this you need to initialize the structure.
See below for the initialization of the work-space struc-
ture.

Python:

# Make new IK s t r u c t u r e
ikc = mds . MDS IK ( )

8.1.4 Setting the DOF controlled

When using the built-in IK controller you need to set
the number of DOF that you are controlling. With this
controller you are required to set the DOF in the follow-
ing order: px,py ,pz,θx,θy ,θz where pn is the position
on axis n and θn is the rotation about axis n. For exam-
ple if you DOF is set to 4 you are controlling px,py ,pz,
and θx. If you are controlling 2 you will control px
and py . In the example below we are controlling 3, i.e.
px,py , and pz. This order can also be seen in Table 5.

Python:

# Se t t h e amount o f DOF you want t o c o n t r o l
dof = 3

We set these to the values in Table 3.

Table 3: Inverse Kinematic Values Set for Exam-
ple 8.1.4

Param # Definition Abbreviation Value (rad)

1 Position in X px 0.3
2 Position in Y py 0.2
3 Position in Z pz 0.0
4 Rotation in X θx Null Space
5 Rotation in Y θy Null Space
6 Rotation in Z θz Null Space

θx,θy , and θz are in the Null Space because we do
not care where they are as long as the first three pa-
rameters are met. We can set these values to what ever
we want and they will be ignored. In this case we set
them to zero.

Python:

# Se t v a l u e s f o r work− s p a c e in
# [ x , y , z , rx , ry , rz ] o r d e r
e f f = [ 0 . 3 , 0 . 2 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

8.1.5 Choosing Arm for IK

Here we pick the arm for the IK. Our options are set
as enums in the mds ach.py and mds.h includes. All
options for right and left arms can be found in Table 4.

Table 4: Definitions for left and right arms using
mds ach.py in Python

Arm Python Definition
Left mds.LEFT
Right mds.RIGHT

Here we set the arm to the left arm.

Python:

# s e t arm
armi = mds . LEFT

8.1.6 Set IK Structure

Just as in the joint-space method, we need to the values
in our structure before we send it to the robot. Here we
set all of the parameters from above to the structure
ikc that we created.

Python:

# Put s e t t i n g i n t o i k s t r u c t u r e
ikc . move = armi
ikc . arm [ armi ] . ik method = dof
ikc . arm [ armi ] . t x = e f f [ 0 ]
ikc . arm [ armi ] . t y = e f f [ 1 ]
ikc . arm [ armi ] . t z = e f f [ 2 ]
ikc . arm [ armi ] . r x = e f f [ 3 ]
ikc . arm [ armi ] . r y = e f f [ 4 ]
ikc . arm [ armi ] . r z = e f f [ 5 ]
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8.1.7 Command the Robot

Just as with the joint-space controller you need to “put”
the data on the ACH channel. Unlike the joint-space
controller it will not move as soon as you send it. The
controller will first have to solve the IK. Upon finding
the solution the controller will send it to the robot. If
a solution is found it will take anywhere between 0.1
and 5.0 seconds. If there is no solution found the robot
will not move. Note: the robot limits its self to 1000
search iterations for an IK solution.

Python:

# put on t o ACH channe l
k . put ( ikc )

8.1.8 Running the Code

To run the code do the following within the mds-
ach/examples folder.

Bash:

$ python ms ik one . py

The expected terminal out can be seen in Figure 9.

Figure 9: Expected window for ($ python
ms ik one.py)

To check that the IK worked you can run the FK in
the MDS-Ach console and/or run the simulator. The
before and after of the MDS-Ach console is found in
Figure 10 and Figure 11, respectively.

Figure 10: Expected MDS-Ach Console window for (>>
mds-ach-console$ get fk left). (TOP) Before running.
(BOTTOM) After running.

Figure 11: Expected simulator window for ($ python
mds ik one.py). (LEFT) Before running. (RIGHT) Af-
ter running.

8.1.9 Full Code

The full example can be found below as well in the file:

mds-ach/examples/mds_ik_one.py

8.2 Built-in IK Controller (C/C++)

The MDS-Ach system has a built-in inverse kinematics
(IK) controller for both the right and left arms. This
controller automatically runs when the MDS-Ach sys-
tem is started. The controller solves for one arm at a
time.

The system works by starting to solve the IK equa-
tions when you post a new desired position on the
IK reference channel. Appendix G has a step by step
of how you do this using C/C++ which is identical
in methodology to the Python implimentaiton in Sec-
tion 8.1.

8.3 Making a Box using Inverse Kinemat-
ics (Python)

This section shows you how to control the MDS robot
via the built in IK module. This example shows us
using solving a 3 DOF IK. The method used can be
expanded to any DOF between 1 and 6.

The example given is the robot moving its left hand
in a 0.5 m box 0.4 m away from the origin. The hand
will not move in the x plane, only in the y and z.

8.3.1 Making the Box

The following points will be hit in or-
der: (0.4,0.45,0.25) → (0.4,−0.05,0.25) →
(0.4,−0.05,−0.25) → (0.4,0.45,−0.25) with all units
in meters. Example Python code for state flow. Note
state 0 (0.3,0.2,0.0) is the initial state and will not be
returned to.
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Python:

i f i i == 0 :
c = [ 0 . 3 , 0 . 2 , 0 . 0 ]
i i = 1

e l i f i i == 1 :
c = [ 0 . 4 , 0 .45 , 0 . 2 5 ]
i i = i i +1

e l i f i i == 2 :
c = [ 0 . 4 , −0.05 , 0 . 2 5 ]
i i = i i +1

e l i f i i == 3 :
c = [ 0 . 4 , −0.05 , −0.25]
i i = i i +1

e l i f i i == 4 :
c = [ 0 . 4 , 0 .45 , −0.25]
i i = 1

8.3.2 Select Arm

The following selects the arm used for the IK. You
may use “left” or “right” for the left and right arms
respectively.

Python:

arm = ’ l e f t ’
armi = −1
i f arm == ’ l e f t ’ :

armi = mds . LEFT
i f arm == ’ r i g h t ’ :

armi = mds . RIGHT

8.3.3 Parse Desired Position

Parse the desired position for the end-effector to 6 DOF
array.

Python:

dof = 3
e f f = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]
for i in range ( 0 , dof ) :

e f f [ i ] = c [ i ]

8.3.4 Set Desired Position

Sets the desired position for the end-effector.
ikc.arm[].ik method is the number of DOF that you
will be controlling. ikc.arm[].t * and ikc.arm[].r * is
the desired position and rotation of the end effector
respectively.

Python:

i f armi >= 0 :
ikc . move = armi
ikc . arm [ armi ] . ik method = dof
ikc . arm [ armi ] . t x = e f f [ 0 ]
ikc . arm [ armi ] . t y = e f f [ 1 ]
ikc . arm [ armi ] . t z = e f f [ 2 ]
ikc . arm [ armi ] . r x = e f f [ 3 ]
ikc . arm [ armi ] . r y = e f f [ 4 ]
ikc . arm [ armi ] . r z = e f f [ 5 ]

8.3.5 Send Desired Position to be Solved

The following sends the desired position and ik
method to the IK controller to attempt a solution.

Python:

k . put ( ikc )

8.3.6 Running the Code

To run the code do the following from within the mds-
ach/examples directory

Bash:

$ python examples / mds ik box example . py

The expected terminal output can be seen in Fig-
ure 12.

Figure 12: Expected window for ($ python exam-
ples/mds ik box example.py). Time order is left to
right, top to bottom.

The expected robot pose can be seen in Figure 13.
The latter figure shows the virtual robot not the physi-
cal robot.

Figure 13: Expected robot poses for ($ python exam-
ples/mds ik box example.py)
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8.3.7 Full Code

The full example can be found in the file:

mds-ach/examples/mds_ik_box_example.py

8.4 Inverse Kinimatics (IK) API

The Inverse Kinematic (IK) API utilizes the Inverse
Jacobian method to solve for the joint-space values
given an end-effector position of each of the arms. The
IK solver is capable of solving for any and all of the
six degrees of freedom of the end-effector i.e. transla-
tion (x,y,x) and rotation (θx,θy ,θz) while keeping the
non-constrained position/rotations in Null space. The
number of steps and error range can be specified by
the user.

Appendix H gives an example of how to get and set
the forward and inverse kinematics via the mds ik API.
The goal of this tutorial is to solve for the joint-space
values given the desired work-space values as found in
Table 3.

9 Conclusion

In conclusion we have made a middleware called MDS-
Ach that enables the legacy MDS Robot to be used with
modern day robot software, thus extending its life as a
research robot. Low-latency non-head-of-line blocking
FILO shared memory and network connectivity is used
to share data between real-time processes. SSH tun-
neling is used if a secure network connection between
controllers is required. Built-in collision avoidance,
inverse kinematics, and support for multiple program-
ming languages was implemented to expand usability
to our non-hardware-focused partners. Finally, a ROS
interface was developed with specific focus on making
it ROS 2.0 compatible to enable the use of the exten-
sive ROS ecosystem. These combined contributions
allowed MDS-Ach to significantly extend the research
life of the MDS Robot.
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10 APPENDIX

A Daemon Console
This section shows the specific console inputs available for the MDS-
Ach system.
Console Input: $ mds-ach - Shows command options
Console Input: $ mds-ach start - Start all channels and processes
and console

• (no-arg) : Starts MDS-Ach system on CAN Bus 0 “CAN0”

• nocan : Starts MDS-Ach system with no output to real CAN
Bus. Will output to the virtual can “VCAN42” instead

Console Input: $ mds-ach console - Starts the human interface con-
sole for MDS-Ach
Console Input: $ mds-ach stop - Close all channels and processes
Console Input: $ mds-ach make - makes all the MDS channels
Console Input: $ mds-ach kill - Emergency kill the daemon process
Console Input: $ mds-ach killall - Emergency kill the daemon pro-
cess and removes all ACH channels
Console Input: $ mds-ach resetbus - Resets the Bus
Console Input: $ mds-ach remote - Starts a remote connection to
xxx.xxx.xxx.xxx via achd
Console Input: $ mds-ach sim - Starts the sim in gazebo

• (no-arg) : Starts the sim in gazebo

• kill : Kills gazebo sim

Console Input: $ mds-ach changerobot - Changes the robot’s con-
figuration file/anatomy

• (no-arg) : No Change

• isaac : Changes to Isaac’s anatomy

• lucas : Changes to Lucas’ anatomy

• octavia : Changes to Octavia’s anatomy

B Startup Procedure
To start the MDS-Ach daemon select one of the two options. Note:
Both Option 1 and Option 2 will start the following processes:

• mds-daemon : primary control for the MDS robot

• mds-filter : filtering process to allow for step inputs

• mds ik module (python) : inverse kinematics (ik) controller for
the MDS

B.1 (Option 1) With physical MDS robot:

Bash:

$ mds−ach s t a r t

B.2 (Option 2) With virtual MDS robot:

Bash (Start with no CAN Bus):

$ mds−ach s t a r t nocan

Bash (Start Simulator):

$ mds−ach sim

The simulator can be run with either (Option 1) or
(Option 2) above.

C Examples

The following are examples of how to do basic opera-
tions using the MDS-Ach system on both the real robot
and the simulator.

Run MDS-Ach Daemon:

Bash:

$ mds−ach s t a r t

The resulting terminal windows should look like
Figure 14.

Figure 14: Expected window for ($ mds-ach start)

Run MDS-Ach Daemon with simulator only:

Bash:

$ mds−ach s t a r t nocan

This command will start the MDS-Ach daemon. This
should be run on the computer where the simulator
is located. The MDS-Ach daemon (mds-daemon) will
run in the background even if the terminal session is
closed. This will run with the simulator and not with
the real robot. Use this mode if you only want to use
the simulator.

The resulting terminal windows should look like
Figure 15.

Figure 15: Expected window for ($ mds-ach start no-
can)
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Run MDS-Ach simulator:

Bash:

$ mds−ach sim

Once the MDS-Ach Daemon is started (see above) you
can run the simulator. The simulator is open loop in
the respect that it does not feed back information to
the MDS-Ach system. It is used as a visual representa-
tion of the robot for debugging and initial controller
testing.

The resulting terminal windows should look like
Figure 16.

Figure 16: Expected window for ($ mds-ach sim)

The resulting simulator windows should look like
Figure 6.

D MDS-Ach Console

The MDS-Console utility allows the user to get and set
joint space values via the command line. It also allows
the user to get the work-space end-effector position (6
DOF) and set the work-space end-effector position (3,
4, 5, and 6 DOF).
Prerequisites:

The MDS-Ach system must be running prior to
running the MDS-Console
Startup:

Bash:

$ mds−ach console

To start the MDS-console run the above command.
The expected terminal can be seen in Figure 17.

Figure 17: Expected window for ($ mds-ach console)

Commands:
This section shows the commands available to the

MDS-Console. Note: when in MDS-Console the con-
sole will shows the following in the terminal:

Bash/MDS-Ach Console:

>> mds−ach−console$

Function: goto:

The goto command will tell the joint (in joint space)
what position (in radians) where to go. The usable
joints and abbreviations can be found in Table 2.

Bash/MDS-Ach Console:

>> mds−ach−console$ goto < j o i n t > <value>

This will set the Right Shoulder Pitch (RSP / Right-
ShoulderExt) to a value of -0.123 rad. The expected
terminal can be seen in Figure 18.

Bash/MDS-Ach Console (Example):

>> mds−ach−console$ goto RSP −0.123

Figure 18: Expected window for (>>mds-ach-console$
goto < joint > < value >) using example (>> mds-ach-
console$ goto RSP -0.123)

The “get” command gets the joint space position of
the < joint > in radians. The usable joints and abbre-
viations can be found in Table 2.
Function: get:

Bash/MDS-Ach Console:

>> mds−ach−console$ get < j o i n t >

This will get the reference and state of the Torso
yaw (WST / TorsoPan). The expected terminal can be
seen in Figure 19.

Bash/MDS-Ach Console (Example):

>> mds−ach−console$ get WST

Figure 19: Expected window for (>>mds-ach-console$
get < joint >) using example (>> mds-ach-console$ get
WST)

Function: get fk:
The “get fk” command gets the work-space position

of the left or right end-effector in 6 DOF coordinates
(meters and radians) with the origin being the inter-
section of the robot’s neck and shoulder. The < arm >
options are: left and right for the left and right arm
respectively.

Bash/MDS-Ach Console:
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>> mds−ach−console$ get fk <arm>

Bash/MDS-Ach Console (Example):

>> mds−ach−console$ get fk l e f t

This will get the 6 DOF work space position of the
left end-effector. The expected terminal can be seen in
Figure 20.

Figure 20: Expected window for (>>mds-ach-console$
get fk < arm >) using example (>> mds-ach-console$
get fk left) where (pos) is the position in meters and
(rot) is the rotation about x,y,z in radians.

Function: ik:

Bash/MDS-Ach Console:

>> mds−ach−console$ ik <arm> <dof> <param 1>
. . . <param N>

The “ik” command utilizes the inverse kinematic
controller (mds ik module) to solve 1-6 DOF inverse
kinematic solutions for the MDS robot’s left or right
end-effector. This module uses the Inverse Jacobian
Inverse Kinematic solver method. If the desired work-
space location is too far away such that the IK con-
troller cannot reach it in 1000 iterations, it will discon-
tinue attempting to find a solution and return without
a reply. You may then try another point closer to that
of the current end-effector point.

< arm > : has the options of “left” and “right.”
and denote the left and right end-effector respec-

tively.
< dof > : denotes the number of degrees of freedom

you will be controlling using the inverse
kinematic controller.

< param 1 > ... < param N > : denotes the positions
and orientations for the < arm >. The
number of parameters must equal that of
< dof >. The order must be as follows (Ta-
ble 5):

Table 5: Inverse Kinematic Parameter Order
Param # Definition Abbreviation

1 Position in X px
2 Position in Y py
3 Position in Z pz
4 Rotation in X θx
5 Rotation in Y θy
6 Rotation in Z θz

Bash/MDS-Ach Console (Example):

>> mds−ach−console$ ik l e f t 3 0.3 0.2 0.0

This will find a joint space solution using IK meth-
ods for the desired end-effector position to be (0.3 m,
0.2 m, 0.0 m) in (x,y,z). The angle about all axes is in
the null space.

The expected output (with running get fk left be-
fore and after to show the effect) can be seen in Fig-
ure 21.

Figure 21: Expected window for (>>mds-ach-console$
ik < arm > < dof > < param 1 > ... < param N >) using
example (>> mds-ach-console$ ik left 3 0.3 0.2 0.0)

E Software Interface

The MDS-Ach system currently works with the C/C++
and Python programming languages. This section de-
scribes the required libraries for each of the latter lan-
guages.
Python imports:

The following are required imports for the MDS-
Ach system while using python: mds ach, ach, and
mds. Other imports are for the given controller imple-
mentation.

Python:

# ! / usr / b in / env python
import mds ach as mds
import ach

C/C++ includes:
The following are required imports for the MDS-

Ach system while using python: mds ach, ach, and
mds. Other imports are for the given controller imple-
mentation.

C/C++:

# include <mds . h>
# include <ach . h>

Required library:

MakeFile:

− lach

C/C++ MakeFile example with required libraries:
The following is an example make file for a C imple-
mentation of a controller. Please note it utilizes the
required -lach library.
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MakeFile:

defaul t : a l l
CFLAGS := − I . / include −g −std=gnu99
CC := gcc
BINARIES := mds−simple−demo
LIBS := − lach − l r t −lm

a l l : $ ( BINARIES )

mds−simple−demo : s r c /mds−simple−demo . o
$ (CC) −o $@ $< $ ( LIBS )

%.o : %.c
$ (CC) $ (CFLAGS) −o $@ −c $<

clean :
rm − f $ ( BINARIES ) s r c / * . o

F Operating in Joint-Space

This section shows you how to setup the Ach chan-
nels for communication with the MDS-Ach system and
how to control the robot in joint-space while using the
smoothing filter process.

F.1 Control one joint/DOF (Python)

This section shows you how to setup the Ach channels
for communication with the MDS-Ach system and how
to control one joint of the robot in joint-space while
using the smoothing filter process. Specifically we will
set the joint-space values as those seen in Table 6. Note
that to run this example you will need the libraries for
MDS-Ach as seen in Section E.

Table 6: Set the joint space values for the following
joint

Name Alternate Name Value (rad)
LSP LeftShoulderExt -0.123

Open Ach Channels:
Ach channels are how you communicate with MDS-

Ach. You simply write data to the channel and the
robot can read the data in newest to oldest order. The
section below shows you how to open an Ach chan-
nel. Please note that ach.Channel() takes a string as an
input. Here we opened two channels:

• s : state channel

• r : reference channel

Python:

s = ach . Channel (mds .MDS CHAN STATE NAME)
r = ach . Channel (mds .MDS CHAN REF NAME)

Create Required Data Structures:

C-Type data structures are used to pass data be-
tween our controllers. Below we create three well de-
fined structures for the state and the reference chan-
nels. These structures are defined in mds ach.py and
mds.h which is located in your python and include
paths.

• state : state channel of type MDS STATE

• ref : reference channel of type MDS REF

Python:

s t a t e = mds . MDS STATE ( )
r e f = mds . MDS REF ( )

Get Joint ID:
To command a joint you must get the ID of the

joint. The ID numbers are defined in the anatomy.xml
configuration file. You can use the joint abbreviations
in Table 18 to find the ID number.

Python:

# Get a d d r e s s o f LSP
jn tn = mds . getAddress ( ’LSP ’ , s t a t e )
print ’ Address = ’ , jn tn

Queue New Motor Position:
You can set a new desired motor angle by setting

the reference channel. In this case we are using the
filter channel which is the safest one to use due to the
velocity and acceleration limiting. Please note that this
does NOT send the command to the motor. It queues
the values for them to be sent to the motors. They are
only sent to the motors after they are “put” on the ach
channel.

In the example below we are setting the ‘LSP’ by
using the ID number from above to a joint-space angle
of -0.123 rad.

Python:

# Se t LSP r e f e r e n c e t o −0.123 us ing t h e
# f i l t e r c o n t r o l l e r
r e f . j o i n t [ jntn ] . r e f = −0.123

Set Motor Position (put):
Once all joints are set in the structure you can “put”

it on the proper ach channel. Please note that even if
you did not set a motor value it will still be put on the
channel along with the rest of the data structure. It is
best practice to read the latest channel, then modify
what you want to change, then put the modified struc-
ture on the channel. This will help with not sending
the robot to unintended configurations.
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Python:

# Command motors t o d e s i r e d r e f e r e n c e s
# ( p o s t t o ach channe l )
r . put ( r e f )

Close Ach Channels on Exit:
Though not required it is good practice to close

your unused ach channels upon exit of your controller.

Python:

# Clo s e c h a n n e l s
s . c l o s e ( )
r . c l o s e ( )

Running the Code: To run the code do the following
from within the mds-ach/examples directory

Bash:

$ python mds simple demo python 1 DOF . py

The expected terminal out can be seen in Figure 22.

Figure 22: Expected window for the python 1-DOF
example including additional print statements

You can also monitor the change using the MDS-
Ach Read utility and/or the simulator/real robot.
Full Code:

The full example can be found below as well in the
file:

mds-ach/examples/mds_simple_demo_python_1_DOF.py

F.2 Control Two joints/DOF (C/C++)

This section you will set 2 separate DOFs to two differ-
ent values and see the results. Specifically we will set
the joint-space values as those seen in Table 7. Note
that to run this example you will need the libraries for
MDS-Ach as seen in Section E. We will set the follow-
ing:

Table 7: Set the joint space values for the following
joint

Name Alternate Name Value (rad)
LEP LeftElbowFlex -0.2
RSP RightShoulderExt 0.1

Open Ach Channels:
Ach channels are how you communicate with MDS-

Ach. You simply write data to the channel and the
robot can read the data in newest to oldest order. The
section below shows you how to open an Ach chan-
nel. Please note that ach.Channel() takes a string as an
input. Here we opened three channels.

• chan state : state channel

• chan ref : reference channel

C/C++:

int r = ach open(& chan ref ,
MDS CHAN REF FILTER NAME, NULL ) ;

a s s e r t ( ACH OK == r ) ;

r = ach open(& chan state ,
MDS CHAN STATE NAME, NULL ) ;

a s s e r t ( ACH OK == r ) ;

Create Required Data Structures:
C-Type data structures are used to pass data be-

tween our controllers. Below we create three well de-
fined structures for the state and the reference chan-
nels. These structures are defined in mds ach.py and
mds.h which is located in your python and include
paths.

• state : state channel of type MDS STATE

• ref : reference channel of type MDS REF

C/C++:

mds ref t H ref ;
m d s s t a t e t H state ;
memset ( &H ref , 0 , s i z e o f ( H ref ) ) ;
memset ( &H state , 0 , s i z e o f ( H state ) ) ;

Get Up-To-Date Reference:
It is important that you set your initial reference

structure with the current values of the reference chan-
nel. This is because when you do command the joints
you command them all at once, even if you did not
change their value. See below for how to get the latest
reference values.

C/C++:

int r = ach get ( &chan ref , &H ref ,
s i z e o f ( H ref ) , &fs ,
NULL, ACH O LAST ) ;

i f (ACH OK != r ) {
i f ( debug ) {

f p r i n t f ( s tderr , ” Ref r = %s \n” ,
a c h r e s u l t t o s t r i n g ( r ) ) ; } }

e l s e { a s s e r t ( s i z e o f ( H ref ) == f s ) ; }
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Get Joint ID:
For the moment when using C/C++ the joint IDs

are hard coded in the mds.h include file. You may use
normal humanoid acronyms or NRL legacy acronyms.
Queue New Motor Positions:

You can set a new desired motor angle by setting
the reference channel. In this case we are using the
filter channel which is the safest one to use due to the
velocity and acceleration limiting. Please note that this
does NOT send the command to the motor. It queues
the values for them to be sent to the motors. They are
only sent to the motors after they are “put” on the ach
channel.

In the example below we are setting the joints as
defined in Table 7.

C/C++:

H ref . j o i n t [ LEP ] . r e f = −0.2 ;
H ref . j o i n t [ RSP ] . r e f = 0 . 1 ;

Set Motor Position (put):
Once all joints are set in the structure you can “put”

it on the proper ach channel. Please note that even if
you did not set a motor value it will still be put on the
channel along with the rest of the data structure. It is
best practice to read the latest channel, then modify
what you want to change, then put the modified struc-
ture on the channel. This will help with not sending
the robot to unintended configurations.

C/C++:

/ * Write t o t h e f e ed − forward channe l * /
ach put ( &chan ref , &H ref , s i z e o f ( H ref ) ) ;

Running the example:
To run the example compile then run the resulting

executable mds-simple-demo.

Bash:

$ . / mds−simple−demo

The resulting output can be seen using the MDS-
Ach Read utility (Figure 7) and/or the simulator/real
robot (Figure 8).
Full Code:

The full example can be found in the file:

mds-simple-demo/src/mds-simple-demo.c

G Built-in IK Controller (C/C++)

The MDS-Ach system has a built-in inverse kinematics
(IK) controller for both the right and left arms. This
controller automatically runs when the MDS-Ach sys-
tem is started. The controller solves for one arm at a
time.

The system works by starting to solve the IK equa-
tions when you post a new desired position on the IK
reference channel. Below is a step by step of how you
do this using C/C++.
C/C++ Includes:

The following are required imports for the MDS-
Ach system while using python: mds.h and ach.h.
Other imports are for the given controller implementa-
tion.

C/C++:

/ / f o r mds
# include <mds . h>
/ / f o r ach
# include <ach . h>

Create Open Ach Channel for IK:
Ach channels are how you communicate with MDS-

Ach. You simply write data to the channel and the
robot can read the data in newest to oldest order. The
section below shows you how to open an Ach channel.
Please note that ach open() takes a string as an input.
Here we opened one channel. This is a different chan-
nel then found in previous sections because it is only
for the IK controller.

C/C++:

// open ik chan
int r = ach open(& chan ik ,

MDS CHAN IK NAME, NULL ) ;
a s s e r t ( ACH OK == r ) ;

Make IK Structure:
Similar to controlling the robot in joint-space you

need to set a reference structure to the desired work-
space position. For this you need to initialize the struc-
ture. See below for the initialization of the work-space
structure.

C/C++:

/ / Make new IK s t r u c t u r e
mds ik t H ik ;
memset ( &H ik , 0 , s i z e o f ( H ik ) ) ;

Setting the DOF controlled:
When using the built-in IK controller you need to

set the number of DOF that you are controlling. With
this controller you are required to set the DOF in the
following order: px,py ,pz,θx,θy ,θz where pn is the po-
sition on axis n and θn is the rotation about axis n.
For example if you DOF is set to 4 you are control-
ling px,py ,pz, and θx. If you are controlling 2 you will
control px and py . In the example below we are con-
trolling 3, i.e. px,py , and pz. This order can also be
seen in Table 5.

C/C++:

/ / Se t t h e amount o f DOF you want t o c o n t r o l
dof = 3
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We set these to the values in Table 3.
θx,θy , and θz are in the Null Space because we do

not care where they are as long as the first three pa-
rameters are met. We can set these values to what ever
we want and they will be ignored. In this case we set
them to zero.

C/C++:

/ * Se t v a l u e s f o r work− s p a c e in
[ x , y , z , rx , ry , rz ] o r d e r * /

double e f f [ 6 ] = {0 . 3 , 0 . 2 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 } ;

Choosing Arm for IK:
Here we pick the arm for the IK. Our options are

set as enums in the mds.h include. All options for right
and left arms can be found in Table 8.

Table 8: Definitions for left and right arms using
mds ach.py in Python

Arm C/C++ Definition
Left LEFT
Right RIGHT

Here we set the arm to the left arm.

C/C++:

/ / s e t arm
int arm = LEFT ;

Set IK Structure:
Just as in the joint-space method, we need to the

values in our structure before we send it to the robot.
Here we set all of the parameters from above to the
structure ikc that we created.

C/C++:

/ / Put s e t t i n g i n t o i k s t r u c t u r e
H ik . move = arm ;
H ik . arm [ arm ] . ik method = dof ;
H ik . arm [ arm ] . t x = e f f [ 0 ] ;
H ik . arm [ arm ] . t y = e f f [ 1 ] ;
H ik . arm [ arm ] . t z = e f f [ 2 ] ;
H ik . arm [ arm ] . r x = e f f [ 3 ] ;
H ik . arm [ arm ] . r y = e f f [ 4 ] ;
H ik . arm [ arm ] . r z = e f f [ 5 ] ;

Command the Robot:
Just as with the joint-space controller you need to

“put” the data on the ACH channel. Unlike the joint-
space controller it will not move as soon as you send it.
The controller will first have to solve the IK. Upon find-
ing the solution the controller will send it to the robot.
If a solution is found it will take anywhere between 0.1
and 5.0 seconds. If there is no solution found the robot
will not move. Note: the robot limits its self to 1000
search iterations for an IK solution.

C/C++:

/ / put on t o ACH channe l
ach put ( &chan ik , &H ik , s i z e o f ( H ik ) ) ;

Running the Code:
To run the code do the following within the mds-

simple-demo-ik folder.

Bash:

$ make clean
$ make
$ . / mds−simple−demo− ik

To check that the IK worked you can run the FK in
the MDS-Ach console and/or run the simulator. The
before and after of the MDS-Ach console is found in
Figure 23 and Figure 24 respectively.

Figure 23: Expected MDS-Ach Console window for (>>
mds-ach-console$ get fk left). (TOP) Before running.
(BOTTOM) After running.

Figure 24: Expected simulator window for
($ ./mds-simple-demo-ik) and/or ($ python
mds ik solver example.py). (LEFT) Before run-
ning. (RIGHT) After running.

Full Code:
The full example can be found in the file:

mds-simple-demo/src/mds-simple-demo-ik.c

H Inverse Kinematics API

This section will show you an example of how to get
and set the forward and inverse kinematics via the
mds ik API. The goal of this tutorial is to solve for the
joint-space values given the desired work-space values
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as found in Table 3. This API is written for use with
Python but also has hooks for C/C++.
Required Imports:

Below are the required imports for using the for-
ward/inverse kinematics portion of the mds API. These
will be located in the python 2.7 path.

Python:

import mds ach as mds
import ach
import mds ik as ik
import mds ik include as ike
from mds ach import *

Open Ach Channels:
You will need the state and the reference (filtered)

channels to solve and set the IK using the API. The
state is used to get the current location of the robot.
The reference is used to set the joint-space values once
they are found.

Python:

# Open Ach Channels
r = ach . Channel (mds . MDS CHAN REF FILTER NAME)
s = ach . Channel (mds .MDS CHAN STATE NAME)

Make Structures:
Make the structures for the state and the reference

channels. This will hold your latest state data and the
latest set reference to the reference filter channel.

Python:

# Make S t r u c t s
s t a t e = mds . MDS STATE ( )
r e f = mds . MDS REF ( )

Get Latest Data:
Get the latest data from the state and reference

channels.

Python:

# Get t h e l a t e s t on t h e c h a n n e l s
[ s ta tus , framesize ] = s . get ( s t a t e , wait=False ,

l a s t =True )
[ s ta tus , framesize ] = r . get ( ref , wait=False ,

l a s t =True )

Set Desired Work-Space Position:
Set the desired work-space position as found in Ta-

ble 3. We set all 6 DOF here however only the first
three are required due to our desired work-space posi-
tion. Later sections removes the extra DOFs.

Python:

# Des i r ed p o s i t i o n
ef f end = np . array ( [ 0 . 3 , 0 . 2 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] )

Set Desired Arm:
The ik.getIK() function takes a string to define the

left or right arm. Thus we set our “arm” as a string.
The options for the latter can be found in Table 9.

Table 9: Definitions for left and right arms using
mds ik.py in Python

Arm MDS IK (Python) Definition
Left ’left’
Right ’right’

Python:

# Def ine Arm
arm = ’ l e f t ’

Get Current Joint-Space Pose:
Next we have to get the current joint-space pose of

the robot and putting it into a 6 DOF array. This is
done by looking for the index of each joint and then
putting them in an array. The array must be in the
order defined in Table 10.

Python:

# Get c u r r e n t j o i n t s p a c e pose o f arm
jn tn = mds . getAddress ( ’LSP ’ , s t a t e )
j 0 = s t a t e . j o i n t [ jntn ] . r e f
jntn = mds . getAddress ( ’LSR ’ , s t a t e )
j 1 = s t a t e . j o i n t [ jntn ] . r e f
jntn = mds . getAddress ( ’LSY ’ , s t a t e )
j 2 = s t a t e . j o i n t [ jntn ] . r e f
jntn = mds . getAddress ( ’LEP ’ , s t a t e )
j 3 = s t a t e . j o i n t [ jntn ] . r e f
jntn = mds . getAddress ( ’LWY’ , s t a t e )
j 4 = s t a t e . j o i n t [ jntn ] . r e f
jntn = mds . getAddress ( ’LWR’ , s t a t e )
j 5 = s t a t e . j o i n t [ jntn ] . r e f
e f f j o i n t s p a c e c u r r e n t =[ j0 , j1 , j2 , j3 , j4 , j 5 ]

Table 10: Arm joint-space pose order.

Array Joint Short Name Short Name
Index Definition (left) (right)

0 Shoulder Pitch LSP RSP
1 Shoulder Roll LSR RSR
2 Shoulder Yaw LSY RSY
3 Elbow Pitch LEP REP
4 Wrist Yaw LWY RWY
5 Wrist Roll LWR RWR

Set DOF and Order of Desired Work-Space Position:
We now set the DOF of the desired work-space (ac-

ceptable numbers are 1-6) and the order in which we
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input them. Using the MDS IK API we can input the
desired work-space coordinates in any order we desire.
The order is defined by an array of string that we call
‘order’. The valid inputs for this array can be found in
Table 11.

Table 11: Valid Inputs for “order” Array

Definition Input to Array (String)

Position in x (px) (meters) ’p x’
Position in y (py ) (meters) ’p y’
Position in z (pz) (meters) ’p z’

Rotation about x (θx) (radians) ’t x’
Rotation about y (θy ) (radians) ’t y’
Rotation about z (θz) (radians) ’t z’

Here we have 3 DOF with an order of position in
x, y, then z. Note: This order MUST match that of
the order in your desired work-space position array in
Section H.

Python:

# s e t t h e do f and t h e o r d e r ( do f = 3)
dof = 3
order = [ ’ p x ’ , ’ p y ’ , ’ p z ’ ]

Set Error:
Here we set the error for the IK solver. The error is

a 3D array with the atrobutes found in Table 12.

Table 12: Error Array Index Definitions

Index Definition

0 Max change in angular position (θ) per iteration (rad)
1 Max change in linear position (xyz) per iteration (m)
2 Max linear Error (m2 + rad2)

The max change in angular position is the maxi-
mum distance in radians that the solver will move per
iteration. The max change in translational position is
the maximum distance translated in x,y,z per iteration
in meters. The max linear error (emax) is the linear
distance in N DOF that disregards units. The error in
the end-effectors actual position vs its desired position
(eef f ) can be found via the equation below.

eef f =

N−1∑
i=0

(ddes[i]− dact[i])2


1
2

(5)

where ddes is the desired pose and dact is the actual
pose. The system will say the IK has been solved if
eef f ≤ emax.

To set the desired errors make the 3D array as
seen below. If no error is input the default values of
[0.01,0.01,0.01] will be used.

Python:

# s e t t h e a l l o w a b l e e r r o r
e r r = np . array ( [ 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ] )

Set Max Solving Iterations:

Due to the nature of the IK method utilized the sys-
tem can fall into local minimum or a hysteresis. This
will cause the system to attempt to solve indefinitely.
To avoid this use add a maximum number of iterations
to try when solving the IK. This number is set below.
If not set it will use the default value of 1000.

Python:

# Se t s o l v i n g s t e p number max
stepNum = 1000

Limit input to desired DOF:

Here you limit the size of the desired end-effector
position vector to the ‘dof’ that we defined in Sec-
tion H.

Python:

# De i s r ed p o s i t i o n f o r only t h e do f we want
ef f end = ef f end [ : dof ]

Solving the IK:

Now we can solve the IK via the use of ik.getIK() in
the mds ik python module.

Python:

# S o l v e IK
j n t r e t u r n = ik . getIK ( e f f j o i n t s p a c e c u r r e n t ,

eff end , order , arm , err ,
stepNum )

The output of this is a 2D array where index 1 re-
turns a -1 if there is no IK solved. Index 0 is the array
of the end-effectors joint-space values for the given de-
sired work-space position. The order of the joint-space
values are the same as what is found in Table 10.

Python:

# r e t u r n s in t h e f o l l o w i n g o r d e r
# J o i n t s p a c e r e t u r n =
# [ LSP , LSR , LRY , LEP , LWY, LWR]
e f f j o i n t s p a c e c u r r e n t = j n t r e t u r n [ 0 ]

Putting the IK solution on the robot:

To put the IK solution on the robot we map the
received joint space values on the reference (ref) struc-
ture of the robot’s MDS-Ach system. Again the order
of the joint-space values are the same as what is found
in Table 10. In this case we are setting the left arm.
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Python:

# Se t t o j o i n t s p a c e
jn tn = mds . getAddress ( ’LSP ’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 0 ]
j n t n= mds . getAddress ( ’LSR ’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 1 ]
jntn = mds . getAddress ( ’LSY ’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 2 ]
j n t n= mds . getAddress ( ’LEP ’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 3 ]
jntn = mds . getAddress ( ’LWY’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 4 ]
jntn = mds . getAddress ( ’LWR’ , s t a t e )
r e f . j o i n t [ jntn ] . r e f= e f f j o i n t s p a c e c u r r e n t [ 5 ]

Commanding the robot:
Just as in previous sections, we have to “put” the

resulting structure on the reference (filtered) channel
before the robot will move. Please note that we are
using the filtered channel the the robot will not “jerk”
during the joint-space step input operation.

Python:

# Send t o t h e r o b o t
r . put ( r e f )

Getting the Forward Kinematics from joint-space
pose:

We can get the work-space position of the arm via
the forward kinematics (FK) by utilizing the joint-space
pose the the ik.getFkArm() function of the mds ik mod-
ule.

Python:

# g e t FK o f arm
A = ik . getFkArm ( e f f j o i n t s p a c e c u r r e n t , arm )
e f f e n d r e t=ik . getPosCurrentFromOrder (A, order )

ik.getFkArm() will return a 4x4 matrix which in-
cludes the rotation and translations components. The
ik.getPosCurrentFromOrder() returns the work-space
position and orientation in the same order as requested
by “order”. This will return a 1xN array where N is
equal to the length of your “order”. You can find the
error by doing the following.

Python:

# f i n d d i f f e r e n t in d e s i r e d vs a c t u i a l pos
e f f e n d d i f = ef f end − e f f e n d r e t

Running the code:
To run the code enter the “examples” directory of

the mds-ach project and run the following command:

Bash:

$ python mds ik solver example . py

The resulting console output should look like Fig-
ure 25.

Figure 25: Expected window for ($ python
mds ik solver example.py)

The resulting simulator output should look like Fig-
ure 24.
Full Code:

The full example can be found in the file:

mds-ach/examples/mds_ik_solver_example.py

www.astesj.com 72

http://www.astesj.com

	Introduction
	Background
	Methodology
	Controller Area Network Communication
	x-Ach
	Reference Channels
	State Channel

	Daemon
	Input Pipeline
	Joint Mux
	Real-Time Collision Detection
	Joint-Space Smoothing
	Inverse Kinematics
	Network Daemon
	Security

	External Framework Bridge

	Testing
	Inverse Kinematics Test
	Position Control IK Test
	Orientation Control IK Test

	Self-Collision Detection and Avoidance Test
	World-Collision Detection and Avoidance Test

	Usage
	Daemon Control: mds-ach
	Startup Procedure
	Initialize
	Start Daemon

	Examples

	Utilities
	MDS-Ach Console
	MDS-Ach Read
	Prerequisites
	Startup

	Software Interface

	Operating in Joint-Space
	Operating in Cartesian-Space
	Built-in IK Controller (Python)
	Python imports
	Create Open Ach Channel for IK
	Make IK Structure
	Setting the DOF controlled
	Choosing Arm for IK
	Set IK Structure
	Command the Robot
	Running the Code
	Full Code

	Built-in IK Controller (C/C++)
	Making a Box using Inverse Kinematics (Python)
	Making the Box
	Select Arm
	Parse Desired Position
	Set Desired Position
	Send Desired Position to be Solved
	Running the Code
	Full Code

	Inverse Kinimatics (IK) API

	Conclusion
	APPENDIX
	Daemon Console
	Startup Procedure
	(Option 1) With physical MDS robot:
	(Option 2) With virtual MDS robot:

	Examples
	MDS-Ach Console
	Software Interface
	Operating in Joint-Space
	Control one joint/DOF (Python)
	Control Two joints/DOF (C/C++)

	Built-in IK Controller (C/C++)
	Inverse Kinematics API

